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Abstract

We analyze the convergence behavior of globally weakly and locally strongly contracting
dynamics. Such dynamics naturally arise in the context of convex optimization problems with
a unique minimizer. We show that convergence to the equilibrium is linear-exponential, in
the sense that the distance between each solution and the equilibrium is upper bounded by a
function that first decreases linearly and then exponentially. As we show, the linear-exponential
dependency arises naturally in certain dynamics with saturations. Additionally, we provide a
sufficient condition for local input-to-state stability. Finally, we illustrate our results on, and
propose a conjecture for, continuous-time dynamical systems solving linear programs.

I. INTRODUCTION

Problem description and motivation: A paradigm that is becoming popular to analyze possibly time-
varying optimization problems (OP) is to synthesize continuous-time dynamical systems that converge
to an equilibrium that is also the optimal solution of the problem. A suitable tool to assess convergence
is contraction theory [14], [3]. For OPs with strongly convex costs, the corresponding gradient dynamics,
primal-dual dynamics (in the presence of constraints), or proximal gradient dynamics (for non-smooth
costs) are strongly contracting, implying that trajectories exponentially converge to the equilibrium,
which is also the optimal solution. In contrast, for OPs with only convex costs, the corresponding
gradient, primal-dual, or proximal gradient dynamics are weakly contracting (or nonexpansive), and
convergence depends on the existence of the minimizer.

In this context, we focus on convex OPs with a unique minimizer via continuous-time dynamical
systems. These OPs lead to a class of continuous-time dynamical systems that are globally-weakly
contracting in the state space and only locally-strongly contracting (GW-LS-C). We characterize the
convergence behavior of such dynamics, showing that this is linear-exponential, and local input-to-
state stability (ISS). Finally, as an application, we consider linear programming (LP) to illustrate the
effectiveness of our results.

Literature review: Studying optimization algorithms as continuous-time dynamical systems has been
an active research area since [1], with, e.g., [17] being one of the first works to design neural networks
for LPs. [5] proposed a neural network based on non-differentiable penalty functions for solving
LPs. Recent advancements in, e.g., online and dynamic feedback optimization [2] have renewed the
interest in continuous-time dynamics for optimization. Additionally, OPs have been related to dynamical
systems via proximal gradients, and the corresponding continuous-time proximal gradient dynamics are
studied in, e.g., [10], [11]. Proximal gradients dynamics and contraction theory have been exploited
in [8], [4] for tackling problems with strongly convex and only convex costs, respectively. In a broader
context, there has been a growing interest in using strongly contracting dynamics to tackle OPs [15],
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[8]. This is mainly due to the fact that such dynamics enjoy highly ordered transient and asymptotic
behaviors. Specifically, (i) initial conditions are exponentially forgotten and the distance between any
two trajectories decays exponentially quickly [14], (ii) unique globally exponential stable equilibrium
for time-invariant dynamics [14] (iii) entrainment to periodic inputs [16] (iv) highly robust behavior,
such as ISS [18]. The asymptotic behavior of weakly contracting dynamics is instead characterized in,
e.g., [7] for monotone systems and in [12] for primal-dynamics with a locally stable equilibrium.

Contributions: We analyze convergence of the class of GW-LS-C dynamics, showing that this is
linear-exponential, in the sense that the distance between each solution of the system and the equilibrium
is upper bounded by a linear-exponential function, introduced in this letter. Through a novel technical
result, we characterize the evolution of certain dynamics with saturation in terms of the linear-exponential
function. This lemma is exploited for our convergence analysis, which is carried out considering two
cases that require distinct mathematical approaches. First, we consider systems that are GW-LS-C with
respect to (w.r.t.) the same norm. Then, we consider the case where the dynamics is GW-LS-C w.r.t.
two different norms. Specifically, we give a convergence bound that, as discussed below, is sharper than
the one in [4]. Additionally, we characterize local ISS for input-dependent dynamics that are GW-LS-C
w.r.t. the same norm. Finally, we show the effectiveness of our results by considering a continuous-time
dynamics tackling LPs and propose a general conjecture. The code to replicate our numerical example
is given at https://shorturl.at/vGNY1.

While the treatment in this paper is inspired by the results in [4, Section 5] we extend the results of [4]
in several ways. First, the linear-exponential function that bounds the convergence behavior of GW-LS-C
dynamics is introduced in this paper. We also show in a novel lemma the relationship of this function
with a scalar saturated ODE. Second, when the dynamics is GW-LS-C w.r.t. two different norms, the
bound we give here is continuous and always sharper than the one given in [4], see Remark III.7 for
the details. Third, when the dynamics is GW-LS-C w.r.t. the same norm, the technical lemma used to
establish linear-exponential convergence is novel and requires a different mathematical treatment than
that of [4]. Finally, in this paper we characterize local ISS. This property was not considered in [4].

II. MATHEMATICAL PRELIMINARIES

We denote by 0n ∈ Rn the all-zeros vector of size n. Vector inequalities of the form x ≤ (≥)y are
entrywise. We let In be the n × n identity matrix. Given A,B ∈ Rn×n symmetric, we write A ⪯ B
(resp. A ≺ B) if B − A is positive semidefinite (resp. definite). We denote by λmax(A) the maximum
eigenvalue of A. We say that A is Hurwitz if α(A) := max{Re(λ) | λ eigenvalue of A} < 0, where
Re(λ) denotes the real part of λ.

a) Norms, Logarithmic Norms and Weak Pairings

We let ∥·∥ denote both a norm on Rn and its corresponding induced matrix norm on Rn×n. Given x ∈ Rn

and r > 0, we let Bp

(
x, r
)
:= {z ∈ Rn | ∥z− x∥p ≤ r} be the ball of radius r centered at x computed

with respect to the norm p. Given two norms ∥ · ∥α and ∥ · ∥β on Rn there exist positive equivalence
coefficients kβ

α and kα
β satisfying ∥x∥α ≤ kβ

α∥x∥β , ∥x∥β ≤ kα
β∥x∥α, ∀x ∈ Rn. The equivalence ratio

between ∥ · ∥α and ∥ · ∥β is kα,β := kβ
αk

α
β , with kβ

α and kα
β minimal equivalence coefficients.

Given A ∈ Rn×n the logarithmic norm (log-norm) induced by ∥ · ∥ is

µ(A) := lim
h→0+

∥In+hA∥ − 1

h
.

For an ℓp norm, p ∈ [1,∞], and for an invertible Q ∈ Rn×n, the Q-weighted ℓp norm is ∥x∥p,Q := ∥Qx∥p.
The corresponding log-norm is µp,Q

(
A
)
= µp(QAQ−1).

