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Abstract—In this paper we propose a novel information
theoretic criterion for optimizing the linear combination of
classifiers in multi stream automatic speech recognition. We
discuss an objective function that achieves a trade-off between the
minimization of a bound on the Bayes probability of error and the
minimization of the divergence between the individual classifier
outputs and their combination. The method is compared with the
conventional inverse entropy and minimum entropy combinations
on both small and large vocabulary automatic speech recognition
tasks. Results reveal that it outperforms other linear combination
rules. Furthermore we discuss the advantages of the proposed
approach and the extension to other (non-linear) combination
rules.

Index Terms—Multi-stream speech recognition, Classifiers
combination.

I. I NTRODUCTION

Multi-band and multi-stream [1], [2] speech recognition are
based on the combination of information obtained from differ-
ent feature streams, and are typically used for increasing the
robustness of Automatic Speech Recognition (ASR) systems
in noisy or mismatched conditions. The rationale behind multi-
stream approaches is that, in adverse conditions, different
streams will be affected in different ways. The combination
method should be able to select dynamically the streams that
are least affected . This work builds on the same framework
proposed in [1], [2] in which several Multi Layer Perceptron
(MLP) classifiers are trained in order to discriminate between
phonemes using different input features. The MLP output con-
sists of phoneme posterior probabilities that can be combined
according to probabilistic rules. The combination involves two
tasks:

1 Determining a confidence measure for each feature
stream.

2 Defining a rule for combining the different streams ac-
cording to their confidence measure.

Typical rules for classifiers combination are linear weight-
ing, product, majority voting, maximum and minimum rules
(see [3]). We will focus here on the case oflinear classifier
combination. An effective approach for determining the confi-
dence of each stream is based on the use of the entropy of the
MLP output [4]. For exampleinverse entropy combination sets
the weights of the linear combination inversely proportional to
the value of the entropy.

In this paper we propose a criterion that models the trade-off
between the linear averaging of the posterior probabilities (i.e.
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the sum rule [3]) and the minimization of the Bayes probability
of error.

II. M OTIVATIONS

Let us denote two different feature streams byXa andXb

and a set ofk phonetic targets byΘ = {θi}. In the following,
we will consider the combination of only two sets of features
without loss of generality. Let us train two MLPs according
to [5] using Xa and Xb as input features; they will produce
phoneme posterior probabilities{pi a = p(θi|Xa)} and{pi b =
p(θi|Xb)} with i = 1, ..., k.

The linear combination of posterior estimatespi a and pi b

can be written as:

pi c = ωa pi a + ωb pi b with ωa + ωb = 1 (1)

where ωa, ωb ≥ 0, ωa = p(Xa) and ωb = p(Xb). If
ωa = ωb = 0.5 i.e. Xa and Xb receive equal weights, the
combination is simply the linear average of the two posterior
estimates, i.e., the sum rule [3]. In [4], it was observed
that the value of the entropy of the MLP outputH(p) =
−

∑
i pilog(pi) increases with the SNR, meaning that the

posterior estimatep(Θ|X) converges towards a uniform, non-
informative distribution over the phonemes. Thus entropy val-
uesH(pa) = −

∑
i pi alog pi a andH(pb) = −

∑
i pi blog pi b

can provide a confidence measure related to how feature
streamsXa andXb are affected by the noise. Those findings
inspired two weighting schemes referred asminimum entropy
and inverse entropy combination [4].

In minimum entropy combination, the stream with the min-
imum entropy receives weight one i.e.

ωa = 1 , ωb = 0 if H(pa) < H(pb)

ωa = 0 , ωb = 1 if H(pa) > H(pb) (2)

This is equivalent to selecting the feature stream with the
lowest entropy thus the more confident. IfH(pa) = H(pb), the
method randomly select one of the streams. Ininverse entropy
combination, the weights are set inversely proportional tothe
value of the entropy i.e.

