
Supporting User Mobility with Peer-to-Peer-based
Application Mobility in Heterogeneous Networks

Dan Johansson, Karl Andersson, and Christer Åhlund
Department of Computer Science, Electrical and Space Engineering

Luleå University of Technology
SE-931 87, Skellefteå, Sweden

Email: {dan.johansson, karl.andersson, christer.ahlund}@ltu.se

Abstract—When migrating applications between devices dur-
ing runtime, one has achieved application mobility. In this paper
we present the XAM system, providing application mobility
through a peer-to-peer based solution over heterogeneous net-
works. Our architecture takes into consideration established
requirements of application mobility, being application identi-
fication and distribution; context-awareness and context quality;
seamlessness; heterogeneity support; and usability. Our system
differs from traditional systems as it provides application mobil-
ity in a decentralized manner over heterogeneous networks, using
different communication technologies. Following the evaluation
of our system, we also discuss major challenges and possibilities
for the continuing evolution of application mobility systems.

I. INTRODUCTION

Application mobility is when moving an application from
one device to another during runtime, keeping all states and in-
formation that is relevant for the user [1]. This brings mobility
to the user, in that she can send or fetch applications between
the devices she owns or uses. It also requires the services run
by the application to be mobile or revoked, along with ongoing
session, thus creating strong mobility. In Yu’s classification
[2], the application can be migrated within a subnet, between
a subnet and the Internet, or between heterogeneous third-
party controlled networks. The same classification can be
done for devices (private or public devices, homogeneous or
heterogeneous in nature).

Architectural proposals on how to achieve application mo-
bility do exist (e.g. [3], [4], [5]), but actual deployments and
evaluations within the field are very scarce. To prove the
viability of a concept, it is our belief that it has to be simulated
or, even better, prototyped and then examined. In this paper
we present applied application mobility, manifested in a peer-
to-peer based system called XAM. The system is designed to
be decentralized and functional in heterogeneous environments
(multiple networks with multiple service providers), thus dif-
fering from traditional systems for application mobility and
contributing to state-of-the-art research for this mobility type.

II. RELATED WORK

The idea of migratory applications was first presented by
Bharat and Cardelli in 1995 [1]. They envisioned applications
that where not tied to one specific user or device, but could
migrate between devices along with context data and user
interfaces. This would enable users to bring their applications

when switching device, thus increasing user mobility. Then,
after migration, a former host should be able to shut down
without affecting the application. The concept of context-
awareness supported application mobility is explored and
validated in [6].

Traditionally, the migration of an application is split into
three stages: suspension, migration and resumption [7]. Sus-
pension is when pausing an application on the original host
device, saving its states and gathering the relevant information
to be migrated. Migration is the actual transfer of byte code
from the original host device to the new one, followed by the
closing resumption (i.e. making the migrated application run
on the new host device). In laboratory settings, users have been
comfortable with application migration latencies of 5000 ms
[5] and 9000 ms [8].

Among architectural proposals, we find many that are
centralized in their layout (e.g. [5], [7], and [9]). A weakness
that comes with centralized systems is the dependency of the
central node and constant Internet access. A malfunctioning
or overloaded central node could render application mobility
impossible. Decentralized systems do not suffer from this
weakness to the same extent. A general principle of a de-
centralized system such as a peer-to-peer network [10] is that
all nodes can act as both servers and clients. This means that
data such as files and information can be shared between peers
and accessible throughout the whole network. Therefore, if a
peer is removed (or, for that matter, added), the system can
continue to function with none or minimal disturbance.

Partial migration of applications – states in particular –
is examined in [11]. MDAgent [7] only migrates application
logic and data, not the complete application. Yu et al [12]
also make use of the MDAgent, measuring what they call
suspension, migration and recovery through simulation. The
A2M architecture [8] allows a user to migrate an application
between heterogeneous devices. The design is decentralized,
using a migration manager middleware installed on each po-
tential host device. The experiments involve multiple network
interfaces. In [3] the same system is evaluated, but with a
different application and in combination with a user study.
The application is migrated from a laptop to a mini-PC with
WiFi connection and finally onto a desktop computer, while
maintaining a videoconference session. The Open Migration
Service Platform (MSP) [5] realizes migration of applications

The 7th IEEE LCN Workshop On User MObility and VEhicular Networks (ON-MOVE 2013)

978-1-4799-0540-9/13/$31.00 ©2013 IEEE 150

Fig. 1. XAM Architecture

between devices while still maintaining sessions. The system
is centralized, requiring access to both a migration server and
an application server. Experiments do not cover migration
between different networks. Table I summarizes.