We let J·, ·K denote a weak pairing on Rn compatible with the norm ∥ · ∥. We recall some of the main
standing assumption on weak paring useful for our analysis.
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Definition 1: A weak pairing J·, ·K, compatible with the norm ∥ · ∥, satisfies:
(i) sub-additivity of first argument: Jx+ z, yK ≤ Jx, yK + Jz, yK, for all x, y, z ∈ Rn;

(ii) curve norm derivative formula: ∥y(t)∥D+∥y(t)∥ = Jẏ(t), y(t)K, for every differentiable curve
y : ]a, b[→ Rn and for almost every t ∈]a, b];

(iii) Cauchy-Schwartz inequality: |Jx, yK| ≤ ∥x∥∥y∥, for all x, y ∈ Rn;

(iv) Lumer’s equality: µ
(
A
)
= sup

z∈Rn,z ̸=0n

JAz, zK
Jz, zK

, for every A ∈ Rn×n.

We refer to [3] for a recent review of those tools.

b) Mathematical Operators

Given two normed spaces (X , ∥ · ∥X ), (Y , ∥ · ∥Y), a map T : X → Y is Lipschitz with constant L ≥ 0
if ∥T (x1)− T (x2)∥Y ≤ L∥x1 − x2∥X , for all x1, x2 ∈ X . The upper-right Dini derivative of a function
f : R → R is D+f := lim suph→0+

(
f(t + h) − f(t)

)
/h. The ceiling function, ⌈ ⌉ : R → Z, is defined

by ⌈x⌉ = min{y ∈ Z | x ≤ y}. Given d > 0, the saturation function, satd : R → [−d, d], is defined by
satd(x) = x if |x| ≤ d, satd(x) = d if x > d, and satd(x) = −d if x < −d. Given a set C, the function
ιC : Rn → [0,+∞] is the zero-infinity indicator function on C and is defined by ιC(x) = 0 if x ∈ C and
ιC(x) = +∞ otherwise. The indicator function on C, 1C : R → {0, 1}, is defined by 1C(x) = 1 if x ∈ C
and 1C(x) = 0 otherwise. The function ReLU: R → R≥0, is defined by ReLU(x) = max{0, x}.

We recall the following [6], [9]:
Theorem II.1 (Mean value theorem for locally Lipschitz function): Let C ⊆ Rn be open and convex,

f : C → Rm locally Lipschitz. Then, for almost every x, y ∈ C it holds:

f(x)− f(y) =

(∫ 1

0

Df(y + s(x− y))ds

)
(x− y),

where the integral of a matrix is to be understood component wise.
Whenever it is clear from the context, we omit to specify the dependence of functions on time t.

A. Proximal Operator

Given g : Rn → R := [−∞,+∞], the epigraph of g is the set epi(g) = {(x, y) ∈ Rn+1 | g(x) ≤ y}.
The map g is (i) convex if its epigraph is a convex set, (ii) proper if its value is never −∞ and is finite
somewhere, and (iii) closed if it is proper and its epigraph is a closed set.

The proximal operator of g with parameter γ > 0, proxγg : Rn → Rn, is defined by

proxγg(x) = argmin
z∈Rn

g(z) +
1

2γ
∥x− z∥22, (1)

the associated Moreau envelope, Mγg : Rn → R, and its gradient are given by:

Mγg(x) = g(proxγg(x)) +
1

2γ
∥x− proxγg(x)∥22, (2)

∇Mγg(x) =
1

γ
(x− proxγg(x)). (3)

The gradient of the Moreau envelope always exists and is Lipschitz on (Rn, ∥ · ∥2) with constant 1/γ.
Finally, we recall that given a convex set C, the proximal operator of the zero-infinity indicator

function on C is the Euclidean projection onto C, that is proxγιC(x) = PC(x) := argmin
z∈C

∥x− z∥2 ∈ C.

3



B. Contraction Theory for Dynamical Systems

Consider a dynamical system
ẋ(t) = f

(
t, x(t)

)
, (4)

where f : R≥0 × C → Rn, is a smooth nonlinear function with C ⊆ Rn forward invariant set for the
dynamics. We let t 7→ ϕt

(
x0

)
be the flow map of (4) at time t starting from initial condition x(0) := x0.

Then, we give the following:
Definition 2 (Contracting systems): Given a norm ∥·∥ with associated log-norm µ, a smooth function

f : R≥0 × C → Rn, with C ⊆ Rn f -invariant, open and convex, and a constant c > 0 (c = 0) referred
as contraction rate, f is c-strongly (weakly) infinitesimally contracting on C if

µ
(
Df(t, x)

)
≤ −c, for all x ∈ C and t ∈ R≥0, (5)

where Df(t, x) := ∂f(t, x)/∂x.
If f is contracting, then for any two trajectories x(·) and y(·) of (4) it holds that

∥ϕt

(
x0

)
− ϕt(y0)∥ ≤ e−ct∥x0 − y0∥, for all t ≥ 0,

i.e., the distance between the two trajectories converges exponentially with rate c if f is c-strongly
infinitesimally contracting, and never increases if f is weakly infinitesimally contracting.

In [9, Theorem 16] condition (5) is generalized for locally Lipschitz function, for which, by Rademacher’s
theorem, the Jacobian exists almost everywhere (a.e.) in C. Specifically, if f is locally Lipschitz, then
f is infinitesimally contracting on C if condition (5) holds for almost every x ∈ C and t ∈ R≥0.

III. LINEAR-EXPONENTIAL DECAY OF GLOBALLY-WEAKLY AND LOCALLY-STRONGLY
CONTRACTING SYSTEMS

In this section, we conduct a comprehensive analysis of the convergence of GW-LS-C systems. First, we
define the linear-exponential function, which plays a pivotal role in bounding the convergence behavior
of such dynamics.

Definition 3 (Linear-exponential function): Given a linear decay rate clin > 0, an intercept q > 0, an
exponential decay rate cexp > 0, and a linear-exponential crossing time tc < q/clin, the linear-exponential
function lin-exp(·) : R≥0 → R≥0 is defined by

lin-exp(t) =

{
q − clint if t ≤ tc,(
q − clintc

)
e−cexp(t−tc) if t > tc.

(6)

We write lin-exp(t ; q, clin, cexp, tc) when we want to highlight the parameters in (6). See Figure 1 for
an illustration of (3) for some parameters.

Before giving the main convergence results of this section, we prove the following:
Lemma III.1 (Property of the linear-exponential function): Let cexp and d be positive scalars. Consider

the dynamics
ẋ(t) = −cexp satd(x(t)), x0 = q > d. (7)

Then, x(t) = lin-exp(t ; q, clin, cexp, tc), with clin = dcexp and tc := qc−1
lin − c−1

exp > 0, is a solution of (7).
Proof: First, we note that being the right end side of (7) locally Lipschitz continuous, the ODE (7)

admits a unique continuous solution at least within a certain neighborhood of the initial condition.
Using the definition of saturation function, for all t ∈ R≥0 we can write the ODE (7) as

ẋ(t) =


dcexp if x(t) < −d,

−cexpx(t) if x(t) ∈ [−d, d],

−dcexp if x(t) > d,

(8)
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Figure 1: Plot of the linear-
exponential function (6) with linear
decay rate clin = 0.8, intercepts
q = {2.5, 3.5, 4.5}, exponential
decay rate cexp = 1, and linear-
exponential crossing time tc = 2.

which, in each interval [t0, t1] ⊆ R≥0 where the solution is continuous and does not change regime, has
general solution

x(t) =


dcexpt+ x(t0) if x(t) < −d,

x(t0)e
−cexp(t−t0) if x(t) ∈ [−d, d],

−dcexpt+ x(t0) if x(t) > d.

