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Abstract—In this letter, we present an end-to-end performance
analysis of dual-hop project-and-forward relaying in a realistic
scenario, where the source-relay and the relay-destination links
are experiencing MIMO-pinhole and Rayleigh channel conditions,
respectively. We derive the probability density function of both the
relay post-processing and the end-to-end signal-to-noiseratios, and
the obtained expressions are used to derive the outage probability
of the analyzed system as well as its end-to-end ergodic capacity
in terms of generalized functions. Applying then the residue
theory to Mellin-Barnes integrals, we infer the system asymptotic
behavior for different channel parameters. As the bivariate Meijer-
G function is involved in the analysis, we propose a new and fast
MATLAB implementation enabling an automated definition of the
complex integration contour. Extensive Monte-Carlo simulations
are invoked to corroborate the analytical results.

Index Terms—Capacity, Meijer G-function, Mellin-Barnes,
MIMO, outage probability, performance analysis, pinhole channel,
project-and-forward, relaying, residue theory.

I. I NTRODUCTION

ONE detrimental situation to MIMO communication ben-
efits is the pinhole effect that usually arises when the

transmit-receive range is much larger than the radii of local
scatterers in both sides. In that case, the fading energy propa-
gates through a very thin air pipe, called apinhole (or keyhole),
reducing the MIMO channel to a rank-one matrix [1].

In downlink dual-hop multi-antenna relaying systems, the
pinhole scenario may practically surface in either hops. Hence,
in rich-scattering dense urban fixed deployments, a carefully
planned relay location ensures a full-rank source-relay channel;
while the relay-destination link may endure the pinhole effect
for user equipments (UEs) experiencing poor scattering situa-
tions. Conversely, in suburban and rural areas with green-field
deployment, the donor eNodeB and the relay are separated by a
large distance in a line of sight (LOS) environment such thatthe
source-relay channel has only one degree of freedom [1], [2].
On the other hand, the fact that the relay is close to the target
destination—e.g., a village presenting rich scattering and short
ranges to the end UEs—leads to a full-rank Rayleigh relay-
destination link. This scenario is also applicable to moving relay
nodes (MRNs) in high speed vehicles [3], where the large rural
eNodeB LOS coverage and the rare handover events induce
large eNodeB-relay distances, and therefore the pinhole effect,
while the rich-scattering indoor structure of the vehicle (like
trains for instance) and the small relay-UEs ranges yield a
Rayleigh propagation.

An inherent limitation in amplify-and-forward (AF) relaying
systems is the so-called noise amplification and propagation

that becomes even worse when the number of relay antennas
increases, as the corresponding relayed noises accumulateat
each of the destination receive antennas; the end-to-end SNR,
and therefore the performance, are consequently degraded.
To sidestep this drawback, a variant of AF relaying, termed
“project-and-forward” (PF), has been introduced in [4], and
consists on optimizing the number of active antennas at the
relay by forwarding the degrees-of-freedom (DoF) of the re-
ceived signal—yield by an orthogonal projection—instead of
the signal itself. Only as few relay antennas as the rank of the
source-relay MIMO channel are used, i.e., a single antenna in
the unit-rank case.

While the mixed full-rank/pinhole MIMO channel has
been widely studied in the literature, especially for AF-
based setups (cf. [5], [6] and references therein), the MIMO-
pinhole/Rayleigh channel has been rarely addressed and, to
the best of our knowledge, never for the PF scheme that, in
addition, turns out to be very opportune in such environments.

In this letter, we present a novel end-to-end performance
analysis of dual-hop PF systems over the mixed MIMO-
pinhole/Rayleigh relay channel. We derive exact expressions
for the probability density functions (PDFs) of both the first
hop and the end-to-end SNRs, which are then used to infer
the outage probability as well as the ergodic capacity whose
formula is provided in terms of the bivariate Meijer G-function
[7]. The asymptotic behavior is then derived using the residue
theory. While the Meijer G-function [8, Eq. (9.301)] is a
built-in routine in prevalent computing softwares, the bivariate
Meijer G-function is available only in MATHEMATICA with
no general contour definition [9]. We therefore develop a fast
MATLAB code with automated integration contour for this
generalized function as a secondary contribution of this work.