There is indeed a lack of published experimental data when
it comes to deployments that feature application mobility.
Few experiments cover migrations over wireless networks and
we have found no publications demonstrating cross-network
application mobility in practice. Furthermore, the vocabulary
for naming the migration phases differs and there are no
standard benchmarks for application mobility.

III. SYSTEM DESCRIPTION

System architecture is based on our initial proposal, exten-
sively described in [3]. The architecture aims to fulfill require-
ments such as ability to handle application distribution and
identification, context-awareness, context quality, provision of
seamless migration, support for heterogeneous environments
and high degree of usability.

The architecture (see Figure 1) is based on the peer-to-peer
paradigm. This design results in a decentralized system, where
new devices should be easily addable while other devices
could be removed in an ad hoc manner. The architecture
also supports nodes to connect from outside the local subnet-
work, allowing application mobility between heterogeneous
networks. Context data is distributed and stored throughout
the network, making it available to all peers. This also means
that if a device hosting an application is removed from the
network, it can automatically locate a peer eligible to become
the new host for the application and migrate it accordingly.

Heterogeneity support is desirable, as is mobility. Applica-
tion mobility should be extended to a multitude of devices
and migration should be possible between different networks.
The rationale behind the architecture is that the application
should run on the device that suits the user best at any
given situation. Therefore different kinds of devices in regards
of input and output capabilities, level of mobility and other
important resources, should be addable to the system.

Our general system design differs from traditional systems
as it provides application mobility in a decentralized manner
over heterogeneous networks. We call our implementation
XAM, featuring peer-to-peer based application mobility with
heterogeneous devices and networks. The system consists
of four tiers: network infrastructure and devices, an overlay
network, a migration manager and the migratable applications.
The system was developed using Java.

To migrate an application, there has to be an available
network. The type of network does not matter, as long as it
is based on TCP/IP. WiFi (802.11), Ethernet (802.3), UMTS
and CDMA networks are all examples of networks that can
be used as underlying infrastructure. When several connection
alternatives are available, a user can be always best connected
using the best network interface in a given situation through
updating the system with the new IP address. Devices are
allocated IP addresses from the network operator and users are
identified through fully qualified domain names in the style of
user id@P2Pdomain.

We use a peer-to-peer style overlay network to create a
virtual network in which migration can take place. We have
chosen Juxtapose (JXTA) [13] as this open source protocol
supports different programming languages and allow message
exchange independent of the physical network topology.

Devices added to the system become nodes in the peer-
to-peer network via so called peer endpoints consisting of
available network interfaces. Every node is given a unique Peer
id trough the JXTA address allocation mechanism. The nodes
are then organized as a JXTA peer group, allowing them to
propagate messages throughout the cluster of nodes to which
they belong. At least one device in every subnet is given the
role of rendezvous peer, making it possible for devices outside
the network to connect to the peer group. Concretely, we use
JXTA protocols to let the nodes identify each other in the
network and send request (this is a prerequisite for finding
eligible hosts for an migratable application), retrieve infor-
mation about other nodes, create virtual communication links
between each other, and exchange messages. All protocols are
based on the XML format. The message documents are called
advertisements and give the nodes a common ”language”.
Context data is propagated through advertisements and thus
available throughout the whole network. A typical context
advertisement in our deployment consist of peer id, informa-
tion about whether or not the device is hosting a migratable
application, user preferences, system status (e.g. battery level,
memory and CPU load), input and output capabilities etc.

