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A Novel Criterion for Classifiers Combination in
Multi-Stream Speech Recognition

Fabio Valente Member, |IEEE

Abstract—In this paper we propose a novel information the sum rule [3]) and the minimization of the Bayes probapili
theoretic criterion for optimizing the linear combination of of error.
classifiers in multi stream automatic speech recognition. &
discuss an objective function that achieves a trade-off beteen the
minimization of a bound on the Bayes probability of error and the Il. MOTIVATIONS
minimization of the divergence between the individual clasifier .
outputs and their combination. The method is compared with he Let us denote two different feature streams ¥y and X,
conventional inverse entropy and minimum entropy combinaions and a set ok phonetic targets by = {6;}. In the following,
on both small and large vocabulary automatic speech recogtion  we will consider the combination of only two sets of features
tasks. Results reveal that it outperforms other linear comimation  \vithout loss of generality. Let us train two MLPs according

rules. Furthermore we discuss the advantages of the propode . . . .
approach and the extension to other (non-linear) combinatin to [5] using X, and X; as input features; they will produce

rules. phoneme posterior probabiliti€p; , = p(6;|X.)} and{p;, =
p(6;|Xp)} withi =1, ..., k.

Index Terms—Multi-stream speech recognition, Classifiers . L . .
P 9 ' The linear combination of posterior estimates andp;,

combination. i
can be written as:
|. INTRODUCTION Pic = WaPia+wppiv With we +wp =1 (1)
Multi-band and multi-stream [1], [2] speech recognitioe arwhere w,,w, > 0, w, = p(X,) and w, = p(Xp). If

based on the combination of information obtained from diffew, = wy, = 0.5 i.e. X, and X, receive equal weights, the
ent feature streams, and are typically used for increasiag tombination is simply the linear average of the two posterio
robustness of Automatic Speech Recognition (ASR) systemstimates, i.e., the sum rule [3]. In [4], it was observed
in noisy or mismatched conditions. The rationale behindiimulthat the value of the entropy of the MLP outpif(p) =
stream approaches is that, in adverse conditions, differen}; p;log(p;) increases with the SNR, meaning that the
streams will be affected in different ways. The combinatioposterior estimatg(©|X) converges towards a uniform, non-
method should be able to select dynamically the streams thebrmative distribution over the phonemes. Thus entroply v
are least affected . This work builds on the same framewoules H (p,) = — Y, pialogpia @nd H (py) = — >, pislog piv
proposed in [1], [2] in which several Multi Layer Perceptrortan provide a confidence measure related to how feature
(MLP) classifiers are trained in order to discriminate betwe streamsX, and X, are affected by the noise. Those findings
phonemes using different input features. The MLP output coimspired two weighting schemes referredrdgimum entropy
sists of phoneme posterior probabilities that can be coetbinandinverse entropy combination [4].

according to probabilistic rules. The combination invalyeo In minimum entropy combination, the stream with the min-
tasks: imum entropy receives weight one i.e.
1 Determining a confidence measure for each feature

stream. we =1,wy, =0 if H(pa) < H(py)

2 Defining a rule for combining the different streams ac- wa =0, wy =1if H(pa) > H(ps) (2)

CF)rdmg to their conf@ence mefelsure. _ ~This is equivalent to selecting the feature stream with the
. Typical rules fqr f:lassﬁ!ers com_blna'uon are I_mear weighfowest entropy thus the more confidentH{p,) = H(ps), the
ing, product, majority voting, maximum and minimum rulesnethod randomly select one of the streamsnirerse entropy

(see [3]). We will focus here on the case lafear classifier combination, the weights are set inversely proportionaht®
combination. An effective approach for determining thefeon yajue of the entropy i.e.

dence of each stream is based on the use of the entropy of the

MLP output [4]. For exampléwverse entropy combination sets , — 1/H(pa) L wp = 1/H(py) (3)
the weights of the linear combination inversely proporicto 1/H(pa) + 1/H (py) 1/H(pa) +1/H (py)
the value of the entropy. In contrast tominimum entropy which operates an “hard”

In this paper we propose a criterion that models the trafle-gfcision,inverse entropy gives highest weight to low entropy
between the linear averaging of the posterior probalsliti®. gistributions in a “soft” way.

