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Abstract| In this paper we introduce �xed-
phase retiming, an optimization technique for re-
ducing the power dissipation of digital circuits
without sacri�cing their performance. In �xed-
phase retiming, we �rst transform any given edge-
triggered circuit into a two-phase level-clocked
circuit by replacing each 
ip-
op by two level-
sensitive latches. Subsequently, while keeping the
latches clocked on one of the phases �xed, we relo-
cate the remaining latches onto interconnections
with high glitching activity and capacitive load.
We formulate �xed-phase retiming as a boolean
monotonic linear program and give an O(V 6 logV )-
time algorithm for solving it, where V is the num-
ber of combinational blocks in the circuit.

1 Introduction

The average power dissipation of a circuit may be sig-
ni�cantly reduced by changes in its architecture. This
paper describes �xed-phase retiming, an optimization
technique that relocates the storage elements of digital
CMOS circuits in order to reduce their power dissipation
while maintaining their performance. In �xed-phase re-
timing, a given edge-triggered circuit is �rst transformed
into a two-phase level-clocked circuit by replacing each
edge-triggered 
ip-
op by two back-to-back level-clocked
latches. Subsequently, latches clocked on one phase are
relocated, while latches clocked on the other phase are
kept �xed (hence the name �xed-phase). One objective
of this transformation is to place latches on intercon-
nections with high glitching activity, thereby shielding
the glitches from large capacitive loads. Since in stan-
dard cell design the capacitance of a latch is typically
smaller than the input capacitance of a combinational
gate, this transformation reduces power dissipation dur-
ing the opaque phase of the latch. Another objective of
�xed-phase retiming is to reduce the number of latches in
the circuit, thus reducing the power dissipated for storing
data.
Fixed-phase retiming has several advantages over con-

ventional edge-triggered retiming as described in [3].
First, since the latches clocked on one phase are kept
�xed, the values of the state variables of the synchronous
circuit can still be obtained at the same interconnections.
Therefore, the testability characteristics of the original
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Figure 1: The �xed-phase retiming methodology for low power
design.
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Figure 2: A two-phase clocking scheme � = h�0; 
0; �1; 
1i.

edge-triggered circuit remain virtually unchanged. Sec-
ond, since only one latch per weighted edge is allowed to
move, the �nal circuit is only marginally di�erent from
the original circuit, and changes in layout are not signif-
icant. Third, �xed-phase retiming can always be applied
to further optimize edge-triggered circuits that have al-
ready been optimized using edge-triggered retiming. Fi-
nally, �xed-phase retiming can reduce power dissipation
without sacri�cing performance. In fact, performance
may improve.
Fixed-phase retiming is best illustrated by the exam-

ple in Figure 3. Figure 3(a) shows a section of an edge
triggered circuit. The numbers on the edges indicate
the potential reduction in power dissipation when an
edge-triggered 
ip-
op is present on that edge, assum-
ing that the rest of the circuit remains unchanged. Neg-
ative values of power reduction indicate an increase in
power dissipation when a 
ip-
op is placed on an in-
terconnection. This reduction in power dissipation can
be achieved if the edge has a high glitching-capacitance
product [3]. After replacing each edge-triggered 
ip-
op
by two back-to-back level-clocked latches, the resulting
circuit is �xed-phase retimed to obtain the circuit in Fig-
ure 3(b). Assuming a non-overlapping two-phase clock-
ing scheme � = h�0 = 4; 
0 = 1; �1 = 4; 
1 = 1i such
as the one shown in Figure 2, power dissipation can be
reduced by 11.8 power units. Speci�cally, the glitching

on edges B
12
! D, E

13
! F and E

�2
! H is \masked" for

60% of the clock cycle which decreases power dissipation
by 0:6 � (12 + 13 � 2) = 13:8 units of power. At the

same time, the glitching on edges G
10
! J and H

�5
! K

is \exposed" for 40% of the clock cycle which increases
power dissipation by 0:4� (10 � 5) = 2 power units. In
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Figure 3: Illustration of �xed-phase retiming. (a) Initial edge-
triggered circuit. (b) Fixed-phase retimed circuit that dissipates