(9)

At time t = 0, we have x0 = q > d. For continuity of the solution, there exists t⋆ such that x(t) > d
for all t ∈ [0, t⋆]. Thus from (9) and being x(t0 = 0) = q, it is x(t) = −dcexpt + q, for all t ∈ [0, t⋆].
Moreover being x(t) a decreasing function, the time value t⋆ is finite and there exists a time, say it t̄
such that x(t̄) = d. Let clin := dcexp, we have

x(t̄) = d ⇐⇒ −dcexpt̄+ q = d ⇐⇒ t̄ = qc−1
lin − c−1

exp := tc.

In summary, we have shown that the solution of (8) is equal to x(t) = q − clint for all t ∈ [0, tc]
and is equal to d at time tc. Therefore from (9) and being x(tc) = q − clintc, for all time t > tc we
have x(t) =

(
q − clintc

)
e−cexp(t−tc). Specifically, x(t) > 0 for all t > tc, thus it can never be the case

x(t) < −d. This concludes the proof.
Next, we study the convergence behavior of GW-LS-C systems of the form of (4), where the function

f : R≥0 × C → Rn is locally Lipschitz and with C ⊆ Rn being f -invariant, open and convex. In what
follows, we make the following:

Assumption 1: There exist ∥ · ∥G, ∥ · ∥L on Rn such that
(A1) f is weakly infinitesimally contracting on Rn w.r.t. ∥ · ∥G;
(A2) f is cexp-strongly infinitesimally contracting on a forward-invariant set S w.r.t. ∥ · ∥L;
(A3) x⋆ ∈ S is an equilibrium point, i.e., f(t, x⋆) = 0n, for all t ≥ 0.

Remark III.2: Assumptions (A2), (A3) can be equivalently replaced by assuming the existence of a
locally exponentially stable equilibrium.

First, we consider GW-LS-C systems with respect to the same norm. Then, dynamics that are GW-
LS-C with respect to different norms. In both scenarios, we show that the convergence is (globally)
linear-exponential. That is, given a trajectory x(t) of the dynamics, the distance ∥x(t)− x⋆∥G is upper
bounded by a linear-exponential function (6).
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A. Convergence of Globally-Weakly and Locally-Strongly Contracting Dynamics with Respect to the
Same Norm

We start by giving a bound on the upper right Dini derivative of the distance of any solution of (4)
with respect to the equilibrium x⋆.

Lemma III.3 (Saturated error dynamics): Consider system (4) and let Assumptions (A1) – (A3) hold
with ∥·∥G = ∥·∥L := ∥·∥. Let r be the largest radius such that B

(
x⋆, r

)
⊆ S. Then, for every trajectory

x(t) starting from x0 /∈ S, for almost every t ≥ 0, we have

D+∥x(t)− x⋆∥ ≤ −cexp satr(∥x(t)− x⋆∥). (10)

Proof: Consider an arbitrary trajectory x(t) starting from x0 /∈ S and a second trajectory equal to
the equilibrium x⋆. Let µ be the log-norm associated to ∥ · ∥. For for almost every t ≥ 0 it holds ([6],
[9]):

D+∥x(t)− x⋆∥ ≤
∫ 1

0

µ
(
Df
(
t, x⋆ + α(x(t)− x⋆)

))
dα · ∥x(t)− x⋆∥ := RHS.

where α ∈ [0, 1], and x⋆ + α(x(t)− x⋆) is the segment from x⋆ to x(t).
For each t ≥ 0, if ∥x(t)− x⋆∥ ≤ r, then Assumption (A2) implies

RHS ≤
∫ 1

0

(−cexp)dα · ∥x(t)− x⋆∥ = −cexp∥x(t)− x⋆∥ = −cexp satr(∥x(t)− x⋆∥),

where in the last equality we have used the definition of saturation function. If ∥x(t)− x⋆∥ ≥ r, define
α∗ = r/∥x(t)− x⋆∥ and note that, for almost every t ≥ 0, Assumptions (A2) and (A1) imply

α ≤ α∗ =⇒ µ
(
Df(t, x⋆ + α(x(t)− x⋆))

)
≤ −cexp,

α > α∗ =⇒ µ(Df(t, x⋆ + α(x(t)− x⋆))
)
≤ 0.

Therefore, for almost every t ≥ 0, it holds

RHS ≤
(∫ α∗

0

µ
(
Df(t, x⋆ + α(x(t)− x⋆))

)
dα +

∫ 1

α∗
µ
(
Df
(
t, x⋆ + α(x(t)− x⋆))

)
dα
)
· ∥x(t)− x⋆∥

≤ (−cexpα
∗ + 0)∥x(t)− x⋆∥ = −cexpr = −cexp satr(∥x(t)− x⋆∥), (11)

where in the last equality we used the definition of saturation function. Figure 2 provides an illustration
of this result about the average of the log norm. This concludes the proof.

𝒮

x⋆

B(x⋆, r)

x

μ(Df ) ≤ − cexp μ(Df ) ≤ 0

(μ(Df )) ≤ − cexpr/∥x − x⋆∥average

r
Figure 2: Illustration of the inequality (11)
with ∥ · ∥ = ∥ · ∥2.

We can now give our convergence result for GW-LS-C systems with respect to the same norm.
Theorem III.4 (Linear-exponential convergence of GW-LS-C systems w.r.t. the same norm): Consider

system (4) and let Assumptions (A1) – (A3) hold with ∥ · ∥G = ∥ · ∥L := ∥ · ∥. Also, let r be the largest
radius such that B

(
x⋆, r

)
⊆ S. For each trajectory x(t) starting from x0, it holds that

6



(i) if x0 ∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥ ≤ e−cexpt∥x0 − x⋆∥;

(ii) if x0 /∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥ ≤ lin-exp(t ; q, clin, cexp, tc), (12)

with
• exponential decay rate cexp > 0;
• linear decay rate clin = cexp r;
• intercept q = ∥x0 − x⋆∥;
• linear-exponential crossing time tc = (q − r)/clin.