In the sequel, the superscriptH denotes the Hermitian trans-
pose,‖·‖F andRes [φ, p] represent the Frobenius norm and the
residue of functionφ at polep. Γ (·), ψ(0) (·), andKν (·) stand
for the Gamma function, the digamma function, and theνth-
order modified Bessel function of the second kind, respectively.
G·,·

·,· (· | ·) is the Meijer G-function, andG·,·:·,·:·,·
·,·:·,·:·,· (·, · | · | · | ·)

is the bivariate Meijer G-function.

II. SYSTEM MODEL

A. Channel Description

We consider a half-duplex dual-hop multi-antenna cooper-
ative transmission where anns-antennas source is connected
to a single antenna destination through annr-antennas relay
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(ns, nr>1). The communication between each couple of nodes,
i∈{s, r} andi′∈{r, d}, takes place over an independent wireless
link i− i′ experiencing an average propagation lossαii′ . The
corresponding small scale fading effects are represented by

• A MIMO-pinhole channel matrixHsr that is modelled
as an outer product of two independent and uncorrelated
Rayleigh fading vectorsgs ∈ Cns×1 andgr ∈ Cnr×1, i.e.,

Hsr = grg
H
s ∈ C

nr×ns . (1)

• An independent standard complex Gaussian vectorhrd

whose coefficients
{
hn,n

′

rd

}
are consequently Rayleigh

distributed.
Both relay and destination received signals are corrupted
by additive white Gaussian noise (AWGN) vectorswr ∼
N

(
0nr×1, σ

2Inr

)
andwd ∼ N

(
0nd×1, σ

2Ind

)
, respectively.

The corresponding average SNRs per hop areγsr = α2
sr/σ

2

andγrd = α2
rd/σ

2.

B. Project-and-Forward Relaying

Let x ∈ Cns×1 denote a unitary precoded symbol vector
transmitted by the source node. Thes− r communication
model can be accordingly expressed as,

yr = αsrHsrx+wr ∈ C
nr×1. (2)

The key idea of PF relaying is to extract and forward
the DoFs of the received signal vectoryr via a QR-based
orthogonal projection [10]. Given thatHsr is a pinhole channel,
a single degree of freedom will be conveyed by the relay to be
used in the estimation of the transmit vectorx at the destination.

Let Hsr = QR denote the QR decomposition ofHsr, where
Q ∈ Cnr×nr is a unitary matrix withq ∈ Cnr×1 standing for
its first column vector, andR ∈ Cnr×ns is an upper triangular
matrix whose(nr − 1) bottom rows consist entirely of zeros,
i.e.,

R =

[
hr

0(nr−1)×ns

]
. (3)

The DoFŷr is first obtained as

ỹr = qHyr = αsrhrx+ qHwr ∈ C, (4)

and is then normalized with a scaling factorαr =(
α2
sr ‖hr‖

2
F + σ2

)
−1/2

before being forwarded to the destina-
tion using only one relay antenna. Ther–d link is therefore a
SISO Rayleigh channel whose fading coefficienthrd is rid of
the antenna index, resulting in a simpler case

yd = αrdαrhrdỹr + wd ∈ C. (5)

III. PERFORMANCEANALYSIS

A. Instantaneous SNRs Characterization

By invoking communication models (4) and (5), end-to-end
SNR of the PF system in the mixed MIMO-pinhole/Rayleigh
channel can be expressed similarly to a dual-hop AF transmis-
sion [11], i.e.,

γsrd =
γsrγrd

γsr + γrd + 1
, (6)

where the conditional termsγsr = γsr ‖hr‖
2
F and γrd =

γrd |hrd|
2 represent the relay post-processing SNR and the

destination receive SNR, respectively.

