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Abstract—Network densification and heterogenisation through
the deployment of small cellular access points (picocells and fem-
tocells) are seen as key mechanisms in handling the exponential
increase in cellular data traffic. Modelling such networks by
leveraging tools from Stochastic Geometry has proven partic-
ularly useful in understanding the fundamental limits imposed
on network coverage and capacity by co-channel interference.
Most of these works however assume infinite sized and uniformly
distributed networks on the Euclidean plane. In contrast, we
study finite sized non-uniformly distributed networks, and find
the optimal non-uniform distribution of access points which
maximises network coverage for a given non-uniform distribution
of mobile users, and vice versa.

I. INTRODUCTION
The rapid growth in cellular data traffic presents unprece-

dented strain on current cellular infrastructures. One technol-

ogy that can alleviate this is extreme network densification of

cellular access points (APs) and also the heterogenisation of

the conventional macrocell architecture with smaller picocells

and femtocells. Through the efficient exploitation of spatial

frequency reuse, such dense heterogeneous cellular networks

(HetNets) are expected to deliver higher data rates as well as

the ubiquitous wireless coverage needed in this internet age.

Therefore, network performance under spatial densification

is an area of active academic and industrial research and

standardisation with the view that the deployment of a multi-

tier architecture can help facilitate the transition into 5G [1].

The modelling and analysis of HetNets has been greatly

facilitated by the development of Stochastic Geometry tools

[2], and through the establishment of meaningful performance

metrics such as capacity, throughput, spectral efficiency, and

coverage [3], [4]. The main outcome of these research efforts

has been the unveiling of engineering insights and a tractable

framework for tackling network optimisation, e.g., designing

Coordinated Multipoint (CoMP) transmission schemes [5]. As

this research area matures however, some insights have been

revisited and new complexities uncovered. For instance, the

celebrated result of [6] that coverage does not depend on

network density when thermal noise is negligible has been

overturned (by the same author) when considering multi-slope

path loss models [7]. A similar result was obtained by [8] who

studied the impact of AP density in finite-area networks. It

is therefore desirable to understand how Access Points (AP)

should be deployed in order to maximise Mobile User (MU)

coverage; to this end, and motivated by the aforementioned

findings in [5]–[8], we revisit the coverage problem in dense,

finite area, cellular networks and analyse the optimal deploy-

ment of APs for a non-uniform distribution of MU.

Fig. 1. Left: Simplified schematic of the system set up. A MU is located at
r, and is served by its nearest AP (the red one) which is located a distance d1
away. Other APs are randomly distributed in the finite deployment region V

according to a non-uniform density λ(t), and act as sources of interference.
Right: A schematic for the shift in coordinate system used to calculate (7).

We model the AP locations using a non-uniform Poisson

Point Process (PPP) in a circular deployment region, and,

assuming a closest AP user association model (as usually

done when modelling cellular networks [6]), and derive novel

analytic expressions for the probability density function (pdf)

of the nearest neighbour distribution (NND). By leveraging

tools from stochastic geometry, and assuming Rayleigh fading,

we calculate the position dependent interference field and

outage probability, and use the NND to calculate a position

dependent coverage probability, i.e., the probability that a

mobile user (MU) located at r ∈ V can achieve a Signal-to-

Interference-plus-Noise-Ratio (SINR) in the downlink greater

than a threshold q. Finally, we optimise the average coverage

probability with respect to non-uniform AP and MU spatial

distributions. The main contributions of this letter are:

• we analyse network coverage in a finite domain with non-

uniform AP deployment for the first time, and highlight

how border effects improve network coverage for convex

AP deployments whilst the converse is true for the

concave case.

• we study the optimal AP deployment in finite regions

which maximizes network coverage and show that for

non-uniform MU spatial distributions the optimal AP

deployment is non-trivial.

These results provide insight into how AP should be deployed

or operated by highlighting the impact of non-uniform MU

distributions, along with border and interference effects. Note

that even though we discuss a simplified non-uniform AP/MU

distribution within a circular domain, our analysis provides

http://arxiv.org/abs/1702.05529v1
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insight for more complex AP/MU distributions and domains.

We proceed by formally defining the system model, along with

the NND and the connection model used in our main analysis

in Section III.