Proof: Item (i) follows from Assumption (A2). Item (ii) follows by using the Comparison Lemma [13,
pp. 102-103] to upper bound the solution to the differential inequality (10). Additionally, the upper
bound obeys precisely the initial value (7) in Lemma III.1, for parameter values d = r, clin = cexpr,
q = ∥x0 − x⋆∥, and tc = (q − r)/clin. This concludes the proof.

B. Convergence of Globally-Weakly and Locally-Strongly Contracting Dynamics with Respect to Dif-
ferent Norms

We begin by introducing the ρ-contraction time, where 0 < ρ < 1.
Definition 4 (ρ-contraction time): Let system (4) be strongly infinitesimally contracting with respect

to a norm ∥ · ∥α. Consider the contraction factor 0 < ρ < 1, a norm ∥ · ∥β , and a vector x ∈ Rn.
• The ρ-contraction time is the time required for each trajectory starting in Bα

(
x, r
)
, for some r > 0,

to be inside Bα

(
x, ρr

)
;

• The ρ-contraction time with respect to ∥ · ∥β is the time required for each trajectory starting in
Bβ

(
x, r
)
, for some r > 0, to be inside Bβ

(
x, ρr

)
.

Remark III.5: It is implicit in Definition 4 that the ρ-contraction time for a specific trajectory depends
on the initial condition and the center of the ball.

We can now give our convergence result for GW-LS-C systems with respect to the different norms.
Theorem III.6 (Linear-exponential convergence of GW-LS-C systems): Let ∥ · ∥L and ∥ · ∥G be two

norms on Rn with equivalence ratio kL,G. Consider system (4) satisfying Assumptions (A1) – (A3). Let
r be the largest radius such that BG

(
x⋆, r

)
⊆ S. For each trajectory x(t) starting from x0, it holds that

(i) if x0 ∈ S, then, for almost every t ≥ 0,

∥x(t)− x⋆∥G ≤ kL,Ge
−cexpt∥x0 − x⋆∥G; (13)

(ii) if x0 /∈ S, then for any contractor factor 0 < ρ < 1 and, for almost every t ≥ 0,

∥x(t)− x⋆∥G ≤ lin-exp(t ; q, clin, cexp, tc), (14)

with
• exponential decay rate cexp > 0;
• linear decay rate clin = cexpr(1− ρ)/ ln(kL,Gρ

−1);

• intercept q = ∥x0 − x⋆∥G + r(1− ρ)
ln(kL,G)

ln(kL,Gρ−1)
;

• linear-exponential crossing time tc =
⌈
∥x0−x⋆∥G−r

(1−ρ)r

⌉
ln(kL,Gρ

−1)/cexp + ln(kL,G)/cexp.

7



Proof: Consider a trajectory x(t) starting from initial condition x0. If x0 ∈ S, then item (i) follows
from assumption (A2) and the equivalence of norms.

Indeed, Assumption (A2) implies that for every x0 ∈ S and for almost every t ≥ 0, it holds

∥ϕt

(
x0

)
− x⋆∥L ≤ e−cexpt∥x0 − x⋆∥L.

Applying the equivalence of norms to the above inequality, we get

∥ϕt

(
x0

)
− x⋆∥G ≤ kL,Ge

−cexpt∥x0 − x⋆∥G. (15)

If x0 /∈ S, define the point y0 := x⋆ + r x0−x⋆

∥x0−x⋆∥G
∈ ∂BG

(
x⋆, r

)
1. The norm ∥y0 − x⋆∥G = r, therefore

y0 is a point on the boundary of BG
(
x⋆, r

)
. Moreover, the points x⋆, y0, and x0 lie on the same line

segment, thus
∥x0 − x⋆∥G = ∥x0 − y0∥G + r. (16)

By Lemma I.2(ii) and because each trajectory originating in BG
(
x⋆, r

)
remains in S, the ρ-contraction

with respect to ∥ · ∥G for the cexp-strongly contracting vector field f is

tL,G
ρ =

ln(kL,Gρ
−1)

cexp
. (17)

Then, for almost every t ∈ [0, tL,G
ρ ], we have

∥ϕt

(
x0

)
− x⋆∥G ≤ ∥ϕt

(
x0

)
− ϕt(y0)∥G + ∥ϕt(y0)− x⋆∥G (18)

≤ ∥x0 − y0∥G + kL,Ge
−cexpt∥y0 − x⋆∥G (19)

(16)
= ∥x0 − x⋆∥G − ∥x⋆ − y0∥G + kL,Ge

−cexptr

t=tL,G
ρ

≤ ∥x0 − x⋆∥G − r(1− kL,Ge
−cexpt

L,G
ρ )

(17)
= ∥x0 − x⋆∥G − r(1− ρ), (20)

where in (18) we added and subtracted ϕt(y0) and applied the triangle inequality, while inequality (19)
follows from Assumption (A1) and inequality (15). Now, (20) implies that ∥ϕtL,G

ρ

(
x0

)
− x⋆∥G ≤ ∥x0 −

x⋆∥G − r(1− ρ). If ∥x0 − x⋆∥G − r(1− ρ) ≤ r, then by Assumption (A2), for almost every in t ≥ tL,G
ρ ,

we have

∥ϕt

(
x0

)
− x⋆∥G ≤ kL,Ge

−cexp(t−tL,G
ρ )
(
∥x0 − x⋆∥G − r(1− ρ)

)
.

If ∥x0 − x⋆∥G − r(1 − ρ) > r, we iterate the process. Specifically, let xρ := ϕtL,G
ρ
(x0), and define

yρ := x⋆ + r
xρ − x⋆

∥xρ − x⋆∥G
∈ ∂BG

(
x⋆, r

)
. Consider the solution to ẏ = f(t, y) with initial condition

y(tL,G
ρ ) = yρ and note that ϕt(xρ) = ϕt+tL,G

ρ
(x0). For almost every t ∈ [tL,G

ρ , 2tL,G
ρ ], we compute

∥ϕt+tL,G
ρ
(x0)− x⋆∥G ≤ ∥ϕt(xρ)− ϕt(yρ)∥G + ∥ϕt(yρ)− x⋆∥G (21)

≤ ∥xρ − yρ∥G + kL,Ge
−c(t−tL,G

ρ )∥y0 − x⋆∥G (22)
(16)
= ∥xρ − x⋆∥G − ∥x⋆ − yρ∥G + kL,Ge

−c(t−tL,G
ρ )r

≤ ∥ϕtL,G
ρ
(x0)− x⋆∥G − r(1− kL,Ge

−c(t−tL,G
ρ ))

(20)
≤ ∥x0 − x⋆∥G − r(1− ρ)− r(1− kL,Ge

−c(t−tL,G
ρ ))

t=2tL,G
ρ

≤ ∥x0 − x⋆∥G − 2r(1− ρ),

1Note that ∂BG
(
x⋆, r

)
means the boundary of BG

(
x⋆, r

)
.
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where in (21) we added and subtracted ϕt(y0) and applied the triangle inequality, while (19) follows
from Assumption (A1) and (15). We now reason as done in [0, tL,G

ρ ]. If ∥x0 − x⋆∥G − 2r(1 − ρ) ≤ r,
then Assumption (A2) implies

∥ϕt+tL,G
ρ
(x0)− x⋆∥G ≤ kL,G

(
∥x0 − x⋆∥G − 2r(1− ρ)

)
e−c(t−2tL,G

ρ ), ∀t ≥ 2tL,G
ρ .