A middleware orchestrating migrations is installed on each
potential host device. This middleware is a further develop-
ment of the A2M migration manager [8], an open source mid-
dleware for application mobility. The middleware is responsi-
ble for listening to incoming migration requests and provides
a GUI for the user to manage applications, save states, review
system status and request to retrieve or store an application.
The migration sequence is carried out in the following steps:
1) Migration initialization. Migration can be initiated either
through push (the user wants to send the application to another

The 7th IEEE LCN Workshop On User MObility and VEhicular Networks (ON-MOVE 2013)

151

TABLE I
EXISTING EVALUATIONS OF SYSTEMS SUPPORTING APPLICATION MOBILITY

System Network properties Mobility Delivered Application Size Migration Latency
Unnamed [11] Centralized, Single subnet (WLAN) Partial 37 kB 8470–22290 ms
MDAgent [7] Centralized, Single subnet (Ethernet) Partial No byte size specified 1000 ms
MDAgent [12] Centralized, Single subnet (Ethernet) Full 32 kB 450–1529 ms
A2M [8] Decentralized, Single subnet (Ethernet and WLAN) Full 2.4 MB 5879–13481 ms
A2M [3] Decentralized, Single subnet (Ethernet and WLAN) Full 2 MB 4000-11000 ms
MSP [5] Centralized, Single subnet (95 Mbit/s emulator) Full Simulated link delay (0-500 ms) 1000-24000 ms

device) or pull (a user wants to fetch an application). The
latter method can be invoked through the GUI or by using
an RFID key ring to inform the system that the user has
switched device. The following steps will assume migration
initialization through pull; 2) Application search. The peer
uses the Discovery protocol to find an application Host.
Application advertisements containing information about the
application and its requirements are collected; 3) Evaluation of
host eligibility. The application requirements from the received
advertisement are compared with the capabilities of the device.
If the rules are passed, the device is considered a eligible
host; 4) Migration setup. A socket is created to allow the
migration of the application from the original host to the new
device. The Pipe Binding Protocol is used to create a unicast
communication channel between the two devices. When the
host device receives the socket request it also suspends the
application and saves its states; 5) Application migration.
The application is moved from one device to another along
with its states. The states are stored in an external XML-file.
This phase lasts until the last ACK is sent and the files are
completely written to the new disc; 6) Socket closure. The
JXTA pipe used for migration is closed; 7) Post-migration
Context advertising. Context advertisements are propagated
to inform the peers of the new host roles; 8) Application
resumption. States are initialized and the GUI is updated.

For our experiments, we developed a simple gaming appli-
cation allowing two users to play a game of Battleships online.
The default size of the application is 1340 kB while the states
(current ship positions, player name, user preferences etc) are
stored in a 2 kB XML document.

IV. EXPERIMENTS, RESULTS AND DISCUSSION

We used three different test beds to evaluate the XAM
system. The first experiment consisted of a migration between
two laptops (equipped with Intel Core Duo 2 2.26 Ghz CPU,
2 GB RAM and Windows 7 Pro) connected to the peer
group through the same WiFi network. The second experiment
involved the same two laptops, but the new host was connected
to the peer group via a CDMA2000 interface, using one of
the WiFi connected laptops as a rendezvous peer. The third
experiment had the same setup, but the new host device then
consisted of a mini PC (equipped with an Intel Atom 1.6
Ghz CPU, 2 GB RAM and Vista Home Premium). In all
experiments, an ongoing game of Battleships was played out
between the initial host and another user (Laptop 1), and
then resumed after migration to the new host device. Table
II summarizes the network properties.

TABLE II
NETWORK THROUGHPUT (MEAN VALUES)

Test bed Network Downlink Uplink Delay
Test bed 1 WiFi (802.11g) 13.38 Mbit/s 15.22 Mbit/s 24 ms
Test bed 2 WiFi (802.11g) 12.51 Mbit/s 15.23 Mbit/s 26 ms

CDMA2000 0.28 Mbit/s 0.27 Mbit/s 117 ms
Test bed 3 WiFi (802.11g) 13.01 Mbit/s 16.19 Mbit/s 16 ms

CDMA2000 0.48 Mbit/s 0.19 Mbit/s 129 ms

TABLE III
TEST RESULTS (MEAN VALUES)