II. SYSTEM MODEL

A. Network Model

We consider a non-uniform PPP of density λ(t)=(t, φ) in

a circular disk V ⊂ R
2 of area |V| = πR2 and zero intensity

elsewhere. Each point in our process corresponds to a cellular

AP, transmitting at constant power P . For simplicity we restrict

the analysis to quadratic radially symmetric AP distributions

in polar coordinates such that the intensity function is

λ(t) = λ0
(

a+ bt2
)

, 0 ≤ t ≤ R (1)

where t is the radial distance, λ0 > 0, a = 1− bR2/2
and b ∈ [−2/R2, 2/R2], such that there are, on average,

2π
∫ R

0
λ(t)tdt = λ0|V| APs in V . More specifically, the

parameter b in (1) controls how the AP are deployed within

V , and allows us to interpolate between three different AP

deployment distributions, in particular: uniform (b = 0),
convex (b > 0 nodes located predominately near the border),

and concave (b < 0 nodes located near the centre of the

deployment region). Note that the concave distribution is

akin to the Random Waypoint Mobility model1 (RWPM)

[9]–[11] which models mobile ad hoc networks. Note that

by independently thinning a uniform PPP, one can easily

obtain a non-uniform random access transmission scheme.

The corresponding intensity would be λ(t) → λ0p(t) where

p∈ [0, 1] is a position dependent thinning probability [2].

Let the Euclidean distance from a receiving MU located at

r=(r, θ)∈V and its distance to every other AP i located at

ti∈V in the PPP be denoted by di= |r− ti|, where we order

the distances as 0≤d1≤d2≤ .... The assumption that a MU is

served by its nearest AP is fairly intuitive since it is likely that

the AP with the strongest signal will typically be the closest

AP [6] (see Fig. 1).

B. Nearest Neighbour distribution

In our model where a MU connects to its nearest AP, the

pdf of this NND f(r, d1) is given by the derivative of the

contact distribution, or equivalently, minus the derivative of

the void probability:

f(r, d1) = − d

dd1
P [N(B(r, d1)) = 0] (2)

Intuitively, the pdf of the NND in (2) tells us the probability

that the nearest AP will be a distance d1 from a receiver

located at r. Assuming the AP are distributed according to

(1), the pdf of the NND in (2) becomes the radially symmetric

and piecewise continuous function:

f(r, d1) =

{

f1(r, d1) if r ≤ R− d1

f2(r, d1) if r > R− d1
(3)

1In the RWPM nodes are initially placed in V according to some point
process, where they then independently travel from waypoint to waypoint
in a sequential manner. A node selects its next waypoint from a uniform
distribution in V , travels toward it in a straight line at a constant speed chosen
at random and pauses with a certain probability, and then repeats the process.
This model gives rise to a stationary distribution with a higher density of
nodes in the bulk of the domain due to the continual crossing of paths. The
parameter b=−2/R2 in (1) gives the RWPM in a disk with no pause time.
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Fig. 2. Plot of the nearest neighbour pdf (3) for MUs at different off-
centre distances r∈ [0, R] for different AP deployments: Uniform(top panel),
Concave (middle), and Convex (bottom). We assume that R=5.
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(
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)
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f2(r, d1) = − d

dd1
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{
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(
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√
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2 + 2r̃4)

− b
√
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12

(
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)
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(
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bR2
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)(π

2
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])
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b

6
(R2 + 2r̂2)
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(5)

where we defined r̂=
R2+r2−d2

1

2r and r̃= r̂−r.
Fig. 2 highlights the piecewise nature of f(r, d1), for

the uniform (top panel), concave (middle panel) and convex

(bottom panel) cases. If the receiver is off centre, as the ball

of radius d1 grows, it will eventually intersect the boundary

of the domain giving rise to this piecewise nature. This has a

direct effect on the mean separation distance to the serving AP,

given by E[d1]=
∫ dmax

0
f(r, d1)d1dd1 which clearly depends on

r and b. For uniform deployments, E[d1] is smaller for a MU

located near the centre (r ≈ 0), and bigger near the border

(r≈R). This border effect is amplified in the concave case,

and reversed in the convex AP deployment density.