If ∥x0−x⋆∥G−2r(1−ρ) > r, we proceed analogously until ∥x0−x⋆∥G −Tr(1− ρ) ≤ r. This inequality
is verified after at most T :=

⌈
∥x0−x⋆∥G−r

(1−ρ)r

⌉
steps. Iterating the previous process, at step T , for almost

every t ∈ [(T − 1)tL,G
ρ , T tL,G

ρ ], we get

∥ϕt+(T−1)tL,G
ρ
(x0)− x⋆∥G ≤ ∥x0 − x⋆∥G − (T − 1)r(1− ρ)− r(1− kL,Ge

−c(t−(T−1)tL,G
ρ )),

t=ktL,G
ρ

≤ ∥x0 − x⋆∥G − Tr(1− ρ) ≤ r,

where the last inequality follows from the definition of T . Local strong contractivity then implies

∥ϕt+TtL,G
ρ
(x0)− x⋆∥G ≤ kL,G

(
∥x0 − x⋆∥G − Tr(1− ρ)

)
e−c(t−TtL,G

ρ ), for almost every t ≥ TtL,G
ρ .

The above reasoning together with Assumption (A1) implies that for almost every t ∈ [itL,G
ρ , (i+1)tL,G

ρ ],
i ∈ {0, . . . , T − 1}, we have

∥ϕt+itL,G
ρ
(x0)− x⋆∥G ≤ min

{
∥x0 − x⋆∥G − ir(1− ρ), ∥x0 − x⋆∥G − ir(1− ρ)− r

(
1− kL,Ge

−c(t−itL,G
ρ )
)}

.

(23)

By partitioning the time interval [0,+∞[ as [0, tL,G
ρ [∪ · · ·∪[(T−1)tL,G

ρ , T tL,G
ρ [∪[TtL,G

ρ ,+∞[ and summing
up the above inequalities we obtain the bound:

∥ϕt(x0)− x⋆∥G ≤
T−1∑
i=0

1{itL,G
ρ ≤t<(i+1)tL,G

ρ }(t) ·min
{
∥x0 − x⋆∥G − ir(1− ρ), ∥x0 − x⋆∥G − ir(1− ρ)

− r
(
1− kL,Ge

−c(t−itL,G
ρ )
)}

+ 1{t≥TtL,G
ρ }(t) ·min

{
∥x0 − x⋆∥G − Tr(1− ρ),

kL,G (∥x0 − x⋆∥G − Tr(1− ρ)) e−c(t−TtL,G
ρ )
}
:= gB(t). (24)

Finally, item (ii) follows by noticing that gB(t) ≤ lin-exp(t ; q, clin, cexp, tc), t ≥ 0, for the values
tc = T ln(kL,Gρ

−1)/cexp + ln(kL,G)/cexp, clin = r cexp(1 − ρ)/ ln(kL,Gρ
−1), and q = ∥x0 − x⋆∥G + r(1 −

ρ)
ln(kL,G)

ln(kL,Gρ−1)
. This concludes the proof.

Remark III.7: Theorem III.6 sharpens the convergence bound in [4, Theorem 4 and Corollary 2]. This
improvement stems from a more accurate intercept and linear-exponential crossing time. Differently
from [4], the bound in Theorem III.6 remains continuous at all times, and no jump can occur at tc.
Regarding the proof techniques compared to [4], please note that the pivotal point in the proof leading
to the sharper bound is inequality (23). An illustration between the bound in (14) and the one in [4] is
given in Figure 3.

Remark III.8: A consequence of Theorem III.6 is that, jointly, Assumptions (A1), (A2), and (A3)
preclude the existence of any other invariant sets besides S, and the convergence towards the equilibrium
is global.

Remark III.9: Linear-exponential convergence is weaker than global exponential convergence, but
stronger than global asymptotic convergence (as, e.g., we provide an explicit estimate of the time
required to reach a neighborhood of the equilibrium).

9



0 2 4 6 8 10 12
t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3: Linear-exponential
bound in equation (14) (solid
blue curve) and the decay bound
presented in [4] (red curve) for
∥x0−x⋆∥G = 2.4, r = 1, cexp = 1,
kL,G = 2, ρ = 0.4.

Remark III.10: The bound in Theorem III.6 generalizes the result for equal norms in Theorem III.4.
In fact, the factor (1− ρ)/ ln(kL,Gρ

−1) is always less than 1 for kL,G > 1. Moreover, when kL,G = 1 it
results lim

ρ→1
(1− ρ)/ ln(kL,Gρ

−1) = 1, thereby exactly recovering the equal-norm result.

IV. LOCAL STABILITY IN THE PRESENCE OF EXTERNAL INPUTS

We now characterize local ISS for GW-LS-C systems w.r.t. the same norm. Specifically, we consider
the system

ẋ(t) = f
(
t, x(t), u(t)

)
. (25)

where, f : R≥0 × C × U → Rn, the map x 7→ f(t, x, u) is locally Lipschitz, for all t, u, with C ⊆ Rn

f -invariant, open and convex, and U ⊂ Rm. Given ū ∈ Rm, we define the set of bounded inputs
Ū := {u : R≥0 → U | ∥u(t)∥U ≤ ū,∀t ≥ 0}. We make the following:

Assumption 2: there exist norms ∥ · ∥, ∥ · ∥U on C and U , respectively, such that
(A1’) for all t, u, the map x 7→ f(t, x, u) is weakly infinitesimally contracting on Rn w.r.t. ∥ · ∥;
(A2’) for all t, x, the map u 7→ f(t, x, u) is Lipschitz with constant Lu ≥ 0;
(A3’) there exist a forward-invariant set S and cexp > 0 such that, for all t, for each u ∈ Ū , the

map x 7→ f(t, x, u(t)) is cexp-strongly infinitesimally contracting on S w.r.t. ∥ · ∥;
(A4’) at u(t) = 0m, for all t, there exists an equilibrium point x⋆ ∈ S.

