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Stereophonic Acoustic Echo Cancellation: Analysis
of the Misalignment in the Frequency Domain

Andy W. H. Khong, Jacob Benesty, Senior Member, IEEE, and Patrick A. Naylor, Member, IEEE

Abstract—The performance in terms of misalignment of adap-
tive algorithms, in general, is dependent on the conditioning of the
input signal covariance matrix. The performance of two-channel
adaptive algorithms is further degraded by the high interchannel
coherence between the two input signals. In this letter, we establish
the relationship between interchannel coherence of the two input
signals and condition of the corresponding covariance matrix for
stereo acoustic echo cancellation application. We show how this re-
lationship affects the misalignment of a frequency-domain adaptive
algorithm. We provide simulation results for both white Gaussian
noise and speech input to verify our mathematical analysis.

Index Terms—Condition number, interchannel coherence, mis-
alignment, stereophonic acoustic echo cancellation.

I. INTRODUCTION

I N hands-free teleconferencing systems, multi-input and
multi-output (MIMO) transmission provides telepresence

by enhancing source localization. The stereophonic acoustic
echo canceller (SAEC), such as shown in Fig. 1, suppresses
the echo returned to the transmission room so as to enable
undisturbed communication between the rooms.

A serious problem encountered in SAEC is the nonunique-
ness problem [1]. It has been shown [2] that for a practical
stereophonic system, the tap-input covariance matrix is
highly ill-conditioned. This is due to the high coherence be-
tween the two input signals and , which in turn
degrades the misalignment performance of adaptive algorithms.
Many proposed solutions have since been introduced using,
for example, nonlinear processing [1], [3], spectrally shaped
random noise [4], time-varying all-pass filtering [5], and
algorithms employing tap-selection [6]. The aim of these algo-
rithms is to achieve decorrelation of and , hence
improving the condition of , without affecting the quality
or stereophonic image of the speech. A survey of existing
techniques for SAEC can be found in [7].

It has been shown [8] that for a single channel case, the per-
formance of adaptive algorithms in terms of their final misalign-
ment is affected by the conditioning of . For the stereo case,
however, although it has generally been noted that the condi-
tioning of is degraded by the high interchannel coherence
between and , no explicit relationship between the
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Fig. 1. SAEC system.

two has been established. The aim of this letter is to establish
this relationship that allows one to gain an insight of how in-
terchannel coherence degrades the final misalignment perfor-
mance of SAEC algorithms through the ill-conditioning of .
Using this relationship, one can determine the level of ill-condi-
tioning of through the interchannel coherence estimate and
design regularization parameters so as to improve the condi-
tioning of , hence giving good misalignment performance,
such as shown in [9]. We will verify the validity of the estab-
lished relationship for both white Gaussian noise (WGN) and
speech input signals by showing how the condition number is
affected by the interchannel coherence, which in turn affects the
performance of a two-channel frequency-domain adaptive algo-
rithm [3] in terms of its final misalignment.

II. LINK BETWEEN INTERCHANNEL COHERENCE

AND CONDITION NUMBER

We first express the covariance matrix in terms of its auto-
and cross-spectra content and then exploit the -norm condi-
tion number [8], as will be described in this section. We denote

as the tap-input vector
for channels , 2 such that and the superscript are
the length of the adaptive filter and vector transposition, respec-
tively. Let , and the two-channel co-
variance matrix is thus given by

(1)

where is the mathematical expectation operator. It
had been noted that adaptive algorithms aim to solve the
Wiener–Hopf equations [10] given by

(2)
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where and . It is evident
from (2) that an ill-conditioned will yield a bad estimate of .
The performance of adaptive algorithms in SAEC is further de-
graded by the interchannel coherence between and ,
as will be shown below.

A. Covariance Matrix and Spectra Content

We first note that for , a Toeplitz matrix is asymptot-
ically equivalent to a circulant matrix if its elements are abso-
lutely summable [11]. Defining , we can decompose
the covariance matrix between the th and th channel

, given in (1) as [3]

(3)

where is the Fourier matrix defined with elements
for , . The matrix

diag (4)

contains elements corresponding to the frequency bins, which
are formed from the discrete Fourier transform (DFT) of the first
column of . Letting be the auto- and cross-correlation
coefficients for and , respectively, we may now see
that the spectra content between two signals is related to the
correlation function by

(5)

Using (3), can be expressed in terms of its spectra as

(6)

where is a null matrix of dimension .

B. -Norm Condition Number of Covariance Matrix

The condition number of any matrix is
commonly computed using the -norm [12] and is denoted by

, where is the
-norm operator, and is the th eigenvalue of such that

. However, it has been shown
[8] that the -norm is suitable for our application, as we will
explain briefly in this section. We first note that the symmetric
and positive definite covariance matrix can be diagonalized as

, where is a unitary matrix such that
and diag containing the eigenvalues
of with . By definition

(7)

Defining tr as the trace operator, the -norm of the
matrix is then defined as [8]

tr (8)

Noting that the squared Frobenius-norm [12] of is defined
as tr , the -norm is then equivalent to the

-norm scaled by a factor . Using (7), it follows that

tr (9)

tr (10)

which results in the -norm condition number

(11)

We may now see that the -norm of the identity matrix is one,
and if is large, the covariance matrix is said to be
ill-conditioned. In addition, for our SAEC application, since we
would like to study only the effect of interchannel coherence on
the condition number, the factor 1/(2L) removes the dependency
of condition number on , hence making a suitable
measure. It is further shown in [8] that is a good mea-
sure of the conditioning of .