To evaluate the PDF ofγsr, we consider the equality
qhr = Hsr = grg

H
s that stems from the aforementioned

QR decomposition. Given thatq is unitary, we infer that
‖hr‖F = ‖gr‖F ‖gs‖F, and due to the statistical independence
betweengs andgr, the PDF of‖hr‖

2
F can be shown to be

f‖hr‖
2
F
(γ) =

ˆ +∞

0

1

γr
f‖gs‖

2
F

(
γ

γr

)
f‖gr‖

2
F
(γr)dγr. (7)

By recalling that bothgs andgr are Rayleigh fading vectors,
we have 2 ‖gi‖

2
F ∼ X 2

2ni
, i ∈ {s, r}. After some algebraic

manipulations and by making use of (7) and [8, Eq. (3.471.9)],
we obtain the PDF ofγsr under the form

fγsr (γ) =
2

Γ(ns)Γ(nr)γsr

(
γ

γsr

)ns+nr
2

−1

Knr−ns

(
2

√
γ

γsr

)
. (8)

Ther–d link is experiencing Rayleigh flat fading. Hence,γrd
is exponentially distributed with the probability densityfunction
written asfγrd (γ) = (1/γrd) exp (−γ/γ̄rd).

B. Outage Probability

In noise-limited transmissions, quality of service (QoS) is
ensured by keeping the instantaneous end-to-end SNR above a
thresholdγth. The probability of outage in our relaying setup
is expressed as

Pout = Pr [γsrd < γth] = Pr

[
γsrγrd

γsr + γrd + 1
< γth

]
, (9)

which is actually the cumulative distribution function (CDF) of
SNR γsrd. Marginalization overγsr yields

Pout (γth) = 1−

ˆ +∞

0

F̃γrd

[
γth +

γ2
th + γth

γ

]
fγsr (γ) dγ, (10)

whereF̃γrd
(·) is the complementary CDF (CCDF) ofγrd, given

by exp (−γ/γ̄rd). By plugging (8) into the above integral and
making the changeu = 1+γ/γth as well as a Taylor expansion
of an exponential term, we infer that

Pout (γth) = 1− 2

(
γth
γsr

)α+1
e
−

γth
γrd

Γ(ns)Γ(nr)
× I, (11)

with the termI given by

I =
+∞∑

k=0

(−1)k

k!

(
γth + 1

γrd

)k +∞∑

l=0

ak,l

l!

×

ˆ +∞

1

uα−k−lKν

(
2

√
γth
γsr

u

)
du, (12)

where α = (ns + nr)/2 − 1, ν = nr − ns, and ak,l =
Γ (k + l) /Γ (k) with the particular casea0,0 = 1. Then, by
combining (11) and (12) and using [8, Eq. (6.592.4)], an exact
expression ofPout is obtained after some simplifications as
shown in (13) on top of the next page.

C. Ergodic Capacity

Unlike the approximation in [12], the end-to-end ergodic
capacity of the dual-hop PF system under consideration can
be written as

Csrd =
1

2

ˆ +∞

0

log2(1 + γ) fγsrd
(γ) dγ, (14)



Pout (γth) = 1−
e
−

γth
γrd

Γ(ns)Γ(nr)

+∞∑

k=0

(−1)k

k!

(
γth + 1

γrd

)k +∞∑

l=0

ak,l

l!

(
γth
γsr

)k+l+1

G3,0
1,3

(
γth
γsr

0
−1, ν

2
+α−k−l,− ν

2
+α−k−l

)
(13)

Csrd =
1

2 ln (2) Γ(ns)Γ(nr)

+∞∑

k=0

(−1)k

k!

k∑

n=0

(
k

n

)
+∞∑

l=0

ak,l

l!

γl+n+1
rd

γk+l+1
sr

×

[
G1,0:1,2:3,0

1,0:2,2:1,3

(
γrd,

γrd

γsr

k + l + n+ 2
_

1, 1
1, 0

0
−1, ν

2
+ α− k − l,− ν

2
+ α− k − l

)

−G1,0:1,2:3,1
1,0:2,2:2,4

(
γrd,

γrd

γsr

k + l + n+ 1
_

1, 1
1, 0

−(k + l + n+ 1), 0
−1, ν

2
+ α− k − l,− ν

2
+ α− k − l,−(k + l + n)

)]
(15)

−Res

[
Γ(−1−s)Γ( ν

2
+α−k −l −s)Γ(− ν

2
+α−k −l −s)

Γ(−s)