o . _ In [4] it was noticed that typicallynverse entropy combina-
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feature streams is non-informative or completely corrdfiitg prior 7, = m = 0.5. In the following, we will make the

noise,minimum entropy yields better results. assumption of equal prior probability for feature streals
Although inverse entropy combination has been provenand X,,.

effective in both small and large vocabulary tasks [6], it is

based on empirical observations of the behavior of the MLIRy, M INIMUM ENTROPY SOLUTION AS MINIMIZATION OF

output in noisy conditions. We can identify the following BAYES ERROR BOUND

problems: . ] Let us assume a classification problem between a sét of
1 The use of the inverse value of the entropy iS NQfasses denoted b§ = {6;} with i = 1, ...k. Given posterior
theoretically motivated or justified. The weighting SCheerobabilities {pi = p(6;X)} where X is an observation
(3) does not arise as optimization of an objective f“nCtiOQector, in [7], it has been shown that a bound on the Bayes

2 Inverse entropy does not properly handle non-informativeprobabi”ty of errorP,(0) is given by:
posterior distributions. To understand the problem, let us

consider a non-informative uniform distributidmp;,} = P.(©) < 1H(®|X) (5)
1/k (i.e. H(pa) = Hymaz Where H,,4, is the maximum 2
entropy value) and an informative distributign such In other words, the minimization of the entrop(©|X) cor-
that H (py) # Hma. and H(py) # 0. Given thatp, does responds to the minimization of an upper bound on the Bayes
not contain information o®, we would expects, = 0. probability of error. Giverp, andp,, the linear combination
Inverse entropy weighting will provide, # 0. In [4] p. that minimizes the bound (5) is obtained as:
the problem is tackled comparini(p) with a threshold
(static or dynamic); ifH(p) exceeds the threshold, the
weightw, is set to an arbitrary small value. with w, +w, = 1. Because of the concavity of the entropy
Inverse entropy can be considered as a trade-off between tlienction, we have:
linear averaging op,, p, and theminimum entropy solution.
In the following we propose an information theoretic inter- H(wa pa +wppp) = wa H(pa) +ws H(ps) )
pretation of the linear averaging and timnimum entropy. In  Thus the minimum off (p,.) is achieved fot* = 1w =0if
section Ill we show that linear average can be obtained from(p,) < H(p;) and forw! = 0,w; = 1if H(p,) > H(pp). If
the minimization of a weighted sum of KL divergences. ItH (p,) = H(p;), H(p.) has two minima, thus the method ran-
section IV, we show thatinimum entropy can be obtained as domly selects one of them. This is equivalent to thieimum
minimization of a bound on the Bayes probability of erroreThentropy solution. Expression (5) is an upper bound, minimizing
proposed criterion is a trade-off between the two quastéied the entropyH (6|X) does not guarantee the minimization of

*

(wi wg) = argmin H(p.) = argmin H(wq pia + wp pis) (6)

it is discussed in section V. the error.
II1. LINEAR AVERAGE AS MINIMIZATION OF DISTANCE V. INFORMATION THEORETIC TRADEOFF
FUNCTION

. Inverse entropy combination can be considered as a trade-
Let us considepi. = p(0i|Xa)} and{pis = p(6:|Xs)}  off in between the average of the two distributipn and p;
and let us denote with, = p(X,) andm, = p(X3) the prior  and theminimum entropy solutions.D (p.) andH (p.) are min-

probabilities of feature streams, and X, (with m, + m, = imized by the sum and the minimum entropy rules respectively
1) . Assuming the linear combination (1), we can write thgng they have different (complementary) solutions. Thus we
following function: propose the use of the following objective function in order
D(p.) = ma KL(pallpe) +m KL(po||pe) = to obtain the desired trade-off between the two solutions:
= _T‘-GH(pa) - TrbH(pb) + J(pc) = [% H(pc)] + D(pc) = (8)
- TaPia T TpPib )LOG(Wa Pia T Wo Pib = Q|35 1(Pe Ta Pal|Pc Tp Pov||Pc)| =
( + )log( + ) (4) [3 H(pe)] + [ma K L(pallpe) + m K Lps||pe)]
G = —7oH (pa) — mH (py)+

