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Abstract—This paper introduces an alternative strategy for
wet snow detection using multitemporal SAR data. The proposed
change detection method is primarily based on the comparison
between two X band SAR images acquired during the accumu-
lation (winter) and the melting (spring) seasons, in the French
Alps. The new decision criterion relies on the local intensity
statistics of the SAR images by considering the backscattering
ratio as a stochastic process: the probability that ”the intensity
ratio fits into the predetermined range of values” is larger than a
defined confidence level. Both the conducted snow backscattering
simulations and the state of the art measurements [1] indicate
more complex relation between the backscattering properties of
the two snow types, with respect to the conventional assumption
of the augmented electromagnetic absorption associated to the
wet snow. Therefore, rather than adopting the standard hy-
pothesis, we analyse the wet/dry snow backscattering ratio as
a function of the local incidence angle (LIA). After employing
the multi-layer snow backscattering simulator, calibrated with
scatterometer measurements in C band, we modify, to some
extent, the range of ratio values indicating the presence of the
wet snow, by including positive ratio values for lower LIA. By
simultaneously accounting for the speckle noise, the proposed
stochastic approach derives the refined wet snow probability
map. The performance analyses are carried out both through
the comparison with the ground air temperature map and by
comparing two co-polarized channels processed separately.

Index Terms—change detection, wet snow, stochastic approach,
backscattering simulation

I. INTRODUCTION

Depending on the liquid water content, snow can be con-

sidered as dry or wet. Dry snow is defined as snow consisted

just of ice crystals embedded in air, without any liquid water.

Its presence is characteristic for temperatures below 0◦C.

Wet snow can be found during the melting season, when the

temperature exceeds 0◦C. It contains a certain amount of liquid

water introduced quantitatively through the wetness. These two

snow types behave differently with respect to their dielectric

properties: the wet snow contains liquid water with a dielectric

constant differing significantly from the one of the ice. This

fact points out to a difference in backscattering mechanisms

[2], and consequently that different feature extraction methods

should be applied. Therefore, the estimation of any snow pack
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parameter by means of SAR remote sensing, requires firstly

the proper identification of the snow cover type [3].

Although studies on snow mapping by polarimetric SAR

existed already [4], it was not before the ERS-1 started pro-

viding repeat pass images that the idea of snow mapping based

on SAR multitemporal data appeared [5]. Further refinement

on the initial change detection method leaded eventually to the

compact algorithm based on the ratio of two C band SAR im-

ages introduced in [6]. The Nagler and Rott method requires as

inputs the SAR wet snow image and the reference SAR image

of the dry snow (or the snow free terrain). After corregistration,

either mutilooking or speckle filtering is applied on the two

SAR intensities before constructing the backscattering ratio

image. This ratio image is then georeferenced and an unique

threshold of -3 dB is used to discriminate the wet snow from

other surfaces. The expected difference in backscattering is

justified by the increased electromagnetic absorption of the

wet snow. The resulting maps are successfully validated by

using snow terrain optical images. Subsequently, constraints

concerning both sensor and target parameters with respect to

the validity of the defined threshold have been introduced [7].

In this article, we propose an alternative change detection

method with X-band SAR data for wet snow detection. The

goal is to introduce an algorithm which is eventually more

suited to the presence of the speckle noise and is based on a

slightly modified hypothesis on a wet/dry snow backscattering

ratio behaviour.

The first novelty is related to the choice of the reference

image. It is supposed to be the image acquired in the winter

season, when the dry snow assumption is valid.

The state of the art backscattering measurements [1] indi-

cate a complex relationship in terms of backscattering between

the two types of snow, which cannot be simplified by assuming

increased absorption and therefore lower backscattering of the

wet snow, for all values of LIA. In order to account for this

fact, we employ the multi-layer snow backscattering simulator

(calibrated with the scatterometer measurements in C band)

and analyse the wet/dry snow backscattering ratio as a function

of LIA, in X band. Thereupon, we determine the range of

ratio values, pointing to the presence of the wet snow. The

derived range slightly differs with respect to the conventional

assumption used in C band.

Further, the speckle noise statistics is introduced through the

local estimation of the intensity ratio probability. This allows

additional enhancement of the discrimination accuracy, which

is illustrated through the matching of the independently ob-

tained HH and VV maps. Finally, we analyse the performances
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Fig. 1: Calibration of the backscattering simulator using scatterometer
measurements in C band [1]: (a) VV, (b) HH.

by comparing snow maps obtained using TerraSAR-X data

with interpolated temperature map.

The paper is organized as follows. Section II is the core of

the article, containing the description of the wet snow detection

algorithm. Both the analysis of the wet/dry backscattering ratio

and the stochastic approach are introduced in this section.