11.8 units less power under a h4;1; 4;1i two-phase non-overlapping
clocking scheme.

order to simplify the computation of changes in power
dissipation for this example, we assumed that glitching
is uniformly distributed over the entire clock period and
that the relocation of latches does not change glitching
signi�cantly.
In this paper, we show that �xed-phase retiming can

be expressed as an e�ciently solvable boolean mono-
tonic quadratic program. Speci�cally, we describe an
e�cient algorithm for computing a �xed-phase retiming
that minimizes the power dissipation of any given cir-
cuit while maintaining its performance. The algorithm
runs in O(V 6 logV ) steps, where V denotes the number
of combinational blocks in the circuit.
The remainder of this paper has �ve sections. In Sec-

tion 2 we describe our graph representation model and
give an overview of retiming edge-triggered circuits for
low power. In Section 3, we analyze the e�ects of �xed-
phase retiming on power dissipation and derive a mathe-
matical expression for the reduction in power dissipation.
In Section 4 we express the �xed-phase retiming problem
as a boolean monotonic quadratic program. In Section 5,
we describe a linearization of the quadratic program and
an O(V 6 logV )-time algorithm for solving it.

2 Preliminaries

In this section we describe the graph representation of
a circuit and discuss previous work on the application of
retiming for reducing power dissipation in edge-triggered
circuits. We also state our assumptions about power dis-
sipation in level-clocked circuits.

2.1 Graph representation

Given an edge-triggered circuit, we obtain an equiva-
lent level-clocked circuit by replacing each edge-triggered


ip-
op by two level-clocked latches clocked on alter-
nate phases of a nonoverlapping two-phase clocking
scheme � = h�0; 
0; �1; 
1i Figure 2. We model a
two-phase level-clocked circuit as a directed multigraph
G = hV;E; d; w; �;Eg; Ci. The vertices V in the graph
correspond to the combinational elements in the circuit.
The directed edges E model the interconnections between
the combinational blocks. For a combinational element
v, the propagation delay is given by d(v) and its input
phase by �(v). If the input phase of a vertex v is �(v),
then ��(v) clocks the last latch on any path that ends at

v. Each edge u
e
! v 2 E connects an output of some

combinational block u to the input of another block v

and is associated with a weight w(e) that gives the latch

count on the wire. Each edge u
e
! v is also associated

with a pair (Eg(e); C(e)), where Eg(e) denotes the aver-
age glitching frequency at the output of node u, and C(e)
denotes the capacitive load presented by node v to the
output of node u. The product Eg(e) �C(e) is a measure
of the power dissipation due to glitching on the edge e.

2.2 Retiming edge-triggered circuits

When an edge-triggered 
ip-
op is placed on a zero-

weight edge u
i
! v, power dissipation is reduced, since

the glitching at the output of u is shielded from the rest
of the circuit by the 
ip-
op. Assuming that the rest of
the network remains unchanged, the reduction in power
dissipation is given by [3]

p
ET
m (i) = Eg(i)�C(i)+Eg(i)�

fanoutiX
u

j
!v

(sj;i�C(j))�Eg(i)�Cff :

(1)
The sum in Equation (1) has three terms. The �rst

term Eg(i) �C(i) gives the reduction in power dissipation
at the input of v due to masking.
Since the glitching on edge i also propagates through

its transitive fanout fanouti, the masking e�ect of the

ip 
op also a�ects power dissipation on each edge

u
j
! v in the combinational fanout fanouti. The term

Eg(i)�
Pfanouti

u
j
!v

(sj;i �C(j)) denotes the reduction in power

dissipation on the edges of the transitive fanout of i,
where C(j) denotes the capacitive load presented by node
v to the output of u. The probability that a transition
on edge i propagates to edge j is denoted by sj;i and is
given by [3]

sj;i = Prob(j l ji l) ; (2)

where Prob(i l ji l) denotes the probability of a transi-
tion at edge j given that there is a transition at edge i.
The third term Eg(i)�Cff denotes an increase in power

dissipation due to glitching at the 
ip-
op inputs, where
Cff denotes the input capacitive load of the 
ip-
op.

