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Abstract—To achieve high system efficiency with increasing
speeds, recent WiFi standards, such as IEEE 802.11e/n, allow
burst transmissions with block acknowledgements, provided the
initial packet is successfully received. Consequently, a user can
sometimes improve its throughput by sending the initial packet
at a lower rate than other users. We model such a system as
a game. Our results show that the socially optimal strategy is
to send the initial packet at a lower rate than the rest of the
burst. Such a strategy results in a better Nash Equilibrium than
using the same rate for the entire burst. Moreover, we show
that using the rate that maximizes the per-packet throughput, as
commonly done, can result in performance that is far from the
social optimum.

I. INTRODUCTION

IEEE 802.11 wireless standards allow users to adapt to

channel conditions by selecting either high, error-prone bit

rates, or low, reliable bitrates. Since using a lower rate causes

a delay to all stations but benefits only the sending station,

nodes’ incentives are not aligned and a game ensues: If stations

send a single packet after successfully contending for the

channel, then their optimal strategy is to transmit at a rate

lower than socially optimal [1].

It was also shown in [1] that this mismatch disappears

when stations can send multiple packets per contention, as

allowed in 802.11e, provided that the duration for which a

station can transmit per channel access is independent of its

bit rate. However, as explained in Section III, if a channel

error corrupts the first packet in a burst then the standards say

the remainder of the burst is not transmitted. Consequently, a

game remains.

In particular, the initial packet is different from the other

packets in a burst since its successful transmission determines

the transmission of the rest of the burst. Therefore, sending it

at the “myopic” rate that maximizes the per-packet throughput

[2], [3] may not necessarily optimize overall throughput.

Hence, a station can use a lower rate for the initial packet to

increase the probability of a burst transmission, as lower rates

are more robust to channel losses. However, this can adversely

affect the throughput achieved by other stations. In this paper,

we ask, “Should the first packet be allowed to be sent at

a different rate from the rest of the burst?”. Ideally, users

should use rates that maximize the system throughput, called

the Social Optimum (SO). However, a system with selfish users

often operates at the Nash Equilibrium (NE): a configuration

where users have no incentive to change unilaterally [4],

[5]. Therefore, mechanisms should be in place to achieve a

desirable NE. To this end, we study two rate policies: uniform

(U ) in which users must use the same rate for the entire burst,

and independent (I) in which users can use different rates for

the initial packet and the rest of the burst.

In this paper, we propose a game-theoretic model to in-

vestigate the properties of the rate game in which users are

allowed to send the initial packet with a different rate from the

remaining packets in a burst. Our numerical results show that

the social optimum strategy under both policies is to send the

first packet at a lower rate than the myopic rate, the commonly

used rate in practice [2], [3], and users can obtain significant

throughput gains by doing so. The social optimum and NE

under I are always better than those under U . Moreover,

performance at the NE under I can even exceed the social

optimum under U and the converse was not observed. This

suggests that the first packet should be allowed to be sent at

a different rate from the rest of the burst.

The rest of the paper is organized as follows. First, a brief

description of the IEEE 802.11 protocol and game theory is

provided in Section II. Then, we present a game theoretic

model of the rate game in Section III, followed by Section IV

which describes how the Nash equilibrium of the rate game

is determined from the proposed model. Numerical results are

provided in Section V. Finally, we offer concluding remarks

in Section VI.

II. BACKGROUND

Here we will first briefly describe the Distributed Coordina-

tion Function (DCF) channel access mechanism with TXOP

limit and block acknowledgement defined in the IEEE 802.11

standard [6]. Note that TXOP limit allows multiple packets

to be transmitted per channel access. Then, we will provide

some background about game theory.

A. 802.11 DCF

The DCF channel access mechanism enables users to

contend for the common wireless channel using a carrier

sense multiple access mechanism with collision avoidance

(CSMA/CA). To reduce collisions, it employs both sensing
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of the channel to detect channel activity and truncated binary

exponential backoff (BEB) to randomize the start times of

packet transmissions. When a packet arrives to an idle source,

the source senses the channel for a period DIFS. If it is idle

during this whole time, the packet is transmitted immediately.

Otherwise, the source waits until the channel is continuously

idle for DIFS, and then starts a backoff process. A backoff

counter is initialized to a random integer uniformly distributed

between 0 and (CW-1), where CW is the current contention

window. For each new transmission, CW is initialized to

CWmin and doubles after each unsuccessful transmission

until it reaches CWmax, after which it remains constant until

the packet is either successfully received or a retry limit is

exceeded. The backoff counter is decreased by one at every

idle slot time and frozen during periods of channel activity.