where KL(.||.)_ denotes the Kullback-Leibler divergence be- _ ST 4+ a22)pia + (w0 + @2 )pip)log(wa pia + wb pis)
tween two distributions.D(p.) is the weighted sum of S _ o
KL divergences between the individual posteriprsp, and The minimization of J(p.) can be cpn&dergd_ as the mini-
their linear combinatiorp,. Minimizing D(p.) is equivalent Mization of D(p.) under the constraint of minimum entropy
to minimizing the sum of cross entropies > piqlogp;. ©Of H(p.). Dually it can be interpreted as the minimization of
and — " py logps. weighted by priorsr, and . It fol- the entropyH (p.) (thus the bound on the Bayes probability of
lows directly from the Gibbs inequality«(>" p; logp; < error) under the constraints of minimum divergence between
— Y pilogg: ) that(w*, wi) = argmin D(wa,wy) = (T4, ™). Pe and the distributiong, and p,. The parameter: is the

If the streams have equal prior probability i, = m, = trade-off factor between the two quantities.

0.5, the distributionp, that minimizeD(p,) is the average of ~ Let us considefw;,wy) = argmin J(wa, ws).

Pa: Db 1-€.,De = (Do + Do) e Fora — 0, J(p.) = D(p.) thus the minimum of/(p.)
In summary, the average of two posterior estimates can be is achieved for(w},w;) = (mq,m). If 71 = m = 0.5

the obtained as the minimum of the function (4) under equal this corresponds to the linear averagepgfandp;,.
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Fig. 1. (Left plot) Example of functiorD(p.) with 7, = 7, = 0.5 and H(p.) for po = [0.9 0.1], p, = [0.4 0.6] as function ofw,. D(p.) is a convex
function with a minimum forw, = 0.5 while H(p.) is a concave function with a minimum i, = 1. (Right plot) J(p.) = a H(p:)/2 + D(pc) as
function of w, for different values of«; for increasinga: the minimum moves fromw, = m, = 0.5 towards the minimum entropy solutioo(p.) is a
trade-off between its part®(p.) and H(pc).

e Fora — oo, J(p.) — H(p.) thus the minimum of/ (p..) In general, ifp, andp, are low entropy distributions (i.e., far
is achieved fow} =1 if H(p,) < H(py) andw; =0 if from the uniform distribution, which means that the classgi
H(p,) < H(pp) i.€. theminimum entropy solution. are confident about the decision), the value cofwill be

For other values ofr > 0, (w*,w;) will be included between small. Thus the optimization of (p.) will mainly focus on

the minimum entropy solution and the average combination i.ethe termD(p.). On the other hand, whep, or p, are high
entropy distributions (i.e. close to the uniform distriout

€[ma,1] i H(pa) < H(ps) which means that the classifiers are not confident on the
€l0,m,] if H(pa) > H(ps) (9) decision), the value of will be large. Thus the optimization
of J(p.) will mainly focus on the termH (p.), which only

with wp = 1 —wj andm, = 1 —m. If H(pa) = H(pb), gelects the most confident stream.

the number of minima i/(p.) depends on the value of. If
a H(p.) is larger thenD(p.), J(p.) has two minima, in the

. o N VI. EXPERIMENTS
other case just one minimum. Figure 1 shows an example of

functionsH (p.) and D(p,.) W.r.t. the weightu, and.J(p.) for ~ Inthe following, we investigate the use of thi€p..) function
different values ofv. The solution arises from the optimizationfor combining phoneme posterior probabilities obtainetigis
of the informtion theorethic trade-off. different input streams. Experiments aim at comparing the

(w?,w;) do not have an analytic form. We used a standaRfoposed approach with other linear frame-based combimati
gradient descent technique to find the root of the equatiB¥es like theinverse-entropy, minimum-entropy and uniform
9 J(wa)/0ws = 0 in the range of values defined by theveighting. The combination happens at the frame level. The
expressions (9). If no root is available, the minimum is fAxperimental setting is the following: two MLPs are trained

one extreme of the range and is determined by the sign of #@ng different temporal context: a short temporal con{éxt
derivatives. frames PLP [8]) and a long temporal context (one second

critical band energy pre-processed with a set of zero mean

filters a.k.a. as MRASTA [9]). Those two different posterior

A. The trade-off factor estimates are then combined together using sum, inverse
The trade-off factor: can be statically set (i.e., independengntropy, minimum entropy or thé function. Combined pos-

of the current values of, andp;) and determined by crossteriors are transformed according to TANDEM processing [8]

validation experiments. We propose to set it dynamicallpas(i.e. using a log/KLT transform) and used as features in a

function of p, andp,. According to the discussion of sectionconventional HMM/GMM system.