C. Connection Model

The signal power received by a MU in the far field

is inversely proportional to the separation distance x be-

tween source and destination. We adopt the following well-

established pathloss attenuation function g(x) = x−η , where

η≥2 is the pathloss exponent. For free space η=2 so the sig-

nal strength obeys exactly the inverse square law, and decays

faster for more cluttered environments; η=4 is typically taken

for urban areas. In addition to pathloss attenuation, small-scale

fading can affect the received signal power. We model this

by a Rayleigh fading channel, such that the gain between
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a transmitting AP i and the receiving MU is an indepen-

dent random variable with a standard exponential distribution

|hi|2 ∼ exp(1), for i = 1, 2, . . . We therefore formulate the

received SINR at the MU located at r in the downlink as

SINR = P|h1|
2g(d1)

N+I where I = P∑

k≥2 g(dk)|hk|2 is the

aggregate interference from all other transmitters, P is the

transmit power (assumed the same for all AP), and N is the

average thermal noise power. For the sake of simplicity, we

consider the quality of the received signal to be completely

characterised by the SINR.

We assume that a MU can connect to its nearest AP if the

SINR at the MU is greater than a threshold q, else it is said

to be in outage. The connection probability is thus given by,

H1(r, d1)= P[SINR ≥ q].

Conditioning on the interference we have that the connec-

tion probability is given by

H1(r, d1) = EI

[

P

[

|h1|2 ≥ q(N + I)
g(d1)P

∣

∣

∣
r, d1, I

]]

= exp
[

− qN
Pg(d1)

]

LI(q d
η
1)

(6)

where LI(s) is the Laplace transform of the random variable

I. Assuming that |hk|2∼ exp(1) and evoking the probability

generating function for a PPP [2] we can express this as

LI(q d
η
1) = exp

[

−
∫

V\B(r,d1)

λ(z)

1 +
d
η

k

q d
η
1

dkddkdθ
]

(7)

where z=
√

r2 + d2k − 2rdk cos θ. Notice that the integral is

computed over the whole domain V but excluding the ball

B(r, d1), see Fig. 1. Moreover, the integral is over a non-

uniform density λ(z) where we have also used the cosine rule

to shift the polar coordinate system from the centre of V , to

that centred on r. This shift in coordinates allows us to further

simplify the Laplace functional and arrive at

LI(q d
η
1) = exp

[

−λ0
∫ θ̂1

0

φ(R̂)− φ(d1)dθ

]

, (8)

where, θ̂1 = min
[

arccos
(

r2+d2
1−R

2

2rd1

)

, π
]

is the angle of

intersection shown in Fig. 1, R̂=r cos θ+
√

R2 − r2 sin2 θ is

the radial distance from the MU to the domain border, and

φ(x) =
x2

6

[

6(a+ br2)ψ(
2

η
,
xη

q dη1
)

+ bx
(

3x ψ(
4

η
,
xη

q dη1
)− 8r cos θψ(

3

η
,
xη

q dη1
)
)]

(9)

is the result after calculating the radial integral over dk in (7),

where we also have defined ψ(x, y) = 2F1

(

1, x, 1+x,−y
)

.

Here 2F1 is the Gauss hypergeometric function. Equation (8)

can only be expressed in closed form for the special case of

r=0, in which case we obtain

LI(q d
η
1) = exp

[2d21q(2 + bd21 − bR2)

4(1 + q)

− 4R2ψ(
2

η
,
Rη

q dη1
) + bR4ψ(

4

η
,
Rη

q dη1
)
]

,

(10)

but can be computed numerically using standard libraries.

Fig. 3 shows the calculation of (8) as a function of radial

position of the MU r conditioning on different values of d1.
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Fig. 3. The Laplace functional (8) plotted as a function of MU position
r for all three cases with the distributions inset. Parameters used: η = 6,
P, q = 1, λ0 = 1. Note: For η < 6 we have a decrease in LI1

(q dη
1
).

Note how the interference is reduced, in all cases, when r
is near the border. This is because the expected separation

distance of the interfering APs E[dk], k>1, typically increases

as a MU approaches the border, thus leading to a weaker in-

terference field. This is purely a geometrical effect. Intuitively,

when r=0 all interferers are located at distances dk∈ [d1, R].
In contrast, when r=R all interferers are located at distances

dk ∈ [d1, 2R]. Again, a non-uniform density of APs can

amplify or counter this effect. Further, for areas of low density

(e.g near the centre for the convex case), the interference

field is also reduced. By increasing d1, LI1
(q dη1) decreases,

(interference increases); a consequence of dk

d1
(integrand of (7))

decaying to one. In other words, conditioning on the AP being

further away the ratio E[dk

d1
] → 1 which in turn will cause the

average Signal-to-Interference-Ratio (SIR) → 0. We proceed

by using the aforementioned NND and connection model to

analyse MU coverage and the optimal AP deployment.