When the backoff counter reaches zero, the source is allowed

to transmit for a TXOP limit period of time, which may

allow one or more packets to be transmitted. When a burst

of multiple packets is sent per TXOP limit, we consider the

scheme where an acknowledgment (ACK) is sent back from

the receiver after a Short Inter-Frame Space (SIFS) for the

first packet and the subsequent packets will be acknowledged

in a block ACK frame after a Block ACK Request from

the source. If an ACK is not received, the source increases

CW as described above, and attempts again until the retry

limit is reached. After receiving an ACK for a single-packet

burst or a block ACK for a multiple-packet burst, the source

performs a ”post-backoff” process with contention window

CWmin before being allowed to restart the above procedure.

This prevents back-to-back packet transmission.

B. Game theory

Game theory is a collection of analytical tools designed

to help us understand the phenomena that we observe when

decision-makers interact [4]. More specifically, it provides a

mathematical basis for the analysis of interactive decision-

making processes.

A non-cooperative game usually consists of the following

three components [4], [7], [8], [9]:

• a finite set of players,

• a set of possible actions for each player, and

• a payoff function for each player.

Players: These are the decision makers in the modeled

scenario. In the wireless scenario, players are usually the nodes

of the network.

Actions: An action is the “move” (or decision) a player

makes. In the wireless scenario, actions can be transmission

rates, backoff time or transmit power level [4].

Payoffs: For each strategy profile, each player receives a

payoff, which represents the value of the outcome to the user.

In particular, a payoff is a number assigned to each possible

outcome through a utility function. A higher payoff represents

a more desirable outcome [4]. In the wireless scenario, energy

saving and throughput are some examples of players’ payoff.

Nash Equilibrium: One of the goals of game theory is

to predict what will happen when a game is played. The

most common prediction of what will happen is called an

“equilibrium”. The most well-known equilibrium concept in

game theory is the “Nash equilibrium” [4]. Recall that a Nash

equilibrium is an action profile at which no player has any

incentive for unilateral deviation.

Price of Anarchy (POA): This is defined as the ratio of

throughput at the social optimum to that at the worst-case Nash

Equilibrium.

III. RATE GAME MODEL

In this section, we first describe the structure of the game

and then present the users’ utility functions.

It will be shown in Section III-A that users need only decide

the bit rate of the first packet in each burst, since, given the

rate at which the first packet in a burst is sent, the optimal

rate for the remaining packets is determined.

We define a rate game G as a triple (Ψ, Ai, Si) where

Ψ = {1, 2, . . . , N} is the set of users, the action set Ai ⊆
[Rmin, Rmax] is the set of rates at which user i can send its

first packet, and the payoff Si(Rf,i, Rf,−i) is the throughput

user i achieves when it uses rate Rf,i and others use rates

denoted by a vector Rf,−i, as calculated in the remaining

part of this section. Note that the bitrate a user selects will

determine the packet error rate, which is usually an increasing

function of the bitrate1 [3], [10], [11], [12].

A. Payoff function

As mentioned above, the payoff in the rate game is the

throughput a user achieves. As in [13], in the context of

802.11e WLANs, the throughput of user u, Su, is

Su =
buE[Du]

E[Y ]
(1)

where bu is the probability of a burst transmission in a given

slot, E[Du] is the average number of bits delivered in a burst,

and E[Y ] is the average slot duration. These are given by (4),

(5) and (9) in the following model of 802.11.

B. 802.11 model

To describe the model, we first summarize notation and as-

sumptions. Then, we present the fixed point equations central

to this model. Finally, we calculate the components of Su as

shown in (1).

We assume stations are saturated, symmetric and use block

ACKs [14]. (Note that it is straightforward to modify the

model to take into account asymmetric stations. We speculate

in this case that the qualitative properties will carry over

but the quantitative ones will be different. However, the

investigation of this is out of scope of this paper.)

We assume control packets such as ACKs are not lost

due to channel errors2, and a fractional number of packets

1In 802.11a/b/g, the packet error rate increases monotonically with the
bitrate [10], [11]. However, this is not the case in WLAN standards, such as
802.11n and 802.11ac, that provide MIMO functionality and support spatial
multiplexing and spatial diversity modes. While packet error rate increases
monotonically with the bitrate within each mode, it does not across these
modes [12].