2.3 Retiming level-clocked circuits

Retiming level-clocked circuits has a similar e�ect on
power dissipation as edge-triggered retiming. In contrast
to 
ip-
ops which shield glitching for the entire clock
period, level-clocked latches shield glitching for the part
of the clock period they are opaque.
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Figure 4: Masking, exposing and remasking. (a) A two-phase
level-clocked circuit with back-to-back latches clocked by a two-
phase non-overlapping scheme. (b) Fixed-phase retimed circuit.
Moving the �0 latch from C ! D to A ! B masks the glitching
of A's output from B, but exposes D and E to the glitching of C's
output. Placing a �0 latch on D ! E remasks the glitching of C
from E.

Our analysis of �xed-phase retiming relies on certain
simplifying assumptions. In level-clocked circuits, signals
that 
ow through a latch during its transparent phase can
initiate computations in the next combinational stage, a
phenomenon termed as cycle stealing. As a result, data
can ripple through several stages of storage elements be-
fore their propagation is complete. Our treatment of
�xed-phase retiming does not take into account the ef-
fects of cycle stealing for the following reasons. First, our
approach seeks to minimize the glitching component of
power dissipation. Due to the inertial delay of the combi-
national blocks, we do not expect glitching to propagate
through many combinational stages, and thus it is not
an issue. Second, cycle stealing is a theoretical poten-
tial of level-clocked circuits and it is not clear how many
practical circuits employ it extensively. Moreover, since
our methodology applies to circuits which were originally
edge triggered, we do not expect cycle stealing to be sig-
ni�cant after �xed-phase retiming. Another simplifying
assumption that we make in our analysis is that glitching
is evenly distributed over each clock cycle.

3 Dissipation and �xed-phase retiming

Fixed-phase retiming a�ects power dissipation by
shielding or exposing capacitive nodes to glitches, and
by changing the number of latches in the circuit. In this
section, we present a mathematical analysis and derive
an expression that captures the changes in power dissi-
pation due to �xed-phase retiming.
Figure 4 illustrates the e�ects of �xed-phase retiming

to the glitching-related power dissipation of a circuit.

First, when a latch is placed on an edge u
e
! v with

w(e) = 0, the glitching at the output of u is masked
from v's input while the latch is opaque. In Figure 4(b),
for example, when a latch is introduced on A ! B, the
glitching at A's output is not visible to B when �0 is low.

Second, when a latch is removed from an edge u
e
! v

with w(e) = 2, the glitching at the output of u, which
was previously masked from v, is now exposed to v while
the latch is transparent. For the edge C ! D in Fig-
ure 4(b), the glitching of C is visible to D while �1 is
high. Third, exposed glitching can get remasked. For
example, the glitching at C's output is remasked from E

when a latch is placed on the edge D ! E.

In the following four subsections, we give a detailed
analysis of the changes in a circuit's power dissipation
due to �xed-phase retiming. We �rst focus on each indi-
vidual edge e, based on whether the corresponding wire
in the original circuit has 0, 2, or more than 2 latches.
We then consider the power dissipation e�ects of changes
in the latch count of the circuit. Finally, we derive an
expression for the overall change in power dissipation by
adding up the contributions of the individual circuit com-
ponents.

3.1 Edges with zero latches in original circuit

Consider an edge u
i
! v 2 Ec = fe 2 E : w(e) = 0g.