C. Relationship Between Interchannel Coherence and
Condition Number of

To compute , we first define and

start by computing tr from (6) using the following:

tr tr (12)

where we have defined the matrices

(13)

and have used the relation tr tr . Using (13), we
now compute tr , giving

tr tr tr (14)

We first note that for the trivial case of ,
does not exist. Using a similar approach to [3] and [13], provided
that the coherence is not equal to one for any frequency, we then
express the inverse matrix as

(15)

where is an identity matrix and the submatrices

(16)

(17)

From (5), we note that the squared interchannel coherence
function of the th frequency bin may be expressed in terms of
the spectra of input signals as

(18)
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Fig. 2. Variation of (a) with and (b) with .

and we define the diagonal coherence matrix given by

diag (19)

We may now express the diagonal matrices and of (15)
in terms of (19) as

(20)

(21)

and hence, we can now simplify (14), giving

tr (22)

Substituting (12) and (22) into (11), we finally obtain the rela-
tionship between interchannel coherence and -norm condition
number of , given as

(23)

We first note that the computation of is tractable
since , , and are diagonal matrices. More importantly,
it is now evident from (23) that increases with the
squared interchannel coherence function, hence degrading the
condition of . Fig. 2(a) shows how varies with in-
terchannel coherence for an example case of with
unit variance WGN stereophonic input. Defining

(24)

as the normalized misalignment, Fig. 2(b) shows how the
steady-state normalized misalignment degrades with increasing

. Hence, we note that as , ,
a good misalignment performance is expected. As ,

such that final normalized misalignment
performance degrades significantly, as expected.

TABLE I
TWO-CHANNEL FREQUENCY-DOMAIN ADAPTIVE ALGORITHM [3]

III. MISALIGNMENT OF SAEC ALGORITHM

We now examine how the formulation above can be applied to
a frequency-domain adaptive algorithm to estimate its misalign-
ment, hence verifying the relationship given in (23). It can be
shown [3] that the steady-state normalized misalignment after
convergence is approximated by

tr (25)

such that for this two-channel case, we can express using (23)

(26)

where and are the noise and input signal
variance, respectively. Hence, we note that the misalignment is
a function of the forgetting factor , signal-to-noise
ratio (SNR), and the condition number .

The two-channel frequency-domain adaptive algorithm [3]
has been shown to achieve good convergence performance for
SAEC. For the th channel, we first define the following quanti-
ties at each th frame:

, diag ,

, ,

, . The
two-channel frequency-domain SAEC algorithm [3] is then
given in Table I.

We note that for practicality, can be computed using
(25). However, in order to verify the validity of (23), we first
compute using (23) such that elements ,

are estimated using the interchannel coherence esti-
mate given in Table I. The theoretical steady-state nor-
malized misalignment is then computed by employing (26). It is
also evident from (23) and (26) that high interchannel coherence
will degrade the conditioning of and reduce the performance
of the adaptive algorithm in terms of its final misalignment, as
shown in Fig. 2(a) and (b). We also note that this formulation is
more general than [13] since we have not assumed that is
constant across frequency. This is feasible, especially for speech
signals where the spectra is not constant across frequency, as
will be shown in Section IV.
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Fig. 3. Normalized misalignment for WGN input with mean interchannel
coherences of (a) 0.85, (b) 0.60, and (c) 0.53.

IV. SIMULATION RESULTS

In our simulations, the lengths of both the adaptive filters are
with and . The stereophonic

impulse responses of both the transmission and receiving rooms
are recorded at 16 kHz sampling rate and are of length 4096. To
neglect any additional misalignment effects due to undermod-
eling, the impulse responses of the receiving room are truncated
to 1024. Uncorrelated WGN is added to achieve SNRs, as
depicted in each experimental plot.

Fig. 3 shows the normalized misalignment plots for a WGN
source input sequence such that and are gener-
ated by convolving this source with the impulse responses of the
transmission room. We varied the interchannel coherence using
a nonlinearity control factor [1] such that

Theoretical steady-state normalized misalignments, shown as
straight horizontal lines, are computed and averaged across block
iterationsusing input signals and .Althoughwehave
chosen to use the nonlinearity control to vary the interchannel
coherence, our analysis does not make any assumptions about the
methods of achieving this variation. In order to verify (23), we
computed the normalized misalignment using (23) and (25). Due
to the variation of , the measured mean interchannel coherences
across frequency between and are (a) 0.85, (b) 0.60,
and (c) 0.53. We observe that as and become more
uncorrelated, the final normalized misalignment reduces grace-
fully, as expected. We also note that the theoretical normalized
steady-state misalignments computed using (23) are consistent
with the experimental results, hence verifying the relationship
between interchannel coherence and condition number of .

Fig. 4 shows normalized misalignment plots using speech
input sequence from a male speaker. As before, the variation
of interchannel coherence was controlled using such that the
measured mean interchannel coherences across frequency are
the same as before. The mean theoretical normalized steady-state
misalignments across time iterations are plotted as straight hori-
zontal lines. We note that the normalized misalignment degrades
with increasing interchannel coherence, as expected, and our
theoretical normalized steady-state misalignment computed
using is consistent with the experimental results,
hence verifying (23).

Fig. 4. Normalized misalignment for speech input with mean interchannel
coherences of (a) 0.85, (b) 0.60, and (c) 0.53.

V. CONCLUSION

We derived the mathematical relationship between the condi-
tion number and interchannel coherence. This is achieved first
by decomposing the covariance matrix in terms of the spectra of
the input signal and then relating this spectra to the -norm con-
dition number. We have further shown how this relationship can
be applied to estimate the steady-state normalized misalignment
of a frequency-domain SAEC algorithm. Simulation results for
both WGN and speech input have shown the validity of our the-
oretical analysis.
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