2Note that ACKs are generally sent at a lower bitrate than data packets and
thus the latter has a lower chance of getting lost due to channel error [15].
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can be transmitted in a burst so that stations use the entire

transmission opportunity (TXOP) duration, Tb, similar to [14].

A station i tries to obtain a TXOP at the beginning of an

arbitrary slot with probability τi [15]. With this probability, it

sends a packet at rate Rf bps, and awaits an ACK.

If an ACK is received, the station sends Bu packets for

the remaining time in TXOP at a rate Rr bps: under U ,

Rr = Rf , whereas under I , Rr is equal to the “myopic” rate

that maximizes the per-packet throughput, given by RM =
argmaxR

1−Pe(R)
Lu/R+K+Z where Lu is the packet size, K is the

physical layer overhead, G is an inter-frame gap, and Pe(R) is

the probability that a packet sent at rate R bps gets corrupted

due to a channel error.

Stations do not back off when packets are lost after the

initial ACK is received. This is modeled in (2), which shows

that the collision probability of a user i depends on the packet

error rate of only the first packet.

Stations can send the initial packet at different rates. For the

first packet, station i uses a bit rate Rf,i bps and the remaining

N − 1 stations use bit rates denoted by a vector Rf,−i. The

backoff process is modeled as in [13]. Since the first packet

can be lost due to a collision or an error, the transmission

failure probabilities Fi and F−i for the ith and each of the

other N − 1 stations, respectively, are given by

Fi = 1−
∏

j 6=i

(1− τj)
(

1− Pe(Rf,i)
)

(2)

From [13], the attempt probability τu is

τu =
2

1 + CW + FuCW
∑m−1

j=0 (2Fu)j
(3)

where CW is the minimum contention window size, m is

the maximum number of time a station doubles its contention

window after a collision, and u ∈ {1, . . . , N}.

Solving the fixed point of (2) and (3) gives τu, Fi, and F−i.

All terms in (1) can now be determined. The probability user

u transmits a full burst is

bu = τu(1− Fu). (4)

The average number of bits sent in a burst is

E[Du] = Lu(1 +Bu(1− Pe(Rr))). (5)

where Bu solves Tb = Bu(Lr/Rr +K + Z) + Lf,u/Rf,u +
Tack+Tbar+Tba+DIFS+3SIFS, and Tack, Tbar, Tba, DIFS

and SIFS are the transmission time of an ACK frame, a Block

ACK Request frame, a Block ACK frame, Distributed Inter-

Frame Space, and Short Inter-Frame Space, respectively.

Substituting (4) and (5) into (1) gives

Si =
τi(1− Fi)

(

1 + (H2 − Lf/Rf,i)H3

)

E[Y ]
(6)

where H2 and H3 are given by

H2 = Tb − (Tack + Tbar + Tba + DIFS + 3 SIFS) (7)

H3 =
(1− Pe(Rr))

Lr/Rr +K + Z
(8)

To find the average slot duration E[Y ], let σ be the

duration of an idle slot, which occurs with probability

Pidle =
∏N

k=1(1− τk).
Without loss of generality, players are indexed in non-

increasing order of the first packet’s duration. That is, Ti ≥ Tj

for i < j.

Define

ci =τi

(

∏

j 6=i

(1− τj)Pe(Rf,i)

+
(

1−

N
∏

k=i+1

(1− τk)
)

i−1
∏

j=1

(1− τj)

)

to be the probability of a collision/corruption involving only

station i and/or stations j > i. This has duration

Tc,i = Lf,i/Rf,i +K + EIFS

Note that σ < Tc,i < Tb. Then

E[Y ] = Pidleσ + Tb(
N
∑

i=1

bi) +
N
∑

i=1

ciTc,i. (9)

Note that the above model is related to the one presented in

[14], but the latter does not account for scenarios in which

stations can use different bitrates for the first packet and

experience different packet error rates.

In summary, the proposed model allows the payoff Si of a

user i to be obtained given a rate vector (Rf,i, Rf,−i). In the

next section, we will present how the Nash equilibrium of the

rate game can be determined.

IV. NASH EQUILIBRIA SEARCH

In general, Nash equilibria of the rate game can be found by

discretizing the rate space and then performing an exhaustive

search on the discrete space to find the best response of every

user at different strategy profiles of other users. Then, the Nash

equilibria are the strategy profile in which the strategy of every

user is its best response.