ωa =
1/H(pa)

1/H(pa) + 1/H(pb)
, ωb =

1/H(pb)

1/H(pa) + 1/H(pb)
(3)

In contrast tominimum entropy which operates an “hard”
decision,inverse entropy gives highest weight to low entropy
distributions in a “soft” way.

In [4] it was noticed that typicallyinverse entropy combina-
tion performs better thenminimum entropy combination when
streams have comparable performances. However if one of the
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feature streams is non-informative or completely corrupted by
noise,minimum entropy yields better results.

Although inverse entropy combination has been proven
effective in both small and large vocabulary tasks [6], it is
based on empirical observations of the behavior of the MLP
output in noisy conditions. We can identify the following
problems:

1 The use of the inverse value of the entropy is not
theoretically motivated or justified. The weighting scheme
(3) does not arise as optimization of an objective function.

2 Inverse entropy does not properly handle non-informative
posterior distributions. To understand the problem, let us
consider a non-informative uniform distribution{pia} =
1/k (i.e. H(pa) = Hmax whereHmax is the maximum
entropy value) and an informative distributionpb such
that H(pb) 6= Hmax andH(pb) 6= 0. Given thatpa does
not contain information onΘ, we would expectωa = 0.
Inverse entropy weighting will provideωa 6= 0. In [4]
the problem is tackled comparingH(p) with a threshold
(static or dynamic); ifH(p) exceeds the threshold, the
weight ωa is set to an arbitrary small value.

Inverse entropy can be considered as a trade-off between the
linear averaging ofpa, pb and theminimum entropy solution.
In the following we propose an information theoretic inter-
pretation of the linear averaging and theminimum entropy. In
section III we show that linear average can be obtained from
the minimization of a weighted sum of KL divergences. In
section IV, we show thatminimum entropy can be obtained as
minimization of a bound on the Bayes probability of error. The
proposed criterion is a trade-off between the two quantities and
it is discussed in section V.

III. L INEAR AVERAGE AS MINIMIZATION OF DISTANCE

FUNCTION

Let us consider{pi a = p(θi|Xa)} and {pi b = p(θi|Xb)}
and let us denote withπa = p(Xa) andπb = p(Xb) the prior
probabilities of feature streamsXa andXb (with πa + πb =
1) . Assuming the linear combination (1), we can write the
following function:

D(pc) = πa KL(pa||pc) + πb KL(pb||pc) =

= −πaH(pa) − πbH(pb) +

−
∑

i

(πapia + πbpib)log(ωa pia + ωb pib) (4)

whereKL(.||.) denotes the Kullback-Leibler divergence be-
tween two distributions.D(pc) is the weighted sum of
KL divergences between the individual posteriorspa, pb and
their linear combinationpc. Minimizing D(pc) is equivalent
to minimizing the sum of cross entropies−

∑
pia log pic

and −
∑

pib log pic weighted by priorsπa and πb. It fol-
lows directly from the Gibbs inequality (−

∑
pi logpi ≤

−
∑

pi logqi ) that(ω∗

a, ω∗

b ) = argmin D(ωa, ωb) = (πa, πb).
If the streams have equal prior probability i.e.πa = πb =

0.5, the distributionpc that minimizeD(pc) is the average of
pa, pb, i.e., pc = 1

2
(pa + pb).

In summary, the average of two posterior estimates can be
the obtained as the minimum of the function (4) under equal

prior πa = πb = 0.5. In the following, we will make the
assumption of equal prior probability for feature streamsXa

andXb.