Before retiming, power dissipation due to glitching occurs
only on the combinational block v and its combinational
transitive fanout fanouti. This dissipation is given by
the expression

pbef (i) = Eg(i) � fC(i) +

fanoutiX
j

(sj;i �C(j))g : (3)

Power dissipation at latch inputs is zero since w(i) = 0.
After retiming, dissipation at the input of the combi-

national block depends on whether the retiming process
introduces a latch on i or not. When a �0-latch is in-
troduced on the edge i, i.e. r(v) � r(u) = 1, power is
dissipated at the input of v during the transparent phase
of the latch's operation. When there is no latch on the
edge i, i.e. r(v)� r(u) = 0, power dissipation is the same
as before retiming. Thus, the power dissipation associ-
ated with i due to dissipation in combinational blocks is
given by

paft(i) = f
�0

�
� (r(v) � r(u)) + [1� (r(v) � r(u))]g

�Eg(i) � fC(i) +

fanoutiX
j

(sj;i �C(j))g : (4)

The �rst term in Equation (4) denotes the power dissi-
pation when r(v)�r(u) = 1, and the second term denotes
the dissipation when r(v) � r(u) = 0.
For the kind of level-clocked latch implementations we

consider, the capacitive load presented by a latch is the
same, regardless of whether it is open or closed. As a
result, the contribution to power dissipation by a latch
on the edge i is given by

p
L
aft(i) = Eg(i) � (r(v) � r(u)) �CL : (5)

For certain other implementations of a level-clocked latch
such as a pass transistor inverter combination, the input
capacitance CL may depend on whether the latch is open
or closed, in which case Equation (5) would have to be
adjusted accordingly.
From Equations (3), (4), and (5), it follows that the

reduction in power dissipation, due to the masking e�ect

of �xed-phase retiming, associated with an edge u
i
! v 2

Ec is given by

�pEc
(i) = pbef (i) � (paft(i) + p

L
aft(i)) : (6)



3.2 Edges with two latches in original circuit

Consider an edge u
i
! v 2 El = fe 2 E : w(e) = 2g.

Before retiming, the power dissipation associated with
the combinational block v of this edge is zero, since
the output of the latches is a clean transition without
glitches. The glitching at the input of the latches is seen
by the �0-latch for the entire clock period and by the �1-
latch for the duration when the �0-latch is transparent.
As a result, the contribution to dissipation by the inputs
of the latches is given by the expression

p
L
bef (i) =

� + �0

�
�Eg(i) �CL : (7)

After �xed-phase retiming, the power dissipation asso-
ciated with the combinational block of the edge i is given
by the expression

paft(i) =
�1

�
�Eg(i) � r(u)� fC(i) � (1� r(v))

+

fanoutiX
uj

j
!vj

sj;i �C(j) � (1� r(vj))g : (8)

When r(u) = 0, i.e. the �0-latch remains on i, the combi-
national power dissipation remains zero. When r(u) = 1,
Equation (8) is the sum of two terms. The �rst term is
non-zero when r(v) = 0, i.e. when no �0-latch is intro-
duced on the edge i, and the glitching Eg(i) is visible
to node v for the duration the �1 latch is open. When
r(v) = 1, however, �0-latch is introduced which remasks
glitching and thus no power is dissipated in the combina-
tional fanout of i. The second term represents the e�ect

of glitching Eg(i) on each edge uj
j
! vj in the combi-

national transitive fanout of i. When r(vj) = 0, the
glitching e�ect propagates, but it gets remasked when
r(vj) = 1.
The dissipation at the latch input after �xed-phase re-

timing is given by the expression

p
L
aft(i) =

� + �0

�
�Eg(i) �CL � (1 � r(u))

+Eg(i) � r(u)fCL +
�1

�
�CL � r(v)g : (9)