In Section III, we present the results obtained with two

TerraSAR-X dual-pol stripmap images acquired in the French

Alps. This section provides the performance analyses, while

Section IV concludes this article.

II. THE DETECTION ALGORITHM

The wet snow detection algorithm consists of five principal

parts:

A. Input data

The approximate equivalence between the bare ground and

the dry snow backscattering, perceived in C band, does not

appear to be true for higher frequencies [8]. Therefore, in order

to assure applicability in a wider range of frequencies, we

compare directly the dry snow cover image with the mixed

dry/wet snow cover one.

The following data are required as input:

• Winter SAR image, slant range geometry - image ac-

quired during the winter season, when the dry snow

assumption is fairly valid due to the air temperature at

ground level;

• Melting season SAR image, slant range geometry - image

acquired at the end of the winter season, when an increase

in the air temperature causes melting;

• Digital Elevation Model (DEM) and Sensor & Orbit

parameters (georeferencing and derivation of LIA map);

• Approximate information about the snow cover in the re-

gion (verifying appropriateness of the proposed method);

B. SAR image processing

In this part, the input images are calibrated and corregis-

trated using the resampled SAR geometry intensity simulation.

The slant range LIA is also derived.

C. Wet/Dry snow backscattering ratio

Given the fundamental role of both the snow surface and the

underlying layer in snow backscattering, the local incidence

angle (LIA) appears to be the most appropriate choice of

an independent variable for the analysis of the wet/dry snow

backscattering ratio. In order to both qualitatively and quantita-

tively analyse the backscattering ratio, we developed the multi-

layer backscattering simulator. The Integral Equation Model

(IEM-B) [9] is used to simulate surface backscattering, while

volume behaviour is modelled using the Quasi Crystalline

Approximation with Coherent Potentials (QCA-CP) through

the Dense Media Radiative Transfer (DMRT) [10].

In the region of particular interest - the French Alps, the

large multilayer snow cover occurs both in the accumulation

and in the melting season, containing, in the former case,

inevitably present ice crust. The analysis of dry snow have

shown that most of the backscattering energy comes from the

continuous ice crust, rather than from the underlying ground,

as it is the case with the emissivity in the passive microwave

remote sensing [11]. Therefore, we assumed the dominance

of this underlying backscattering component in the case of a

dry snow [12]. Consequently, the layers above the ice crust

are considered to be the effective snow cover. We adopt the

parameters of these layers as the multi-layer (ML) simulator

input data. In the case of wet snow, the surface layer is

considered as the most contributory [13]. Thus, the wet snow

backscattering is simulated using a single-layer (SL) approach,

by adopting the parameters of the surface layer.

The derived backscattering simulator is calibrated in C

band (5.3 GHz) using the scatterometer measurements from

[8] (Fig. 1). The applied calibration is essentially the opti-

mization with respect to the surface parameters of both the

underlying ice crust and the snow layers. After introducing in

situ measured input parameters [1] (density, depth, dielectric

permittivity, wetness), we derive the surface parameters of

the ice crust and the ones of the snow layers, by applying

the optimization algorithm based on minimizing the mean

square error between the simulator output in C band and

the measurements (LIA ranging from 0◦ to 70◦). The HH

simulation results have been modified by extrapolating the

backscattering curves after LIA = 50◦. This is due to the

observed anomaly of the IEM-B, related to the low values

of dielectric permittivity, causing quite a radical increase of

the surface backscattering for higher incidence angles, which

is not fully consistent neither with the ground truth data, nor

with the theoretical expectations.

The simulator is then applied in X band (10 GHz), using

the extended set of parameters, reinforced by the derived

surface parameters (Table I). By slightly varying the surface

roughness parameters (RMS height and correlation length)

we obtain the wet/dry snow backscattering ratio (Fig. 2a),

allowing us, foremost, the following qualitative interpretation:

the wet snow backscattering is not necessarily inferior in X

band, neither.

Using the derived wet/dry snow backscattering ratio, we

identify the ranges of values which should indicate the wet

snow presence in the ratio image (Fig. 2b). Given that the
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Fig. 2: Wet/dry snow backscat. ratio for input paramet. in Table I (a) and backscat. ratio values indicating wet snow (grey) and dry snow (black) (b): (i) VV,
(ii) HH. Grey lines are backscat. curves for different roughness paramet. (Table I), red lines represent defined thresholds (Table II). Dashed grey lines

represent simulation results, modified due to the observed IEM-B anomaly.

dry snow image is used as a reference, regions around 0 dB

indicate dry snow presence (no change). Further, by adopting

the standard hypothesis, negative regions (below −1.5 dB) are

associated to the wet snow presence. However, believing that

the positive backscattering difference for lower local incidence

angles should also imply the wet snow, sooner than the dry

one, we assign wet snow to the positive regions corresponding

to the lower LIA, as well. Namely, the melting process

which occurs in the upper layer gives rise to the snowpack

surface backscattering, which eventually augments total snow

backscattering at lower LIA.