IV. M INIMUM ENTROPY SOLUTION AS MINIMIZATION OF

BAYES ERROR BOUND

Let us assume a classification problem between a set ofk
classes denoted byΘ = {θi} with i = 1, ...k. Given posterior
probabilities {pi = p(θi|X)} where X is an observation
vector, in [7], it has been shown that a bound on the Bayes
probability of errorPe(Θ) is given by:

Pe(Θ) ≤
1

2
H(Θ|X) (5)

In other words, the minimization of the entropyH(Θ|X) cor-
responds to the minimization of an upper bound on the Bayes
probability of error. Givenpa andpb, the linear combination
pc that minimizes the bound (5) is obtained as:

(ω∗

a, ω∗

b ) = argmin H(pc) = argmin H(ωa pi a + ωb pi b) (6)

with ωa + ωb = 1. Because of the concavity of the entropy
function, we have:

H(ωa pa + ωb pb) ≥ ωa H(pa) + ωb H(pb) (7)

Thus the minimum ofH(pc) is achieved forω∗

a = 1, ω∗

b = 0 if
H(pa) < H(pb) and forω∗

a = 0, ω∗

b = 1 if H(pa) > H(pb). If
H(pa) = H(pb), H(pc) has two minima, thus the method ran-
domly selects one of them. This is equivalent to theminimum
entropy solution. Expression (5) is an upper bound, minimizing
the entropyH(Θ|X) does not guarantee the minimization of
the error.

V. I NFORMATION THEORETIC TRADE-OFF

Inverse entropy combination can be considered as a trade-
off in between the average of the two distributionpa and pb

and theminimum entropy solutions.D(pc) andH(pc) are min-
imized by the sum and the minimum entropy rules respectively
and they have different (complementary) solutions. Thus we
propose the use of the following objective function in order
to obtain the desired trade-off between the two solutions:

J(pc) = α [ 1
2

H(pc)] + D(pc) = (8)

= α [ 1
2

H(pc)] + [πa KL(pa||pc) + πb KL(pb||pc)] =

= −πaH(pa) − πbH(pb)+

−
∑

i[(πa + αωa

2
)pia + (πa + αωb

2
)pib]log(ωa pi a + ωb pi b)

The minimization ofJ(pc) can be considered as the mini-
mization of D(pc) under the constraint of minimum entropy
of H(pc). Dually it can be interpreted as the minimization of
the entropyH(pc) (thus the bound on the Bayes probability of
error) under the constraints of minimum divergence between
pc and the distributionspa and pb. The parameterα is the
trade-off factor between the two quantities.

Let us consider(ω∗

a, ω∗

b ) = argmin J(ωa, ωb).

• For α → 0, J(pc) = D(pc) thus the minimum ofJ(pc)
is achieved for(ω∗

a, ω∗

b ) = (πa, πb). If πa = πb = 0.5
this corresponds to the linear average ofpa andpb.
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Fig. 1. (Left plot) Example of functionD(pc) with πa = πb = 0.5 andH(pc) for pa = [0.9 0.1], pb = [0.4 0.6] as function ofωa. D(pc) is a convex
function with a minimum forωa = 0.5 while H(pc) is a concave function with a minimum inωa = 1. (Right plot) J(pc) = α H(pc)/2 + D(pc) as
function of ωa for different values ofα; for increasingα the minimum moves fromωa = πa = 0.5 towards the minimum entropy solution.J(pc) is a
trade-off between its partsD(pc) andH(pc).

• Forα → ∞ , J(pc) → H(pc) thus the minimum ofJ(pc)
is achieved forω∗

a = 1 if H(pa) < H(pb) andω∗

a = 0 if
H(pa) < H(pb) i.e. theminimum entropy solution.

For other values ofα > 0, (ω∗

a, ω∗

b ) will be included between
theminimum entropy solution and the average combination i.e.

ω∗

a ǫ [πa, 1] if H(pa) < H(pb)

ω∗

a ǫ [0, πa] if H(pa) > H(pb) (9)

with ω∗

b = 1 − ω∗

a and πa = 1 − πb. If H(pa) = H(pb),
the number of minima inJ(pc) depends on the value ofα. If
α H(pc) is larger thenD(pc), J(pc) has two minima, in the
other case just one minimum. Figure 1 shows an example of
functionsH(pc) andD(pc) w.r.t. the weightωa andJ(pc) for
different values ofα. The solution arises from the optimization
of the informtion theorethic trade-off.