Equation (9) has three terms. When r(u) = 0, power
dissipation remains unchanged and is given by the �rst
term. When r(u) = 1, the �rst term reduces to zero, and
the second term denotes the dissipation in the �1-latch.
When r(v) = 1, the third term denotes the power dissi-
pation in the incoming �0-latch on i. The term denot-
ing power dissipation in the incoming latches on edges

uj
j
! vj in the combinational transitive fanout of i is

not included in Equation (9), since it is taken into ac-
count in the power dissipation term associated with edges

uj
j
! vj, where w(j) = 0.
It follows from Equations (7), (8), and (9) that the

change in power dissipation for the edge i is given by the
expression

�pEl
(i) = p

L
bef (i) � (paft(i) + p

L
aft(i)) : (10)

3.3 Edges with more than two latches

For edges that have more than two latches in the orig-
inal circuit, the power dissipation does not change with
�xed-phase retiming.

3.4 Latch power dissipation

We now consider the change in power dissipation due
to a change in the number of latches in the circuit. Since
the number of �1 latches remains unchanged, this com-
ponent of power dissipation is entirely due to the transi-
tion activity E�0 on the �0 clock line and is given by the
expression

�pclk(�0) = E�0 �CL�0 �
X

u
e
!v2E

r(v) � r(u) : (11)

The switching activity on the �0 clock line is given by
E�0 , and the capacitive load presented by the latch to
the �0 clock line is given by CL�0.
It follows from Equations (6), (10), and (11) that the

net reduction in power dissipation by means of �xed-
phase retiming is given by

PR =
X
e2Ec

�pEc
(e) +

X
e2El

�pEl
(e) + �pclk(�0) : (12)

Thus, the power optimization problem by �xed-phase re-
timing is equivalent to maximizing the objective function
PR while maintaining the performance of the circuit.

4 Quadratic programming formulation

In this section we de�ne the �xed-phase retiming prob-
lem for reducing power dissipation while maintainingper-
formance. We show that this problem can be reduced to
a boolean quadratic programming problem with mono-
tone inequalities and positive quadratic coe�cients. We
exploit this property in the next section to design a
polynomial-time algorithm for �xed-phase retiming.
The following lemma gives necessary and su�cient

conditions for a retimed circuit Gr to be properly timed
by a given clocking scheme �.

Lemma 1 (Lemma 36, [5]) Let G = hV;E; d; w; �i be
a two-phase, level-clocked circuit, let � = h�0; 
0; �1; 
1i
be a clocking scheme, and let r : V ! Z be a retiming
function. Moreover, let p be the shortest (least-weight)
path from u to v in the graph G

0 = hV;E;w0i with edge-
weight function w

0(e) = �w(e)=2 � d(j) for each edge

i
e
! j in E. Then, the retimed circuit Gr is properly

timed by � if and only if for every edge u
e
! v 2 E, we

have
r(u)� r(v) � w(e) ; (13)

and for every vertex pair u; v 2 V , we have

d(p) � �

�
1 + w(p)

2

�
+ ��(u) (14)

+�

�
r(v)

2

�
+ (r(v) mod 2)(
�(u) + �1��(u))

��

�
r(u)

2

�
� (r(u) mod 2)(
�(u) + ��(u)) ;



if �(u) 6= �(v), and

d(p) � �

�
2 + w(p)

2

�
� 
1��(u) (15)

+�

�
r(v)

2

�
+ (r(v) mod 2)(
1��(u) + ��(u))

��

�
r(u)

2

�
� (r(u) mod 2)(
�(u) + ��(u)) ;

if �(u) = �(v).

Thus, the �xed-phase retiming problem for power op-
timization under performance constraints can be de�ned
as follows.