We begin by giving two technical lemmas, needed to prove the main result of this section.
Lemma IV.1 (Error dynamics for input-dependent systems): Consider system (25) satisfying Assump-

tion (A2’). Then any two solutions x(t) and y(t) with input ux, uy : R≥0 → Rm, satisfy for almost every
t ≥ 0,

D+∥x(t)− y(t)∥ ≤
∫ 1

0

µ
(
Df(y + α(x− y), uy)

)
dα∥x(t)− y(t)∥+ Lu∥ux(t)− uy(t)∥U . (26)

Proof: Let x(t) and y(t) be two trajectories of (25) with input signals ux, uy, respectively. Let J·, ·K
be a weak pairing compatible with ∥ · ∥. We compute

∥x(t)− y(t)∥D+∥x(t)− y(t)∥ = Jf(t, x, ux)− f(t, y, uy), x− yK (27)
≤ Jf(t, x, uy)− f(t, y, uy), x− yK + ∥f(t, x, ux)− f(t, x, uy)∥∥x− y∥ (28)
≤ Jf(t, x, uy)− f(t, y, uy), x− yK + Lu∥ux − uy∥U∥x− y∥, (29)
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where in (27) we used the curve norm derivative formula (ii), in (28) we added and subtracted f(t, x, uy)
and used the sub-additivity (i) and the Cauchy-Schwartz inequality (iii), and in (29) we used Assump-
tion (A2’).

Next, by dividing both side for ∥x(t)− y(t)∥ we get

D+∥x(t)− y(t)∥ ≤ Jf(t, x, uy)− f(t, y, uy), x− yK
∥x− y∥

+ Lu∥ux − uy∥U

=
Jf(t, x, uy)− f(t, y, uy), x− yK

∥x− y∥2
∥x− y∥+ Lu∥ux − uy∥U . (30)

By applying the mean-value Theorem II.1 to (30), a.e., we get

D+∥x(t)− y(t)∥ ≤

r∫ 1

0
Df(y + s(x− y), uy)ds(x− y), x− y

z

∥x− y∥
∥x− y∥
∥x− y∥

+ Lu∥ux − uy∥U (31)

≤
∫ 1

0

JDf(y + s(x− y), uy)ds(x− y), x− yK
∥x− y∥2

ds∥x− y∥+ Lu∥ux − uy∥U , (32)

where in (31) we have used the weak pairing sub-additivity (i). Next, recall that Lumer’s equality (iv)

implies,
JAz, zK
Jz, zK

≤ µ
(
A
)

for every A ∈ Rn×n and z ̸= 0n. By applying this equality to (32) (with

A = Df(y + s(x− y), uy) and z = x− y) we get inequality (26). This concludes the proof.
The next result gives a linear-exponential bound for the solution of dynamics with saturations and

additive inputs.
Lemma IV.2 (Solution of dynamics with saturations and additive inputs): Let cexp and d be positive

scalars, and u : R≥0 → Rn satisfying ∥u(t)∥∞ = umax < dcexp, for all t. Consider the dynamics

ẋ(t) = −cexp satd(x(t)) + u(t), x0 = q > d. (33)

Then, a solution of (33) satisfies

x(t) ≤ lin-exp(t ; q, clin, cexp, tc) + 1[tc,+∞[(t)(1− e−cexp(t−tc))
umax

cexp
,

with clin := dcexp − umax > 0 and tc :=
q−d
clin

> 0.
Proof: Using the definition of saturation function, for all t ∈ R≥0 we can upper bound the ODE (33)

as

ẋ(t) ≤ ẏ(t) :=


−dcexp + umax if y(t) > d,

−cexpx(t) + umax if y(t) ∈ [−d, d],

dcexp + umax if y(t) < −d,

(34)

which, in each interval [t0, t1] ⊆ R≥0 where the solution is continuous and does not change regime, has
general solution

y(t) =


(−dcexp + umax)t+ y(t0) if y(t) > d,(
y(t0)−

ū

cexp

)
e−cexp(t−t0) +

umax

cexp
if y(t) ∈ [−d, d],

(dcexp + umax)t+ y(t0) if y(t) < −d.

(35)

At time t = 0, we have x0 = q > d. For continuity of the solution, there exists t⋆ such that y(t) > d
for all t ∈ [0, t⋆]. Thus from (35) and being x(t0 = 0) = q, it is

y(t) = (−dcexp + umax)t+ q,
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for all t ∈ [0, t⋆]. Moreover being umax < dcexp, the function y(t) is decreasing, the time value t⋆ is
finite and there exists a time, say it t̄ such that y(t̄) = d. Let clin := dcexp − umax, we have

y(t̄) = d ⇐⇒ −clint̄+ q = d ⇐⇒ t̄ =
q − d

clin
:= tc.

In summary, we have shown that y(t) = q − clint for all t ∈ [0, tc] and is equal to d at time tc.
Therefore from (35) and being y(tc) = q − clintc, for all time t > tc we have

y(t) =
(
q − clintc

)
e−cexp(t−tc) +

(
1− e−cexp(t−tc)

)umax

cexp
.

Specifically, y(t) > 0 for all t > tc, thus it can never be y(t) < −d. This concludes the proof.
We are now ready to state the following:
Theorem IV.3 (Local ISS for input-dependent GW-LS-C systems): Consider system (25) satisfying

Assumptions (A1’) – (A4’). Let r be the largest radius such that B
(
x⋆, r

)
⊆ S , ū < rcexp, and

umax := supτ∈[0,t] ∥ux(τ)∥U ≤ ū. For each trajectory x(t) with input ux ∈ Ū starting from x0 /∈ S , for
almost every t ≥ 0, we have:

(i) D+∥x(t)−x⋆∥ ≤ −cexp satr(∥x(t)−x⋆∥)+Lu∥ux(t)∥U ;

(ii) ∥x(t)−x⋆∥ ≤ lin-exp(t ; q, clin, cexp, tc) + 1[tc,+∞[(t)
Lu

cexp
(1− e−cexpt)umax,

with
• exponential decay rate cexp > 0;
• intercept q = ∥x0 − x⋆∥;
• linear decay rate clin = rcexp − umax;
• linear-exponential crossing time tc = (q − r)/clin.

Proof: Consider an arbitrary trajectory x(t) starting from x0 /∈ S with input ux and a second
trajectory equal to the equilibrium x⋆ with input u = 0m. To prove statement (i), let µ be the log-norm
associated to ∥ · ∥. By applying inequality (26) to those trajectories, for almost every t ≥ 0, we have

D+∥x(t)− x⋆∥ ≤
∫ 1

0

µ
(
Df(x⋆ + α(x(t)− x⋆), 0)

)
dα∥x(t)− x⋆∥+ Lu∥ux∥U . (36)

The proof follows by using similar reasoning as the one in the proof of Lemma III.3. Item (ii) follows
by using the Comparison Lemma [13, pp. 102-103] and Lemma IV.2 to upper bound the solution to
the differential inequality (i).