(ω∗

a, ω∗

b ) do not have an analytic form. We used a standard
gradient descent technique to find the root of the equation
∂ J(ωa)/∂ωa = 0 in the range of values defined by the
expressions (9). If no root is available, the minimum is at
one extreme of the range and is determined by the sign of the
derivatives.

A. The trade-off factor

The trade-off factorα can be statically set (i.e., independent
of the current values ofpa and pb) and determined by cross
validation experiments. We propose to set it dynamically asa
function of pa andpb. According to the discussion of section
II point 2, we would like to obtain a weight equal to zero
in the case of non-informative uniform posterior distributions.
Let us define:

α(pa, pb) =
1

KL(pa||pu) × KL(pb||pu)
(10)

where{pui = 1/k} ∀i = 1, .., k is a uniform distribution.α
is set inversely proportional to the divergence betweenpa,pb

andpu. If pa is, for instance, non-informative (i.e., a uniform
distribution) andH(pb) 6= Hmax then KL(pa||pu) = 0 and
α = ∞. Thus, minimizingJ(pc) is equivalent to minimizing
H(pc), which gives(ωa = 0, ωb = 1). The non-informative
distribution has a weight equal to zero.

In general, ifpa andpb are low entropy distributions (i.e., far
from the uniform distribution, which means that the classifiers
are confident about the decision), the value ofα will be
small. Thus the optimization ofJ(pc) will mainly focus on
the termD(pc). On the other hand, whenpa or pb are high
entropy distributions (i.e. close to the uniform distribution
which means that the classifiers are not confident on the
decision), the value ofα will be large. Thus the optimization
of J(pc) will mainly focus on the termH(pc), which only
selects the most confident stream.

VI. EXPERIMENTS

In the following, we investigate the use of theJ(pc) function
for combining phoneme posterior probabilities obtained using
different input streams. Experiments aim at comparing the
proposed approach with other linear frame-based combination
rules like theinverse-entropy, minimum-entropy and uniform
weighting. The combination happens at the frame level. The
experimental setting is the following: two MLPs are trained
using different temporal context: a short temporal context(9
frames PLP [8]) and a long temporal context (one second
critical band energy pre-processed with a set of zero mean
filters a.k.a. as MRASTA [9]). Those two different posterior
estimates are then combined together using sum, inverse
entropy, minimum entropy or theJ function. Combined pos-
teriors are transformed according to TANDEM processing [8]
(i.e. using a log/KLT transform) and used as features in a
conventional HMM/GMM system.

A. Small Vocabulary

The database used for recognition experiments consists of
theOGI-Numbers 95 while MLPs are trained using 3 hours of
hand-labeled speech from theOGI-Stories database in order
to discriminate between phonemes. We add noises from the
NOISEX database (babble, factory, F16) at different SNR
to the test set. Training of MLPs and HMM/GMM is done
on clean data. Results are reported in table V. For SNRs
equal to 20 and 15 dBinverse entropy and J function have
comparable results. For SNRs equal to 10, 5 and 0 dB, the
J function outperforms theinverse entropy combination, the
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Features 20dB 15dB 10 dB 5dB 0dB
9frames-PLP 8.7 15.7 30.6 52.1 74.0

MRASTA 5.9 10.3 22.5 51.4 78.7
Sum 5.6 9.8 21.8 48.8 77.1

Min-entropy 5.6 9.5 21.5 45.8 73.1
Inv-entropy 5.1 9.0 20.5 48.1 77.0

J 5.1 9.0 19.7 43.3 72.6

< w > (Inv-entropy) 0.55 0.57 0.58 0.58 0.40
< w > (J) 0.56 0.67 0.67 0.68 0.30

< α > 0.25 0.30 0.37 0.44 0.47

Features TOT AMI CMU ICSI NIST VT

9frames-PLP 46.6 41.4 43.7 31.3 54.5 64.9
MRASTA 45.9 48.0 41.9 37.1 54.4 48.8

Sum 41.5 41.1 37.6 30.4 50.2 49.8
Min-entropy 41.3 40.4 37.9 29.6 49.1 52.3
Inv-entropy 40.4 39.8 37.0 29.6 48.3 48.7