D. Stochastic approach

Assuming the gaussianity of the SAR clutter, the intensity

over homogeneous regions can be modelled by the Gamma

probability density function (PDF), according to the fully

developed speckle model [14]:

G(τ |ν, µ) =
1

Γ(ν)

(

ν

µ

)ν

τν−1e−
νx
µ , (1)

with µ being the texture intensity mean, ν - shape factor

providing deviation with respect to the corresponding Gaussian

distribution and Γ - the Gamma function. If the intensity is

expressed as µ
ν
X , the random variable X follows the chi-

squared distribution χ2(ν) with ν degrees of freedom. The

TABLE I: INPUT PARAMETERS FOR THE SNOW BACKSCATTERING
SIMULATION, USED IN THRESHOLDS DERIVATION. DIFFERENT
SHADES OF GREY REPRESENT DIFFERENT DRY SNOW LAYERS.

Input parameter Dry snow (ML) Wet snow (SL)

Snow density 144 kg/m3 185 kg/m3 333 kg/m3 315 kg/m3

Wetness 0 % 0 % 0 % 0.73 %

Snow depth 0.24 m 0.12 m 0.24 m 1.77 m

Frequency 5.3GHz (C), 10GHz (X)

Particles effective radius (◦ ◦), reff = 225 µm

Water dielectric constant 55 + j40 (C), 38 + j40 (X)

Snow layers RMS height 4.5 - 6.5 mm

Snow layers correlation length 42 - 82 mm

Ice crust dielectric constant 3.2

Ice crust RMS height 8.4 mm

Ice crust correlation length 24 mm

ratio of two chi-squared random variables, normalized with

respect to the degrees of freedom, follows the Fisher-Snedecor

distribution F(ν1, ν2) [15]. This implies that the ratio of two

Gamma random variables, having different shape factors but

the same mean value is modelled using the Fisher-Snedecor

distribution:

F(r|k, ν1, ν2) =
Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

ν1

kν2

( ν1r
kν2

)ν1−1

(1 + ν1r
kν2

)ν1+ν2
. (2)

The proposed stochastic approach is exactly based on the

probability estimation relaying on the previously elaborated

assumption. The algorithm uses the boxcar neighbourhood,

coupled with the approximate maximum likelihood estimator

(MLE), in order to obtain local statistics for each of the areas

in the image. Due to the poor performances of the Fisher-

Snedecor MLE, the estimation is performed rather on the

normalized ratio intensity (ξ) than the ratio intensity itself

(r = µξ). If the ratio intensity (r) follows the Fisher-Snedecor

distribution, the normalized ratio intensity (ξ) is modelled by

the Beta prime distribution:

B′(ξ|ν1, ν2) =
Γ(ν1 + ν2)

Γ(ν1)Γ(ν2)

ξν1−1

(1 + ξ)ν1+ν2
. (3)

For each local neighbourhood, we derive the mean value

(µ), normalize the texture locally and estimate ν1 and ν2
parameters. This way, we define the probability density func-

tion (B′
(i,j)) for every region in the image. By integrating the

obtained PDF with respect to the normalized texture, we get

the cumulative distribution function (B′
(i,j)) for the normalized

threshold of the central pixel:

iout(i, j) = B′
(i,j)

(

T2(i, j)

µ(i, j)

)

−B′
(i,j)

(

T1(i, j)

µ(i, j)

)

=

=

∫

T2(i,j)

µ(i,j)

T1(i,j)

µ(i,j)

B′
(i,j)(ξ)dξ. (4)

This value is the probability of the ratio fitting the prede-

fined range of values or exactly the wet snow probability. The

thresholds {T1(dB), T2(dB)} ∈ {−1.5, 1.5,−∞,∞}, can be

deduced from Fig. 2b, as functions of the LIA.
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Fig. 3: The comparison between HH (left) and VV (right) polarization maps obtained after: (a) filtering the thresholded ratio of input images, (b)
thresholding the ratio of speckle filtered input images, (c) thresholding the probability map with 70%, 72% and 99% confidence level. (d) HH-VV matching.

E. Confidence level

The obtained wet snow probability map is transformed into

the wet snow binary map by applying the confidence level.

It reflects the level of certainty that the derived map indeed

represents wet snow regions.

III. PERFORMANCE ANALYSES

The proposed algorithm is illustrated by the results obtained

using two X-band TerraSAR-X stripmap images acquired

over the Grandes Rousses massif near Grenoble, France:

the winter image, acquired on the 8th of February, 2009,

holding for the dry snow assumption (according to the local

meteorological data and the DEM - 88% of the area is at the

altitude > 1500m); and the melting season image, acquired

on the 2nd of March, 2009, in the presence of wet snow,

according to the same source. The local incidence angle map

is computed using the DEM (Datum: WGS-84, UL Geo:

5◦57′3.64′′E, 45◦24′15.21′′N ).