(
γth
γsr

)s
,−1

]
= Γ

(ν
2
+α−k −l +1

)
Γ
(
−
ν

2
+α−k −l +1

)(γth
γsr

)−1

(16)

Res



Γ2 (1− s) Γ3 (s) Γ (nr + s) Γ (ns+s)

Γ2 (1 + s) Γ (−s)
γs
sr

︸ ︷︷ ︸
φ(s)

, 0


 =

1

2
lim
s→0

d2

ds2
[
s3φ(s)

]
= Γ(ns)Γ(nr)

[
ln (γsr)+Ψ(0) (ns)+Ψ(0) (nr)

]
(19)

where fγsrd
is the PDF ofγsrd that is computed by firstly

expanding the power(γth + 1)
k in (13) into a finite sum using

the Binomial theorem. The resulting function is then differen-
tiated with respect toγth via [13, Eq. (5)]. By rewriting the
elementary functions involved in the obtained PDF as Meijer

G-functions [14, Eq. (11)], i.e.,γpe−
γ

γrd = γprdG
1,0
0,1

(
γ

γrd

−
p

)

and ln (1+γ)=G1,2
2,2

(
γ

1, 1
1, 0

)
, the ergodic capacity is ex-

pressed in terms of integrals of the product of three Meijer G-
functions whose expressions are given in terms of the Bivariate
Meijer G-function according to [15, Eq. (12)] as shown in (15).

IV. A SYMPTOTIC BEHAVIOR

To highlight the effect of channel parameters on both the
outage probability and the ergodic capacity, we study their
asymptotic behaviors. Invoking [16, Theorem 1.7 and Theorem
1.11], expansions of the Mellin-Barnes integrals involvedin the
Meijer-G and bivariate Meijer-G functions can be derived by
evaluating the residue of the corresponding integrands at the
pole closest to the contour; the minimum pole on the rightp−min
for small Meijer-G arguments and the maximum pole on the
left p+max for large ones, as depicted in Fig. 1. Moreover, the
Inside-Outside theorem [17] states that the obtained result is
further multiplied by−1 in the case of a clockwise-oriented
contour (i.e., for small arguments).

A. Asymptotic Outage Probability

We study the asymptotic behavior of the outage probability
for a low SNR thresholdγth. By keeping low order terms in
(13), i.e.,k + l ≤ 1, and given thatα + ν/2 = nr − 1 ≥ 1
andα − ν/2 = ns − 1 ≥ 1, we have±ν/2 + α − k − l ≥ 0.
Therefore, we evaluate the residue at−1 (that is the smallest
pole) as shown in (16). Replacing the exponential function with
its first order expansion near zero,exp(− γth

γrd
) ≈ 1− γth

γrd
, yields

the following asymptotic expression:

Pout (γth) =

(
1 +

1

(ns − 1) (nr − 1)γsr

)
γth
γrd

+ o (γth) .

(17)

Figure 1. Complex contour of the Mellin-Barnes integral of argument z.
W is set to a large value.

B. Asymptotic Ergodic Capacity

Based on (15), the asymptotic behavior of the ergodic capac-
ity is derived for different scenarios of the balance parameter
β = γrd

γsr

and the SNRγsr as summarized in Table I. Lets
andt denote the integration variables in the bivariate Meijer-G
function. In the caseβ → +∞, we evaluate the residue of the
first and second bivariate Meijer-G terms in (15) at the highest
poles on the left of the contour, i.e.,t = −(k + l+ n+ 2+ s)
and t = −(k + l + n + 1 + s), respectively. Keeping only
0-th orders on1/β results in the expression (18). Expression
(20) is inferred by computing the residue of the integrand ofthe
Meijer-G term in (18) ats = 0 as shown in (19). The remaining
cases are obtained using the same approach.