J 39.8 39.5 36.7 28.8 47.5 48.7

< w > (Inv-entropy) - 0.29 0.63 0.16 0.48 0.63
< w > (J) - 0.23 0.74 0.10 0.45 0.68

< α > - 0.23 0.24 0.20 0.26 0.26

TABLE I
WER FOR NOISY NUMBERS AT DIFFERENTSNR (RIGHT TABLE) AND FOR RT05EVALUATION DATA (LEFT TABLE). WER REPORTED FOR INDIVIDUAL

STREAMS AND COMBINATION (SUM,MINIMUM ENTROPY, INVERSE ENTROPY ANDJ CRITERION). THE AVERAGE VALUES OF THEMRASTA STREAM

WEIGHT < w > AND THE AVERAGE VALUE OF THE TRADE-OFF< α > ARE REPORTED AS WELL.

improvements being larger at lower dB. It is interesting to
notice that at 0 dB,minimum entropy outperformsinverse
entropy. However theJ function still produces lower WER
than minimum entropy. Although the weights and the trade-
off α are computed at the frame level, we report in table I the
average value ofα and the average weight of the MRASTA
stream both for inverse entropy andJ function. The value of
α increases (as expected) with the SNR level. Furthermore the
J function weights more the stream with lower WER respect
to inverse entropy, the difference being larger at low SNRs.

B. Large Vocabulary

Experiments were run on a meetings transcription task.
The training data for this system comprises individual headset
microphone (IHM) data of four meeting corpora; the NIST
(13 hours), ISL (10 hours), ICSI (73 hours) and a prelim-
inary part of the AMI corpus (16 hours). Those data are
used for training MLPs and HMM/GMM models. Acoustic
models are phonetically state tied triphones models trained
using standard HTK maximum likelihood training procedures.
The recognition experiments were conducted on the NIST
Rich Transcription 05 (RT05) evaluation data. We use the
reference speech segments provided by NIST for decoding.
The pronunciation dictionary is the same as the one used in
the AMI NIST RT05 system [10]. The challenge of this data
set is the variety of acoustic environments in which data have
been collected. Results are reported in table I.Inverse entropy
combination achieves a WER of 40.4% while theJ function
achieves a WER of 39.8%. The improvements are verified on
4 of the 5 meeting rooms in the RT05 evaluation data set.
Table I also reports the average value ofα and the average
weights of the MRASTA stream both for inverse entropy and
J function. Conclusions are similar to those obtained in the
previous section.

VII. C ONCLUSIONS AND DISCUSSION

In this work we proposed an objective function for the linear
combination of classifiers in multi-stream ASR. In contrast
to other methods likeinverse entropy, weights are obtained
as minimization of an objective functionJ(pc) (9). J(pc)
can be considered as a trade-off between the linear average
of posterior distributions and the distribution that minimize
the bound on the Bayes probability of error. Furthermore

we discuss how to set the trade-off in order to deal with
non-informative distributions. In contrary to inverse entropy
combination, non-informative distributions receive zeroweight
without the use of any heuristic threshold. Experiments on
small and large vocabulary tasks reveal that theJ(.) function
outperforms inverse entropy, minimum entropy and uniform
weighting. The analysis of the weights average values shows
that in case of mismatch theJ(.) function provides an higher
weight for the most confident stream respect to inverse entropy.

Preliminary experiments on larger amount of data (approx-
imatively 1500 hours of speech) show that the improvements
scale-up as long as the MLP features and the HMM/GMM are
trained on the same amounts of data.

We limited the discussion to only two streams. TheJ(.)
function can be easily extended toN streams. Assuming the
linear combinationpc =

∑N

j ωjpj , it is straightforward to

obtain H(pc) and Dpc
=

∑N

j πjKL(pj||pc), thus J(pc).
Furthermore the same principle can also be applied to com-
binations that are not linear (e.g. log-linear combinations or
product rules) given that the criterion is completely general1.
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