V. TACKLING LINEAR PROGRAMS

We now show the efficacy of the previous results by applying them to a dynamical system solving the
LP problem. Given c ∈ Rn, A ∈ Rm×n and b ∈ Rm, we consider the linear program:

min
x∈Rn

c⊤x,

s.t. Ax ≤ b,
(37)

and its equivalent unconstrained formulation

min
x∈Rn

c⊤x+ ιIb(Ax), (38)

where Ib = {y ∈ Rm | y − b ≤ 0m}. We assume that (38) admits a unique equilibrium. Note that (38)
is a particular composite minimization problem:

min
x∈Rn

f(x) + g(Ax), (39)
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with f(x) = c⊤x and g(Ax) = ιIb(Ax). To solve (38), we leverage the proximal augmented Lagrangian
approach proposed in [10] and consider the proximal augmented Lagrangian, L̃γ : Rn × Rm → R,
defined by

L̃γ(x, λ) = f(x) +Mγg(Ax+ γλ)− γ

2
∥λ∥22, (40)

where λ ∈ Rm is the Lagrange multiplier, γ > 0 is a parameter, and Mγg is Moreau envelope of g.
Remark V.1: For f continuously differentiable, convex, and with a Lipschitz continuous gradient, and

g convex, closed and proper, solving the composite minimization problem (39) corresponds to finding
saddle points of (40), simultaneously updating the primal and dual variables [10, Theorem 2].

Next, consider the continuous-time augmented primal-dual dynamics [10] (that can be interpreted as
a continuous-time neural network) associated to the proximal augmented Lagrangian of problem (38)

ẋ = −∇xL̃γ(x, λ) = −c− A⊤∇MγιIb
(Ax+ γλ) = −c− 1

γ
A⊤ReLU

(
Ax+ γλ− b

)
,

λ̇ = ∇λL̃γ(x, λ) = −γλ+ γ∇MγιIb
(Ax+ γλ) = −γλ+ReLU

(
Ax+ γλ− b

)
.

(41)

We let FLP : Rn+m → Rn+m denote the vector field for (41).
Remark V.2: Equation (41) follows directly after noticing that for almost every y ∈ Rm it results

∇MγιI(y) =
1

γ

(
y − PιI(y)

)
=

1

γ

(
y −min{y, b}

)
=

1

γ
ReLU

(
y − b

)
.

The next result characterizes the convergence of (41).
Theorem V.3 (Convergence of the linear program): Consider the dynamics (41) and let (x⋆, λ⋆) ∈

Rn+m be an equilibrium point. If DFLP
(
x⋆, λ⋆) is Hurwitz, then any solution of (41) linear-exponentially

converges towards (x⋆, λ⋆).
Proof: To prove the statement we show that (41) satisfies the assumptions of Theorem III.6. First,

we prove that the system is globally-weakly contracting. To this purpose, let z := (x, λ) ∈ Rn+m,
y := Ax+ γλ− b and define G(y) := DReLU

(
y
)
, for almost every y ∈ Rm. The Jacobian of (41) is

DFLP(z) =

[
− 1

γ
A⊤G(y)A −A⊤G(y)

G(y)A −γ(Im −G(y))

]
.

Being 0 ⪯ G(y) ⪯ Im
2, a.e. y ∈ Rm, we have

sup
z

µ2

(
DFLP(z)

)
≤ max

0⪯G⪯Im
µ2

([
−γ−1A⊤GA −A⊤G

GA γ
(
G− Im

)]) ,

By definition of µ2, we have that

µ2

([
−γ−1A⊤GA −A⊤G

GA γ
(
G− Im

)]) = λmax

([
−γ−1A⊤GA 0

0 γ
(
G− Im

)])
= max{λmax

(
−γ−1A⊤GA

)
, λmax

(
γ
(
G− Im

))
} ≤ 0.

The last equality follows from the fact that λmax
(
−γ−1A⊤GA

)
= λmax

(
γ
(
G− Im

))
≤ 0. In particular,

the equality λmax
(
−γ
(
G− Im

))
≤ 0 follows directly from 0 ⪯ G ⪯ Im; while λmax

(
−γ−1A⊤GA

)
≤ 0,

follows noticing that A⊤GA ⪰ 03. This implies that (41) is weakly contracting on Rn+m w.r.t. ∥ · ∥2.
2For every γ > 0, 0 ⪯ ∇2Mγg(y) ⪯ 1

γ
In, a.e. y ∈ Rm [8, Lemma 18].

3A⊤GA ⪰ 0 ⇐⇒ x⊤A⊤GAx ≥ 0 ∀x ∈ Rn ⇐⇒ y⊤Gy ≥ 0, ∀y ∈ Rm ⇐⇒ G ⪰ 0.
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Thus (41) is weakly contracting on Rn+m with respect to ∥·∥2. Next, we prove that the system is locally-
strongly contracting. To do so, we first note that for any equilibrium point z⋆ := (x⋆, λ⋆) of (41), both
DReLU(y⋆) and DFLP(z

⋆) are differentiable in a neighborhood of y⋆ and z⋆, respectively. In fact, for
each i, the KKT conditions ensures that either (Ax⋆)i − bi = 0 or λ⋆

i = 0. In turn, this implies that
y⋆i = (Ax⋆)i + γλ⋆

i − bi ̸= 0, for all i. Now, being by assumption DFLP(z
⋆) Hurwitz, there exists Q

invertible such that µ2,Q

(
DFLP(z

⋆)
)
< 0 [3, Corollary 2.33]. Let K be the set of differentiable points

in a neighborhood of z⋆. Then, by the continuity property of the log-norm, there exists B2,Q

(
z⋆, p

)
,

with p := sup{p > 0 | B2,Q

(
z⋆, p

)
⊂ K}, where DFLP(z) exists and µ2,Q

(
DFLP(z)

)
< −cexp for all

z ∈ B2,Q

(
z⋆, p

)
, for some cexp > 0. Therefore (41) is strongly infinitesimally contracting w.r.t. ∥ · ∥2,Q

in B2,Q

(
z⋆, p

)
. This concludes the proof.

A key hypothesis of Theorem V.3 is that DFLP(x
⋆, λ⋆) is Hurwitz. This hypothesis can only be verified

by prior knowledge of the LP solution. This limitation motivates the following conjecture, which would
relate stability of DFLP(x

⋆, λ⋆) to matrix A and the KKT conditions.
Conjecture V.4: Let (x⋆, λ⋆) be the equilibrium of (41). The LP (37) has a unique solution, x⋆, if and

only if DFLP
(
x⋆, λ⋆) is Hurwitz.

a) Numerical Experiments

Consider the following LP

min
x∈R3

x1 + x2 + x3,

s.t. − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1,−1 ≤ x3 ≤ 1.
(42)

for which the unique optimal solution is x⋆ = (−1,−1,−1).
Next, consider the corresponding continuous-time augmented primal-dual dynamics (41)

ẋ1 = −1− 1

γ

(
ReLU (x1 + γλ1 − 1)− ReLU (−x1 + γλ4 − 1)

)
,

ẋ2 = −1− 1

γ

(
ReLU (x2 + γλ2 − 1)− ReLU (−x2 + γλ5 − 1)

)
,

ẋ3 = −1− 1

γ

(
ReLU (x3 + γλ3 − 1)− ReLU (−x3 + γλ6 − 1)

)
,

λ̇1 = −γλ1 +ReLU (x1 + γλ1 − 1)

λ̇2 = −γλ2 +ReLU (x2 + γλ2 − 1) ,

λ̇3 = −γλ3 +ReLU (x3 + γλ3 − 1) ,

λ̇4 = −γλ4 +ReLU (−x1 + γλ4 − 1) ,

λ̇5 = −γλ5 +ReLU (−x2 + γλ5 − 1) ,

λ̇6 = −γλ6 +ReLU (−x3 + γλ6 − 1) .