However, this method is computationally expensive, espe-

cially for large number of players. In the remainder of this

section, we will show that the payoff function of the rate game

is unimodal. By leveraging this property, the best response can

be found more efficiently by using the golden section search

[16] for continuous rate space or lattice search for discrete rate

space.

Unimodal payoff function

Our numerical results, an example of which is shown in

Fig. 1, show that the payoff of a given user i as a function of its

first packet’s rate Rf,i is unimodal in the interval [Rmin, R
0]

where R0 is the minimum rate at which Pe(R) = 1.

The unimodal property of the payoff function is analytically

shown for the non-atomic rate game presented as follows.
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Fig. 1: Throughput of user 1 under the policy I as a function of

the rate of its first packet (Rf,1), at different rates used by the

remaining users (Rf,−1 = {Rf,2, Rf,3}). (N = 3, Lr = Lf =
800B, Ai = set of data rates in 802.11n ∈ [15, 600]Mbps,

Tb = 0.5ms, Pe(R) = min(1, A(eB·R−1)+C) with A = 0.1,

B = 1.1/(A.Rmax), Rmax = 600Mbps and C = 1%.)

1) Non-atomic rate game: Here we consider the non-

atomic rate game, which is the rate game in which the number

of players is large enough so that the single player has no

influence on the outcome of the game but the aggregate

behavior of a large set of players can change the outcome

[17].

Besides, we also consider symmetric game, which is the

game where players have the same action space, payoff

function and packet error probability function.

Then, the non-atomic rate game G has the set of players Ψ
being the unit interval [0, 1] endowed with Lebesgue measure

[17] and the payoff function (1) determined from the following

fixed point model of failure probability and attempt probabil-

ity. Moreover, for tractability, we consider the asymptotic case

where retry limit m is infinite.

The failure probability (2) can be rewritten as follows.

Fi = 1−G(τ )(1− Pe(Rf,i)), ∀i ∈ Ψ (10)

where G(τ ) is a decreasing function of τ = (τj)j∈Ψ, which

represents the probability that no other stations transmit in a

given slot. Here we assume that for any set i of Lebesgue

measure 0, G(τ ) = G(τi; τ−i) is independent of τi.
The packet corruption probability at bitrate R is

Pe(R) = min(1, h(R)). (11)

Besides, the attempt probability is given by

τi =







2

CW

1− 2Fi

1− Fi
Fi < 1/2

0 Fi ≥ 1/2
(12)

which approximates (3) at m = ∞.

2) Payoff function in non-atomic rate game: The following

theorem, proved in Appendix A, states that for the non-atomic

rate game presented above, the payoff function is unimodal.

Theorem 1: Under the wireless model (6), (10), (11) with

h(R) being a convex function and (12), the payoff function Si

of each player in the non-atomic rate game under the policy

I is unimodal.

Based on the numerical results in Figure 1 for the atomic

game, and the above theorem for the non-atomic game, we

conjecture that the payoff function for the atomic game is also

unimodal. In light of that conjecture, the numerical results in

the following section use a golden section search to find the

Nash equilibrium.

V. NUMERICAL RESULTS

In this section, we will use the analytical model proposed

in Section III to investigate system performance. In particular,

we are interested in three performance measures: the price of

anarchy, the gain given by the ratio of the throughput at SO

to that at the myopic rate, and the bitrate of the first packet.

Note that a rate vector Rf is a Nash equilibrium of G if for a

user i

Si(Rf,i, Rf,−i) ≥ Si(R
′
f,i, Rf,−i), ∀R′

f,i ∈ Ai, (13)

or a social optimum if it maximizes the system throughput:

SO = maxRf

∑N
i=1 Si(Rf,i, Rf,−i).

Given a maximum bitrate Rmax, we consider the

set of rates Ai=
Rmax

100 {1, 2, . . . , 100}Mbps, ∀i∈Ψ, where

Rmax∈{11, 54, 250, 600, 1000, 2500, 7000}Mbps. The mini-

mum and maximum values of Rmax are based on the 802.11b

and 802.11ad standards that support maximum bitrates of

11 Mbps and 7 Gbps, respectively [18]. We also consider cases

in which Ai is the exact set of rates in the standards. We

evaluate the model when the packet corruption probability at

bitrate R is

Pe(R) = min(1, A(eB·R − 1) + C) (14)

where A = 0.1, B = ln(1.1/A)/Rmax, and C ∈ {1%, 50%}
as such error functions are frequently observed in practice [3].