III. OPTIMAL COVERAGE DEPLOYMENT

A. Mobile User Coverage
An important performance metric commonly used is the

network coverage probability experienced by a MU given by,

C(r, b, λ0πR
2) =

∫ dmax

0

H(r, d1)f(r, d1)dd1 (11)

where H(r, d1) is the connection probability given in (9),

dmax = R+r is the maximum distance from the MU to the

boundary, and f(r, d1) is the pdf of the NND given in eq.(2).

More specifically, eq (11) tells us the probability that a

MU at r can successfully decode a message from its nearest

AP, and this probability depends on both the distribution

of APs,λ(t) controlled by b, and the location of the MU,

see Fig 4. In fact, since the AP are deployed in a radially

symmetric fashion, following eq (1), the coverage probability

is also radially symmetric as a result.

B. Optimal Coverage Deployment

It is important to know how to deploy APs such that MU

connectivity can be maximised. To this end, we introduce the

average coverage probability for a radially symmetric non-

uniform distribution of MUs given by ρ(r)=1− βR2

2 + βr2,

where β plays a similar role as b in (1) and
∫

V
ρ(r)rdr= |V|:

C̄(b, β, λ0πR
2) =

2

R2

∫ R

0

ρ(r)C(r, b, λ0πR
2)rdr (12)

Eq. (12) can be maximised to give the optimal value of b

b∗(η, β, λ0πR
2) = argmax

b
C̄(b, β, λ0πR

2), (13)
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Fig. 4. The coverage probability, (11), as a function of position r from the
centre to the boundary, with P = N = q = 1, R = 5 and η = 2, 4 for the
left and right panel respectively. Solid line: λ0 = 1; dashed line: λ0 = 5.

conditioned on η, β and density of APs λ0 in V . Equation (13)

is a maximization over a double integral of an exponential of

another integral, and is therefore computationally taxing. The

simplifications and analysis performed in the previous sections

have alleviated this task to some extent.

C. Numerical Results

Fig 4 shows how the border effects result in a drop in

coverage probability due to low f(r, d1), and the distance

between the first and second nearest neighbour is likely to

be much less compared with a MU located near the centre of

V . Similarly, away from the border, areas of high AP density

mean that coverage decreases due to a higher interference field,

regardless of the close proximity of the nearest neighbour. For

the convex case we observe a “sweet spot” where the trade-

off between the distribution of APs and border effects helps

to maximise coverage probability.

Fig. 5 shows the optimal deployment of APs b∗ as a function

of the non-uniform MU distribution parameter β, for different

values of η and λ0. Basically, these plots show that a convex

spatial distribution of MUs (representing the demand of data in

the downlink) should be met by a convex spatial distribution of

active APs (representing the supply of data in the downlink).

For a concave distribution of MUs in a finite domain however,

the optimal AP distribution will depend on β, η, and λ0,

and may vary from concave to convex. This is an interesting

observation caused by the trade-off between interference and

border effects, revealed for the first time in this paper. Note that

the optimal distribution of APs in ultra-dense deployments,

i.e., for λ0 ≫ 1, tends to be more uniform. A similar trend

is observed for larger pathloss exponents η ≥ 2. Finally,

recall that a uniform deployment of APs can be made non-

uniform via a non-uniform independent thinning process p(t)
modelling a random access transmission scheme.

IV. CONCLUSION

In this letter we analyse network densification, a key aspect

in providing the increased network performance promised

by the fifth generation of wireless communications. Under

a nearest neighbour association scheme we highlight the

impact that the spatial distributions of APs and MUs have on

network coverage in finite operating regions. Using tools from

stochastic geometry, we investigate the trade-off in SINR and

how this is affected by the position of MUs in a finite region,

and also the spatial distribution of APs. Finally, we formulate

an optimisation problem for the average network coverage by
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Fig. 5. The optimal distribution of AP given a deployment of MU for different
λ0 with R = 5, and η = 2, 4 for the left and right panel respectively.

adapting the APs deployment method or transmission scheme

according to the spatial distribution of MUs. An application

where an adaptive transmission scheme could be used to

achieve optimal MU coverage would be for cities where the

MUs spatial distribution goes from concave during work-

hours, to convex at night-time. Collaborative AP transmission

schemes where the k nearest APs collaborate in a maximum

ratio transmission (MRT) or joint transmission scheme such

as in CoMP could be studied in order to improve network

performance.
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