(43)

We set γ = 0.5 and simulate the dynamics (41) over the time interval t ∈ [0, 40] with a forward Euler
discretization with step-size ∆t = 0.001, starting from 150 initial conditions generated as follows: we
first randomly generate an initial condition and then define the remaining 149 initial conditions by
adding, to the first initial condition, random noise generated from a normal distribution with mean
0 and standard deviation 2. The simulation results are that each resulting trajectory converges to the
point z⋆ = (−1,−1,−1, 0, 0, 0, 1, 1, 1). Next, we numerically found that DFLP (z

⋆) is Hurwitz (in
alignment with our conjecture). Figure 4 illustrates the mean and standard deviation of the lognorm of
the ℓ2 distance of the 150 simulated trajectories of (41) w.r.t. z⋆. In agreement with Theorem V.3 the
convergence is linearly-exponentially bounded.
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Figure 4: Mean (red curve) and standard deviation (shadow curve) of the lognorm of the Euclidean
distance of 150 simulated trajectories of (41) with respect to the equilibrium point z⋆. In agreement
with Theorem V.3 the convergence is linearly-exponentially bounded.

VI. CONCLUSION

We analyzed the convergence characteristics of GW-LS-C dynamics, which naturally arise from convex
optimization problems with a unique minimizer. For such dynamics, we showed linear-exponential
convergence to the equilibrium. Specifically, we demonstrated that linear-exponential dependency arises
naturally in certain dynamics with saturations and used this result for our convergence analysis. Depend-
ing on the norms where the system is GW-LS-C, we considered two different scenarios that required
two distinct mathematical approaches, yielding convergence bounds that are sharper than those in [4].
Finally, after giving a sufficient condition for local ISS, we illustrated our results on the continuous-time
augmented primal-dual dynamics solving LPs. Our results motivated a conjecture relating the optimal
solution of LPs to the local stability properties of the equilibrium of the resulting dynamics. Our future
work will include proving this conjecture, extending our ISS analysis to the case of different norms
and further developing our results to analyze firing-rate neural networks. Additionally, a possible future
research direction could be applying our result for time-critical optimization problems.
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APPENDIX I
CONTRACTION TIMES WITH RESPECT TO DISTINCT NORMS

First we recall the following [4, Lemma V.1]
Lemma I.1 (Inclusion between balls computed with respect to different norms): Given two norms

∥ · ∥α and ∥ · ∥β on Rn, for all x ∈ Rn and r > 0, it holds

B
(
x, r/kβ

α; β
)
⊆ B

(
x, r;α

)
⊆ B

(
x, rkα

β ; β
)
. (44)

The following Lemma is inspired by [4, Theorem V.2]. For completeness, we here provide a self-
contained proof.
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Lemma I.2 (Contraction times with respect to distinct norms): Given ∥ · ∥α and ∥ · ∥β norms on Rn

with equivalence ratio kα,β , consider system (4) satisfying Assumptions (A2), (A3) with ∥ · ∥L = ∥ · ∥α.
Then, for each 0 < ρ < 1,

(i) the ρ-contraction time is tρ = ln(ρ−1)/c;
(ii) the ρ-contraction time with respect to the norm ∥ · ∥β is tα,βρ = ln(kα,β ρ

−1)/c.
Proof: Consider a trajectory x(t) of system (4) such that ∥x0∥α ≤ r. To prove (i) we need to find the

first time tρ such that ∥x(tρ)−x⋆∥α ≤ ρr. Clearly the worst-case time is achieved when ∥x0−x⋆∥α = r.
But c-strongly infinitesimal contractivity with respect to ∥ · ∥α implies ∥x(t)− x⋆∥α ≤ e−ct∥x0 − x⋆∥α
and so tρ is determined by the equality e−ctρr = ρr, from which item (i) follows.

Regarding item (ii), we need to find the first time tα,βρ such that ∥x(tρ)− x⋆∥β ≤ ρr. We note that

x0 ∈ Bβ

(
x⋆, r

) (44), 2nd inequality
=⇒ x0 ∈ Bα

(
x⋆, kβ

αr
)
,

x(tρ) ∈ Bβ

(
x⋆, ρr

) (44), 1st inequality⇐= x(tρ) ∈ Bα

(
x⋆, ρr/kα

β

)
.

Thus, the contraction time from Bβ

(
x⋆, r

)
to Bβ

(
x⋆, ρr

)
is upper bounded by the contraction time

from Bα

(
x⋆, kβ

αr
)

to Bα

(
x⋆, ρr/kα

β

)
. Therefore, the contraction factor with respect to the ∥ · ∥α norm

is (ρr/kα
β )/(k

β
αr) = ρ/kα,β . Item (ii) then follows from item (i).

REFERENCES

[1] K. J. Arrow, L. Hurwicz, and H. Uzawa, editors. Studies in Linear and Nonlinear Programming. Stanford University Press, 1958.
[2] G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese. Time-varying optimization of LTI systems via projected primal-dual gradient

flows. IEEE Transactions on Control of Network Systems, 9(1):474–486, 2022. doi:10.1109/TCNS.2021.3112762.
[3] F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct Publishing, 1.1 edition, 2023, ISBN 979-8836646806. URL:

https://fbullo.github.io/ctds.
[4] V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. Neural

Computation, January 2024. To appear. doi:10.48550/arXiv.2311.03821.
[5] E. K. P. Chong, S. Hui, and S. H. Zak. An analysis of a class of neural networks for solving linear programming problems. IEEE

Transactions on Automatic Control, 44(11):1995–2006, 1999. doi:10.1109/9.802909.
[6] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons, 1983, ISBN 047187504X.
[7] S. Coogan. A contractive approach to separable Lyapunov functions for monotone systems. Automatica, 106:349–357, 2019.

doi:10.1016/j.automatica.2019.05.001.
[8] A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Contracting dynamics for time-varying convex optimization. IEEE

Transactions on Automatic Control, June 2023. Submitted. doi:10.48550/arXiv.2305.15595.
[9] A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contraction analysis of continuous-time neural networks. IEEE

Transactions on Automatic Control, August 2023. Submitted. doi:10.48550/arXiv.2110.08298.
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