Note that this error function generalizes the one used in [19].

We assume that packets can be fragmented to fit in a burst.

We present results for both the U and I policies.

Adapting TXOP with the Bitrate: As the maximum bitrate

supported by a system increases, users expect improvement in

delay. Consequently, we decrease TXOP with the maximum

bitrate Rmax as

T (Rmax) =
Ti

(K ·Rmax)3/4
,

where Ti=10 ms is the TXOP used at 11 Mbps (which allows

one packet transmission at the lowest bitrate of 1 Mbps)

and K=1/ (11 Mbps) is a scaling factor. With this adaptation,

TXOP decreases at a slower rate than the increase rate

in bitrate. This ensures that system efficiency continues to
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improve as bitrates increase while reducing delay. Of course,

we could improve the efficiency further at the cost of added

delay.

A. Gain, POA, and Rate

Figure 2 shows the gain, POA, and the normalized rate (i.e.

rate divided by the corresponding maximum rate) of the initial

packet for C=1% at N = 2. Observe that under the policy I ,

throughput gains are 11%, 17%, and 53% when the maximum

bitrate is 600 Mbps, 1 Gbps and 7 Gbps, respectively. These

rates correspond to the 802.11n, 802.11ac, and 802.11ad

standards [18]. On more lossy links (e.g. when C=50%), gains

increase faster and are 43%, 57%, and 95%, respectively.

The gains improve because as we increase the bitrate, con-

tention becomes more expensive leading to a higher penalty

of losing a burst. The policy I adjusts by using a lower rate

for the initial packet while continuing to use the myopic rate

for the rest. With the policy U , since all packets use the same

rate, users have less flexibility as lowering the rate for the

first packet lowers the rate for the rest of the burst, which can

degrade throughput. Consequently, users end up using a higher

rates for the initial packet (and for the rest) and experience

more losses. This leads to lower throughput compared to the

policy I at the SO as well as at the NE. The gains are more

at higher loss rates (e.g., when all rates experience at least

50% loss rate, as sometimes occurs in practice [3]) because

successive packet losses lead to exponential backoffs, which

increases the penalty of losing a burst further. Note that when

the exact rates specified by the standards are used, we get

similar results.

The POA generally remains less than 1.1 except when exact

rates are used. With exact rates (as specified in the standards),

the separation between rates is no longer uniform, which

can either increase or decrease the POA. For instance, when

C = 1% and the maximum bitrate is 11 Mbps, POA under

the policy I is 1.34, which is much higher than with uniform

rates. However, when C = 50%, POA under the policy I is

smaller with exact rates (see Figure 2).

Note that the same qualitative phenomena are observed in

Figure 3 for higher number of users (e.g. N = 3).

Besides, Figure 4 shows the gain and POA for C=1% and

C = 50% as a function of the number of stations N . As can be

seen, when the number of stations increase, the gain decreases

and POA increases for both policies U and I . Besides, the gain

of the policy I is higher than that of the policy U while the

POA of the policy I is smaller than that of the policy U for

C = 1%. This shows the advantages of the policy I over the

policy U .

B. Ordering of Rates and Throughput

From our results, we observe the following properties about

the ordering of rates and throughput under different policies

for uniform rate set.

We first define RX,Y as the rate at the operating point X ∈
{SO,NE} under the policy Y ∈ {U, I}. Also recall that RM

is the myopic rate. Besides, let SX,Y be the system throughput

at X under policy Y and SM is the system throughput at the

myopic rate.

The first observation is described as follows.

RSO,I < RSO,U < RM ,

SSO,I > SSO,U > SM .

The rate ordering above is intuitive because RM does not

take into account the successful transmission probability of the

subsequent packets in a burst while both RSO,U and RSO,I

consider this. Therefore, RM is the highest among three rates

and SM is the smallest. Moreover, different from the policy

U , the policy I allows independence between the rate of the

first packet and that of subsequent packets; therefore, RSO,I is

smaller than RSO,U to obtain higher chance of a whole burst

transmission while still guaranteeing SSO,I > SSO,U due to

having subsequent packets to be sent with higher rate.

Another observation is about the relation between the NE

of the policy I and that of the policy U as shown below.

RNE,I < RNE,U ,

SNE,I > SNE,U .