Table I
ERGODIC CAPACITY ASYMPTOTIC EXPRESSIONS

Scenario AsymptoticCsrd

β → +∞

1
2 ln(2)Γ(ns)Γ(nr)

×G2,5
6,4

(

γsr
1, 1, 1, 1− nr, 1− ns, 0

1, 1, 0, 0

)

(18)

β, γsr → +∞
1

2 ln(2)

[

ln (γsr) + ψ(0) (ns) + ψ(0) (nr)
]

(20)

β → 0 or γsr → 0 0

V. NUMERICAL RESULTS

In this section, we present a few numerical results to illustrate
the theoretical analysis. For different antenna and SNR setups,
Fig. 2 and 3 show the exact and asymptotic results of both
the end-to-end outage probability and the ergodic capacity,
respectively. Throughout our numerical experiments, we found
out that regardless of the average SNRs and antennas settings,
accurate analytical curves can be obtained by truncating the
infinite sums atK = 50 andL = 5 terms. The exact match
with Monte-Carlo simulation results confirms the precisionof
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Figure 2. End-to-end outage probability versusγth for γsr = 0 dB.

the theoretical analysis. As the PF scheme is a variant of
AF, also operating at the signal-level, per antenna CSI-assisted
AF simulations are provided for comparison. The bivariate
Meijer G-function with automated contour—presented in the
Appendix—was developed to enable the numerical evaluation
of (15) in MATLAB environments. For the sake of precision,
we note that the contour lengthW should be increased (e.g.,
10 and more) for high arguments.

VI. CONCLUSION

In this letter, we have presented a performance evaluation
of dual-hop PF systems over the practical mixed MIMO-
pinhole/Rayleigh channel. For numerical evaluation purposes,
we have proposed a novel and fast MATLAB implementation
of the bivariate Meijer-G function. Exact and asymptotic results
are in total agreement with Monte-Carlo simulations, and can
be used by system designers to define SNR thresholds for
switching between PF and other relaying schemes in pinhole
conditions.

APPENDIX

BIVARIATE MEIJERG-FUNCTION’ S MATLAB CODE

function out = Bivariate_Meijer_G(am1, ap1, bn1, bq1, cm2, ...
cp2, dn2, dq2, em3, ep3, fn3, fq3, x, y)

%***** Integrand definition *****
F = @(s,t)(GammaProd(am1,s+t).* GammaProd(1-cm2,s) ...
.* GammaProd(dn2,-s) .* GammaProd(1-em3,t) ...

.* GammaProd(fn3,-t).* (x.^s) .* (y.^t)) ...

./(GammaProd(1-ap1,-(s+t)).* GammaProd(bq1,s+t) ...

.* GammaProd(cp2,-s) .* GammaProd(1-dq2,s) ...

.* GammaProd(ep3,-t) .* GammaProd(1-fq3,t));
%***** Contour definition *****
Sups = min(dn2); Infs = -max(1-cm2); % cs
cs = (Sups + Infs)/2;% s between Sups and Infs
Supt = min(fn3); Inft = max([-am1-cs em3-1]);% t>-am1-s,s=cs
ct = Supt - ((Supt - Inft)/10);% t between Supt and Inft
W = 10; % W
%***** Bivariate Meijer G *****
out = (-1/(2*pi)^2)*quad2d(F,cs-j*W,cs+j*W,ct-j*W,ct+j*W,...
’AbsTol’,10^-5,’RelTol’,10^-5,’MaxFunEvals’,2000,...
’Singular’,true); %Increase MaxFunEvals for higher W
%***** GammaProd subfunction *****

function output = GammaProd(p,z)
[pp zz] = meshgrid(p,z);

if (isempty(p)) output = ones(size(z));
else output = reshape(prod(gamma(pp+zz),2),size(z));
end

end
% The gamma function here is the complex gamma, available in
% www.mathworks.com/matlabcentral/fileexchange/3572-gamma
end
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Figure 3. End-to-end ergodic capacity versusβ for different SNR γsr
and antennas configurations.

REFERENCES

[1] D. Gesbert, H. Bölcskei, D. A. Gore, and A. J. Paulraj, “Outdoor MIMO
Wireless Channels: Models and Performance Prediction,”IEEE Trans.
Commun., vol. 50, no. 12, pp. 1926-1934, Dec. 2002.

[2] J. M. Vella, S. Zammit, “Performance improvement of longdistance
MIMO links using cross polarized antennas,” in15th IEEE Mediterranean
Electrotechnical Conference (MELECON), Valletta, Malta, 26-28 Apr.
2010, pp. 1287-1292.