Il point 2, we would like to obtain a weight equal to zero

in the case of non-informative uniform posterior distribas. A. Small Vocabulary

Let us define:
1 The database used for recognition experiments consists of
a(pa,py) = (10) the OGI-Numbers 95 while MLPs are trained using 3 hours of
K L(pallpu) x K L(psllpu) hand-labeled speech from ti@Gl-Sories database in order
where{p,; = 1/k} Vi = 1,..,k is a uniform distributiona:  to discriminate between phonemes. We add noises from the
is set inversely proportional to the divergence betwpgp, NOISEX database (babble, factory, F16) at different SNR
andp,. If p, is, for instance, non-informative (i.e., a uniformo the test set. Training of MLPs and HMM/GMM is done
distribution) andH (p,) # Hmax then K L(p,|lp.) = 0 and on clean data. Results are reported in table V. For SNRs
a = oo. Thus, minimizingJ(p.) is equivalent to minimizing equal to 20 and 15 dBnverse entropy and J function have
H(p.), which gives(w, = 0,w, = 1). The non-informative comparable results. For SNRs equal to 10, 5 and 0 dB, the
distribution has a weight equal to zero. J function outperforms thénverse entropy combination, the
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Features 20dB | 15dB | 10 dB | 5dB | 0dB | Features [ TOT [ AMI [ CMU [ ICSI [ NIST | VT ]
9frames-PLP 87 | 157 | 30.6 | 52.1 | 74.0 Oframes-PLP 466 | 414 | 437 | 31.3 | 545 | 649
MRASTA 59 | 103 | 225 | 514 ] 787 MRASTA 450 | 480 | 419 | 371 | 544 | 48.8
_Sum 56 | 98 | 218 | 488 77.1 Sum 415 | 411 | 376 | 30.4 | 50.2 | 49.8
Min-entropy 5.6 9.5 215 | 458 | 731 Min-entropy 413 | 404 | 379 | 296 | 491 | 523
Inv-entropy 5.1 9.0 205 | 481] 77.0 Inv-entropy 404 [ 398 | 37.0 | 296 | 483 | 487
| J [ 51 [ 90 | 19.7 | 433 72.6 ] J 398 | 395 | 36.7 | 28.8 | 475 | 48.7
< w > (Inv-entropy) | 0.55 | 0.57 0.58 | 0.58 | 0.40 < w > (Inv-entropy) - 029 | 063 | 0.16 | 0.48 | 0.63
<w > Q) 0.56 | 0.67 | 0.67 | 0.68 | 0.30 <w > (J) - 0.23 | 0.74 | 0.10 | 0.45 | 0.68
<a> 0.25 | 0.30 | 0.37 | 0.44 | 0.47 <a> - 0.23 | 0.24 | 0.20 | 0.26 | 0.26
TABLE |

WER FOR NOISY NUMBERS AT DIFFERENTSNR (RIGHT TABLE) AND FOR RTO5EVALUATION DATA (LEFT TABLE). WERREPORTED FOR INDIVIDUAL
STREAMS AND COMBINATION (SUM,MINIMUM ENTROPY, INVERSE ENTROPY ANDJ CRITERION). THE AVERAGE VALUES OF THEMRASTA STREAM
WEIGHT < w > AND THE AVERAGE VALUE OF THE TRADE-OFF< @ > ARE REPORTED AS WELL

improvements being larger at lower dB. It is interesting tave discuss how to set the trade-off in order to deal with
notice that at 0 dBminimum entropy outperformsinverse non-informative distributions. In contrary to inverse reply
entropy. However theJ function still produces lower WER combination, non-informative distributions receive zesgight
than minimum entropy. Although the weights and the trade-without the use of any heuristic threshold. Experiments on
off « are computed at the frame level, we report in table | tr@mall and large vocabulary tasks reveal that ftig function
average value ofv and the average weight of the MRASTAoutperforms inverse entropy, minimum entropy and uniform
stream both for inverse entropy addfunction. The value of weighting. The analysis of the weights average values shows
a increases (as expected) with the SNR level. Furthermore that in case of mismatch th&(.) function provides an higher
J function weights more the stream with lower WER respegteight for the most confident stream respect to inverse pptro
to inverse entropy, the difference being larger at low SNRs. Preliminary experiments on larger amount of data (approx-
imatively 1500 hours of speech) show that the improvements
B. Large Vocabulary scale-up as long as the MLP features and the HMM/GMM are
t&{;\ined on the same amounts of data.