De�nition 2 (Problem FPR { Fixed-Phase Re-
timing) Let G = hV;E; p; w; �;Eg; Ci be a synchronous
circuit, and let � = h�0; 
0; �1; 
1i be a two-phase clock-
ing scheme. Moreover, let p be the shortest (least-weight)
path from u to v in the graph G

0 = hV;E;w0i with edge-
weight function w

0(e) = �w(e)=2 � d(j) for each edge

i
e
! j in E. The �xed-phase retiming problem for power

minimization is to compute a retiming r : V ! f0; 1g
such that we maximize the objective PR from Expres-
sion (12) subject to the constraints that for every edge

u
e
! v 2 E, we have

r(u) � r(v) +w(e) ; (16)

and for every vertex pair u; v 2 V , we have

d(p) � �(
2 + w(p)

2
)� 
0 (17)

+r(v)(
0 + �1) � r(u)(
1 + �1) :

The objective PR gives the reduction in power dis-
sipation under �xed-phase retiming. Inequalities (16)
and (17) guarantee that the performance of the circuit is
maintained. These inequalities follow from the inequal-
ities in Lemma 1 for r 2 f0; 1g and �(u) = �(v) = 1,
since the original circuit is edge-triggered.

De�nition 3 (Problem BMQP { Boolean Mono-
tonic Quadratic Programming) Let di 2 IR for
i = 1; : : : ; n. Moreover, let dij 2 IR for i; j = 1; : : : ; n,
and let P = f(i; j) : dij > 0; 1 � i; j � ng. The boolean
monotonic quadratic programming problem is to compute
xi 2 f0; 1g for i = 1; : : : ; n, such that the objective

nX
i

dixi +
X

(i;j)2P

dij xi � xj (18)

is maximized subject to the constraints

akxi � bkxj � ck ; k = 1; � � � ;m ; (19)

where, ak; bk; ck 2 IR and ak; bk � 0 for k = 1; : : : :m.

Problem FPR can be brought to the form of Prob-
lem BMQP, that is, a boolean quadratic program with
monotone inequalities and a maximization objective with
positive quadratic coe�cients. The terms r(u) � r(v) and
r(u) � r(vi) in the objective PR are quadratic. More-
over, the unknowns r take integer values from the set
f0; 1g by the de�nition of �xed-phase retiming. Boolean
quadratic programs are intractable, in general. Two ad-
ditional properties of Problem FPR enable us to solve it
in polynomial time, as we describe in Section 5. First,
all constraints in De�nition 2 are monotone inequalities
with at most two variables per inequality. Second, all
quadratic terms in the objective PR have positive coef-
�cients, assuming that the latch capacitance is smaller
than the input capacitance of any combinational block,
that is, CL � C(i) for all i 2 E. A comprehensive
comparison of the cells in the CMOS3 Cell Library [1]
con�rms that this assumption is reasonable. With the
exception of a high impedance inverter whose input ca-
pacitance is comparable to that of a level-clocked latch,
all other combinational blocks have higher input capaci-
tances than a level-clocked latch. We conclude this sec-
tion with the following lemma.

Lemma 4 Problem FPR can be reduced to Prob-
lem BMQP.

5 Polynomial-time algorithm

In this section we give a polynomial-time algorithm
for �xed-phase retiming. As we showed in the previ-
ous section, Problem FPR can be reduced to a boolean
monotonic quadratic program. Although such programs
are intractable in general, we can solve Problem FPR ef-
�ciently by reducing it even further to a boolean mono-
tonic program with a linear objective. The key to the
linearization of the quadratic objective is that the coef-
�cients of its quadratic terms are positive. Using a tech-
nique proposed by Hochbaum and Naor from [2] we can
obtain an O(V 6 logV )-time algorithm for the problem.
Problem BMQP can be transformed into a boolean

monotonic linear program by introducing a new boolean
variable yij for each quadratic term xi � xj, and by con-
straining yij to take the value xi � xj.

De�nition 5 (Problem BMLP { Boolean Mono-
tonic Linear Programming) Let di 2 IR for i =
1; : : : ; n. Moreover, let dij 2 IR for i; j = 1; : : : ; n,
and let P = f(i; j) : dij > 0; 1 � i; j � ng. The boolean
monotonic linear programming problem is to compute
xi; yij 2 f0; 1g for i; j = 1; : : : ; n, such that the objec-
tive

nX
i

dixi +
X

(i;j)2P

dij yij (20)

is maximized subject to the constraints

yij � xi � 0 (i; j) 2 P ; (21)

yij � xj � 0 (i; j) 2 P ; (22)

akxi � bkxj � ck k = 1; � � � ;m ; (23)

where ak; bk; ck 2 IR and ak; bk � 0 for k = 1; : : : ;m.