[3] A. O. Laiyemo, P. Pirinen, M. Latva-aho, J. Vihriala, V. Van Phan,
“Impact of LTE precoding for fixed and adaptive rank transmission in
moving relay node system,” inITS Telecommunications (ITST), 5-7 Nov.
2013, pp. 250-254.

[4] S. Yang and J.-C. Belfiore, “Diversity of MIMO Multihop Relay
Channels–Part I: Amplify-and-Forward,”IEEE Trans. Inform. Theory,
Submitted, available at http://arxiv.org/abs/0708.0386

[5] A. Firag, H. A. Suraweera, P. J. Smith and C. Yuen, “Dual-hop MIMO
amplify-and-forward relay channel capacity with keyhole effect,” IEEE
Commun. Letters, vol. 15, no. 10, pp. 1050-1052, Oct. 2011.

[6] T. Q. Duong, H. A. Suraweera, T. A. Tsiftsis, H. Zepernick, A. Nal-
lanathan, “OSTBC Transmission in MIMO AF Relay Systems withKey-
hole and Spatial Correlation Effects,” inIEEE International Conference
on Communications (ICC), Kyoto, Japan, 5-9 Jun. 2011, pp.1-6.

[7] B. L. Sharma and R. F. A. Abiodun, “Generating function for generalized
function of two variables,”in Proc. American Mathematical Society, vol.
46, no. 1, pp. 69-72, Oct. 1974.

[8] I. S. Gradshteyn and I. M. Ryzhik,Table of Integrals, Series, and
Products, 7th ed., Academic Press, 2007.

[9] I. S. Ansari, S. Al-Ahmadi, F. Yilmaz, M.-S. Alouini, andH.
Yanikomeroglu, “A new formula for the BER of binary modulations with
dual-branch selection over Generalized-K composite fading channels,”
IEEE Trans. Commun., vol. 59, no. 10, pp. 2654-2658, Oct. 2011.

[10] G. H. Golub and C. F. Van Loan,Matrix Computations (Third Edition),
The John Hopkins University Press, 1996.

[11] M. O. Hasna and M.-S. Alouini, “End-to-end performanceof transmission
systems with relays over Rayleigh-fading channels,”IEEE Trans. Wireless
Commun., vol. 2, no. 6, pp. 1126-1131, Nov. 2003.

[12] O. Waqar, M. Ghogho, D. McLernon, “Performance analysis of dual-
hop variable gain relay networks over Generalized-K fadingchannels,”
in IEEE Eleventh International Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), 20-23 Jun. 2010, pp.1-5.

[13] http://functions.wolfram.com/HypergeometricFunctions/MeijerG/20/01/01/
[14] V. S. Adamchik and O. S. Marichev, “The algorithm for calculating

integrals of hypergeometric type functions and its realization in REDUCE
system,” in Proc. International Symposium on Symbolic and Algebraic
Computation, ACM, Academic Press, pp 212-224, 1990.

[15] S. C. Gupta, “Integrals involving products of G-functions,” Proceedings
of the National Academy of Sciences, India, vol. 39(A), no. II, 1969

[16] A. Kilbas, H-Transforms: Theory and Applications. Analytical Methods
and Special Functions, Taylor & Francis, 2004.

[17] T. Rowland and E. W. Weisstein, “Inside-Outside The-
orem”. From MathWorld – A Wolfram Web Resource.
http://mathworld.wolfram.com/Inside-OutsideTheorem.html.

http://arxiv.org/abs/0708.0386
http://functions.wolfram.com/HypergeometricFunctions/MeijerG/20/01/01/
http://mathworld.wolfram.com/Inside-OutsideTheorem.html

	I Introduction
	II System Model
	II-A Channel Description
	II-B Project-and-Forward Relaying

	III Performance Analysis
	III-A Instantaneous SNRs Characterization
	III-B Outage Probability
	III-C Ergodic Capacity

	IV Asymptotic Behavior
	IV-A Asymptotic Outage Probability
	IV-B Asymptotic Ergodic Capacity

	V Numerical Results
	VI Conclusion
	Appendix
	References