Test bed Susp. Migration Resum. CM/CA Total latency
Test bed 1 31 ms 6773 ms 213 ms 3671 ms 10689 ms
Test bed 2 34 ms 68386 ms 228 ms 6783 ms 75430 ms
Test bed 3 38 ms 57519 ms 692 ms 6183 ms 64432 ms

In our measurements of migration latency, the following
definitions were used: Suspension: The time it takes to store
application states. This is performed on the original host in
parallel with Migration setup; Migration: The time it takes to
open a socket between the host device and the host to-be plus
the time it takes to migrate the application and its states plus
the time it takes to close the socket; Resumption: The time it
takes to load the application states and update the GUI on the
new host; Context Management/Context-awareness: The time
it takes to find and evaluate the eligibility of the potential
host device and update the system with the context changes.
Context propagation involves both pre- and post-migration
context advertisements and calculations.

When migrating over a local network (test bed 1, see
Figure 2) the total migration latency was approximately 10
seconds in average. 3500 ms was due to Context-awareness
features. Note that the Migration bar in Figure 2 contains
three sections; these correspond to migration setup (blue),
application migration (red) and socket closure (green). Also,
the Context management/Context-awareness (CA) bar contains
two sections, which correspond to pre- (blue) and post-
migration (red) context advertisements and calculations. Test
beds 2 and 3 included a secondary network, with cellular
technology. Migration time was considerably higher in these
test rounds due to the low bandwidth.

The XAM system provides full application mobility, i.e. the
migration of application code, states and related information
during execution. Through our decentralized architecture, we
achieve a lower degree of network dependency compared
to centralized systems (e.g. [5] and [9]) and also simplify
addition and removal of new nodes. The vulnerability to the

The 7th IEEE LCN Workshop On User MObility and VEhicular Networks (ON-MOVE 2013)

152

Fig. 2. Total Migration Latency (ms), Test bed 1

loss (or removal) of key nodes decreases as context data is
distributed throughout the network. For application mobility
to be useful outside the laboratory setting, it must support
heterogeneous devices and networks. As these networks can
be controlled by different network providers and have different
configurations and limitations, our architectural proposal was
created with a real world setting in mind, not restricting its
deployment to a laboratory, LAN or other user controlled
network infrastructure. Thus XAM differs from all related
work presented in Section II. Architectures and deployments
such as [5], [7], [8], [9], [11], and [12] are all application
mobility approaches, not designed for and/or not evaluated
using heterogeneous networks with different service providers.

During experiment setup, it was obvious that the tradi-
tional suspension-migration-resumption phases did not cover
all the operations needed to perform application migration in
a context-aware, cross-network scope. As no benchmarks for
application mobility exist, we believe it is crucial to break
down the different steps in the migration process to ensure
validity. We propose that the definitions presented in the
previous section should serve as guidelines on how to declare
measurements of migration latency.

We use three different sources of input to inform application
migration: device context (e.g. input/output capabilities and
system resources), user context (e.g location and preferred
host device) and application context (requirements etc.). In a
larger setting, context could include more values but also more
parameters. As the XAM context-awareness motor is fairly
simple, we believe that heavier calculations should be left to
a standalone module, entirely dedicated to context awareness.
The peer-to-peer network could still be used for propagation,
but to minimize migration latency, calculations and context
compilation should be handled by a Context Manager, e.g. a
middleware communicating with the Migration Manager.

Migration times within a single network are acceptable
when comparing them to the system performance expected
by the user. Cross-network measurements however show that
network quality is a major factor when it comes to migration
latency. A network offering low bandwidth inevitably results
in long migration times. User studies should be conducted to
examine the acceptance of latency when migrating between
different networks. Our hypothesis is that user tolerance of
migration latency increases in settings outside a local network.