Experiments were run on a meetings transcription tas We limited the di ion t v t " ¥
The training data for this system comprises individual lsead e limite € discussion 1o only two streams. &)
nction can be easily extended 1 streams. Assuming the

microphone (IHM) data of four meeting corpora; the NIS’,.j'_LI L N o :
(13 hours), ISL (10 hours), ICSI (73 hours) and a preli |_nea_r combinationp,. = ZJ’ %ﬂ'pﬂ" it is straightforward to
inary part of the AMI corpus (16 hours). Those data a@Ptain H(p.) and D, = > 7" m K L(p;llpc), thus J(pc).
used for training MLPs and HMM/GMM models. Acousticmurthermore the same principle can also be applied to com-
models are phonetically state tied triphones models tdainBinations that are not linear (e.g. log-linear combinatiam
using standard HTK maximum likelihood training procedure®roduct rules) given that the criterion is completely geter
The recognition experiments were conducted on the NIST

Rich Transcription 05 (RTO05) evaluation data. We use the REFERENCES

reference speech segments provided by NIST for decodingj Bourlard H. and Dupont S., “A new asr approach based oepeddent
The pronunciation dictionary is the same as the one used in processing and re-combination of partial frequency bahBsoc. ICSLP

the _AMI NIST RTO5 system [10]_' The Cha”_enge_ of this data[Z] I?I%rmansky H., Tibrewala S., and Pavel M., “Towards asrpantially

set is the variety of acoustic environments in which dataehav ~ corrupted speech,Proc. ICSLP, 1996.

been collected. Results are reported in tablemerse entropy [3] Kittler J. et al, “On combining classifiersfEEE Transactions on PAMI,
combination achieves a WER of 40.4% while tfidunction ‘,\’/ﬁgrgoiﬁgg&”md H. and Tyagi V., “Entropy-based nitream
achieves a WER of 39.8%. The improvements are verified on" combination,” inProceedings of 1CASSP, 2003.

4 of the 5 meeting rooms in the RTO5 evaluation data sef5] Bourlard H. and Morgan N, Connectionist Speech Recognition - A
Table | also reports the average valuecofand the average ﬂfﬁggnAﬁ?r%aﬁQh 'é'}”;iru%éiin;'gtzlléiffrs“#:g;hg corsational
weights of the MRASTA stream both for inverse entropy an(} speech: E;(tending frap/tandém approaches’to converahtielephone

J function. Conclusions are similar to those obtained in th([e7] Zp?lech rfﬂczgnitiznéprqcejdin%s Otl; IS?SSPfZOM - i
: : ellman M.E. and Raviv J., “Probability of error, equaation, and the
previous section. chernoff bound,”|EEE Trans. on Information Theory, vol. 16(4), 1970.
[8] Hermansky H., Ellis D., and Sharma S., “Connectionisitfiee extrac-
VIl. CONCLUSIONS AND DISCUSSION tion for conventional hmm systems Proceedings of ICASSP, 2000.
. . . . . [9] Hermansky H. and Fousek P., “Multi-resolution rastaefillg for
In this work we proposed an objective function for the linear ~ tandem-based asr..” iRroceedings of Interspeech 2005, 2005.

combination of classifiers in multi-stream ASR. In contragt0] Hain T. et al, “The 2005 AMI system for the transcriptioh speech in

to other methods likénverse entropy, weights are obtained ~ Meetings NIST RTO5 Workshop Edinburgh, UK., 2005,

as minimization of an objective functiod(p.) (9). J(p.)

can be considered as a trade-off between the linear :';1veraglérhiS material is based upon work supported by the Defenseaatd
" ior distributi d the distributi h .. Research Projects Agency (DARPA) under Contract No. HR@®BC-0023
of posterior distributions and the distribution that mimg and by the European Union under the integrated project AMID#e author

the bound on the Bayes probability of error. Furthermotganks the anonymous reviewer for their comments.