SolveFPR(G;�)

1 Compute objective PR and constraints C for Problem FPR

2 Linearize PR to obtain a BMLP by replacing every

term of the form r(u) � r(v) by ruv such that

C  C [ fr(u) � ruvg [ fr(v) � ruvg

3 Compute r that maximizes PR subject to C using the

Hochbaum-Naor technique.

4 return r.

Figure 5: Algorithm SolveFPR for solving Problem FPR.

It is known that unconstrained boolean quadratic pro-
grams with objectives in the form of Expression (18) and
their corresponding linearized programs with objectives
in the form of Expression (20) have the same optimum
value [4]. We prove a similar result for boolean mono-
tonic quadratic programs.

Lemma 6 The optimum values of the objectives for
Problem BMQP and Problem BMLP are equal.

Proof. Given a solution xi, i = 1; : : : ; n, for Prob-
lem BMQP, we can construct a feasible vector for Prob-
lemBMLP with equal objective value. Such a vector can
be obtained by using the same xi's and by setting yi;j =
xi � xj for every (i; j) 2 f(i; j) : dij > 0; 1 � i; j � ng.
Conversely, given integers xi; yij, i; j = 1; : : : ; n, that
solve Problem BMLP, the xi's are also feasible for Prob-
lemBMQP and achieve the same value for the objective.

The following lemma is used to obtain a polynomial-
time algorithm for Problem FPR.

Lemma 7 (Theorem 3.7, [2]) The integer optimal so-
lution of a monotone linear system of inequalities with
respect to an arbitrary linear objective can be computed
in O(m(

Pn

i=1 jVij)
2 log(

Pn

i=1 jVij)) steps, where m is the
number of inequalities, n is the number of variables, and
Vi is the set of integers between the largest and smallest
integer feasible values of variable xi.

Theorem 8 Problem BMLP can be solved in
O(mn2 logn) steps.

Proof. Problem BMLP is a monotone linear system of
inequalities with boolean variables and a linear objective.
We thus have jVij = 2 for every variable xi, and the
running time follows immediately from Lemma 7.

We now present an e�cient algorithm for solving Prob-
lem FPR which is based on the results of Hochbaum
and Naor in [2]. The algorithm, given in Figure 5,
�rst computes the objective and the set of constraints
to obtain a boolean quadratic program. This boolean
quadratic program is then linearized to obtain an in-
stance ofBMLP which is then solved using the algorithm
due to Hochbaum-Naor [2]. We conclude this section
with the following theorem.

Theorem 9 Algorithm SolveFPR solves
Problem FPR in O(V 6 logV ) steps.

Proof. From Lemma 4, we know that Problem FPR can
be reduced to Problem BMQP with O(V ) variables and
O(V 2) constraints. Since PR can have O(V 2) quadratic
terms, from Lemmas 4 and 6 we infer that Problem FPR
can be reduced to Problem BMLP with O(V 2) variables
and O(V 2) constraints. The running time of the algo-
rithm follows from Theorem 8.

6 Conclusion

In this paper we have investigated the �xed-phase
retiming transformation for reducing power dissipation
in CMOS digital circuits. We have shown that the
ensuing optimization problem can be formulated as a
boolean monotonic linear program which can be solved
in O(V 6 logV ) steps. We are currently evaluating the
e�ectiveness of �xed-phase retiming. Preliminary exper-
iments with a 4-bit carry-lookahead adder indicate power
savings of about 15%. Our experiments reveal that in ad-
dition to shielding highly capacitive nodes from glitching,
�xed-phase retiming has the potential of reducing power
dissipation by equalizing arrival times of signals at gate
inputs.
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