V. CONCLUSION

In this paper, we presented a decentralized system for
application mobility, supporting heterogeneous devices and
networks, thus differing from traditional centralized applica-
tion mobility systems deployed in single subnets. A prototype
was designed and evaluated. System performance was com-
pared with recognized requirements for application mobility,
showing the viability of both the concept and our chosen
architecture. Additional outcomes of our experiments were
that the traditional migration phases of suspension-migration-
resumption proved to be insufficient to describe the migration
process. We also discussed major challenges and possibilities
for the continuing evolution of systems supporting application
mobility. Future work should target these areas.

ACKNOWLEDGMENT

This work was supported by the NIMO project (see
www.nimoproject.org), funded by EU Interreg IVA North.

REFERENCES

[1] K. A. Bharat and L. Cardelli, “Migratory applications,” in Proceedings
of the 8th annual ACM symposium on User interface and software
technology, UIST ’95, (New York, NY, USA), pp. 132–142, ACM, 1995.

[2] P. Yu, X. Ma, J. Cao, and J. Lu, “Application mobility in pervasive
computing: A survey,” Pervasive and Mobile Computing, vol. 9, no. 1,
pp. 2–17, 2013.

[3] D. Johansson, A. Åhlund, and C. Åhlund, “A mip-p2p based architecture
for application mobility,” in Proceedings of the 10th International
Conference on Mobile and Ubiquitous Multimedia, MUM ’11, (New
York, NY, USA), pp. 85–93, ACM, 2011.

[4] I. Satoh, “Self-deployment of distributed applications,” in Scientific
Engineering of Distributed Java Applications (N. Guelfi, G. Reggio, and
A. Romanovsky, eds.), vol. 3409 of Lecture Notes in Computer Science,
pp. 48–57, Springer Berlin / Heidelberg, 2005.

[5] K. Hojgaard-Hansen, H. C. Nguyen, and H. Schwefel, “Session mobility
solution for client-based application migration scenarios,” in Proceed-
ings of the Eighth International Conference on Wireless On-Demand
Network Systems and Services, WONS, pp. 76–83, jan 2011.

[6] D. Johansson and M. Wiberg, “Conceptually advancing ”application
mobility” towards design: Applying a concept-driven approach to the
design of mobile it for home care service groups,” International Journal
of Ambient Computing and Intelligence, vol. 4, pp. 20–32, jul 2012.

[7] Y. Zhou, J. Cao, V. Raychoudhury, J. Siebert, and J. Lu, “A middleware
support for agent-based application mobility in pervasive environments,”
in Proceedings of the 32nd International Conference on Distributed
Computing Systems Workshops, (Los Alamitos, CA, USA), p. 9, IEEE
Computer Society, 2007.

[8] A. Åhlund, K. Mitra, D. Johansson, C. Åhlund, and A. Zaslavsky,
“Context-aware application mobility support in pervasive computing
environments,” in Proceedings of the 6th International Conference on
Mobile Technology, Applications & Systems, Mobility ’09, (New York,
NY, USA), pp. 21:1–21:4, ACM, 2009.

[9] A. Ranganathan, C. Shankar, and R. Campbell, “Application polymor-
phism for autonomic ubiquitous computing,” Multiagent Grid Syst.,
vol. 1, pp. 109–129, Apr. 2005.

[10] J. F. Koegel Buford, H. H. Yu, and E. K. Lua, P2P networking and
applications. Amsterdam: Elsevier/Morgan Kaufmann, 2009.

[11] K. Zhang and S. Pande, “Minimizing downtime in seamless migra-
tions of mobile applications,” in Proceedings of the 2006 ACM SIG-
PLAN/SIGBED conference on Language, compilers, and tool support
for embedded systems, LCTES ’06, (New York, NY, USA), pp. 12–21,
ACM, 2006.

[12] P. Yu, J. Cao, W. Wen, and J. Lu, “Mobile agent enabled application
mobility for pervasive computing,” in Proceedings of the Third interna-
tional conference on Ubiquitous Intelligence and Computing, UIC’06,
(Berlin, Heidelberg), pp. 648–657, Springer-Verlag, 2006.

[13] Project Kenai, “Jxta. the language and platform independent protocol
for p2p networking,” nov 2011.

The 7th IEEE LCN Workshop On User MObility and VEhicular Networks (ON-MOVE 2013)

153