For comparison, we provide in Fig. 3 three pairs of binary

maps (HH and VV) derived using different change detection

methods. Firstly, we present the results obtained by using the

criteria from Fig. 2b on the filtered ratio of original input

images (Fig. 3a). Further, the same criteria is applied on

the ratio of formerly speckle filtered input images (Fig. 3b).

Finally, we include the proposed stochastic approach, and

present the results obtained with the proposed method, using

a very high confidence level - 99% (Fig. 3c).

The quantitative correspondence between the independently

obtained HH and VV maps (Fig. 3) significantly augments

in the case of the proposed stochastic approach. By applying

an unconstrained optimization technique, we estimate that the

maps in Fig. 3a and Fig. 3b approximately correspond to the

probability maps thresholded with 70% and 72% confidence

level, respectively. Increase of confidence level decreases the

fraction of wet snow, but augments the certainty.

The verification of the obtained results is performed using

the local temperature measurements at the ground level. The

measurements data, provided by the Électricité de France

(EDF), are related to the area of interest (Grandes Rousses

massif) at the same date (3rd of March, 2009), meaning that

comparison with the available SAR images was possible. The

single point measurements are acquired at 36 stations in the

wider region (7 in the area of interest), and spatialized using

the kriging interpolation method.

The procedure is based on the stated fact that wet snow

presence is characteristic for the local ground temperature

above 0◦C, while dry snow can be found below 0◦C. The

temperature measurements are compared to the obtained wet

snow probability map (Fig. 4). Quantitative evaluation of the

comparison is done by calculating a spatial correlation, using

a large sliding boxcar (Fig. 4c). This way, by calculating the

correlation coefficient for each subregion, we get a more pre-

cise insight into the matching. The approximate overlapping

between the high temperature regions and the high probability

regions (two independent information), is pointing to the

validity of the obtained results. Although this assessment, due

to the heavily interpolated temperature and consequently quite

a large boxcar used for calculating the correlation, cannot help

us demonstrate all the subtleties of the proposed method, it

remains an important indication of its validity.

In order to demonstrate that the estimated wet snow regions

(Fig. 4a) are not confounded with a bare ground, we superpose

to the wet snow binary map (99%) the mask derived from the

DEM - Altitude > 1500m. This altitude is the least favourable

assumption (highest value) of the snow line, for the area and
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Fig. 4: Georeferenced maps: (a) HH wet snow probability map; (b) interpolated ground level temperature map, (c) Correlation between the HH wet snow
probability map and the ground level temperature map, (d) HH wet snow binary map (99%) superposed to the mask Altitude > 1500m: Classes I (no wet

snow) and II (wet snow) - below 1500m, Classes III (no wet snow) and IV (wet snow) - above 1500m.

the date of interest (Fig. 4d). Only 10.7% of the detected wet

snow pixels risks to be misestimated.

IV. CONCLUSIONS

Snow backscattering simulations, reinforced by the state

of the art measurements, resulted in the conclusion that the

difference in backscattering of wet and dry snow occurs to

be significantly dependent on the local incidence angle and

on the operating frequency. Consequently, we have proposed

an alternative version of the conventionally used wet snow

detection method, by analysing a wet/dry snow backscattering

ratio in X band and moderately modifying the range of values

in the ratio image pointing to the presence of wet snow. Also,

we chose preferably the winter image as the reference, avoid-

ing constraints related to the frequency dependent relation be-

tween dry snow and bare ground backscattering and therefore

allowing application in wider frequency range. Finally, instead

of directly thresholding the ratio of multitemporal images, by

considering the spatial correlation, we rather estimated the

probability of the wet snow occurrence, making the algorithm

stochastic.

The plausibly modified assumption of the wet/dry snow

backscattering ratio, the implicitly introduced spatial corre-

lation between the wet snow areas, and the possibility to

vary the level of confidence of the wet snow binary maps by

thresholding the obtained probability map, are altogether the

supplements brought by the introduced stochastic approach to

the ensemble of change detection techniques in snow mapping.

Further refinements of the proposed detection method will

assume the three main directions. First of all, in order to make

it more solid, we intend investing efforts in improving the

validation procedure. In the second direction, the quantitative

interpretation of the wet/dry snow backscattering ratio will be

improved, which should allow more accurate discrimination

between different regions in Figure 2b, in terms of LIA. Con-

cerning the third direction, further work will mostly consist

in adjusting the proposed method to polarimetric SAR input

data [16]. The idea is to exploit the dual-pol images in the

probability derivation.
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