In a game, rational players try to reduce the rate of the first

packet to obtain higher chance to access channel; however,

the rate should not be too low to affect the throughput of

subsequent packets. Under the policy I , the fact that the rate

of the first packet is independent of the rate of the subsequent

packets allows stations to reduce the rate of the first packet to

a smaller value than under the policy U . The higher chance

of channel access as a result of lower rate of the first packet,

together with using a higher rate for the subsequent packets,

the throughput SNE,I under the policy I at the NE is higher.

The third observation is about the relation between the SO

and the NE of the same policy, given by

RSO,Y > RNE,Y ,

SSO,Y > SNE,Y .

Different from the first two observations where the rate order-

ing is reverse of throughput ordering, the rate and throughput

ordering are the same in this observation. The lower rate at

NE comes from the incentive of rational players to choose a

lower rate to gain higher channel access. This leads to the

reduction in the remaining time for subsequent packets and

longer collision duration, which causes inefficiency and hence

makes throughput less.

Noticeably, we also observe that the throughput at the NE

under I can be higher than at the SO under U .

We expect that the above ordering holds generally when

users have symmetric channel conditions, but the formal proof

remains an open problem.

VI. CONCLUSION

In this paper, we developed a game model to study the rate

at which the first packet should be sent when nodes employ

burst transmissions with block acknowledgments. Our results

show that stations should be allowed to send the first packet
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Fig. 2: Gain, POA, and the normalized rate (i.e. rate divided by the corresponding maximum rate) of the first packet under

both policies U and I as a function of the maximum bitrate. The filled shapes correspond to cases when the exact set of rates

specified in the 802.11b/g/n standards are used. (N = 2, Lr = Lf = 1000B.)

at different rate from the rest of the burst as this results in a

better Nash Equilibrium than otherwise. Moreover, we show

that rates that maximize the per-packet throughput can result

in performance that is far from the social optimum. Since

these are commonly used by rate adaptation algorithms, it

would be useful to design mechanisms to achieve the social

optimum. Furthermore, the analysis in this paper can be

extended to study the effect of quantization error in the number

of packets per burst and the change in network performance

with asymmetric users.

APPENDIX A

PROOF OF THEOREM 1

Proof: In the following, we will prove that Si as a

function of Rf,i is unimodal before staying constant at 0 at

high rate.

Note that a function f(x) is a unimodal function on the in-

terval [a, b] if for some value m, it is monotonically increasing

for a ≤ x ≤ m and monotonically decreasing for b ≥ x ≥ m.
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Fig. 3: Gain, POA, and the normalized rate (i.e. rate divided by the corresponding maximum rate) of the first packet under

both policies U and I as a function of the maximum bitrate. The filled shapes correspond to cases when the exact set of rates

specified in the 802.11b/g/n standards are used. (N = 3, Lr = Lf = 1000B.)

Substituting (12) into (6) gives

Si =











τi(1− Fi)
(

1 + (H2 − Lf/Rf,i)H3

)

E[Y ]
Fi < 1/2

0 Fi ≥ 1/2
(15)

Because Fi is a non-decreasing function of Rf,i, there exists a

rate R0
f,i at which Fi = 1/2 such that Si = 0 for Rf,i ≥ R0

f,i.

We will now show that Si as a function of Rf,i is unimodal

on the interval [Rmin, R
0
f,i]. This is equivalent to showing

that Ci = ln(Si) is a strictly concave function for Rf,i ∈

[Rmin, R
0
f,i]. We prove this by showing that dCi

dRf,i
is a strictly

decreasing function of Rf,i, which is shown as follows.

From (15), we have

Ci = ln(τi(1− Fi)) + ln(1 + (H2 − Lf/Rf,i)H3)− ln(E[Y ])
(16)

which is also given by

Ci = ln(
2

CW
(1− 2Fi)) + ln(1 + (H2 − Lf/Rf,i)H3)

− ln(E[Y ]) (17)

due to τi(1− Fi) =
2

CW (1− 2Fi) from (12).
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Fig. 4: Gain and POA under both policies U and I as a function of the number of stations N . (Rmax = 1Gbps, Lr = Lf =
1000B, Tb = 0.34ms.)

Note that here we consider non-atomic games; hence, E[Y ]
does not change when Rf,i changes. Besides, H2 and H3 are

also constants. Then, taking derivative of (17) gives

dCi

dRf,i
=

−2 dFi

dRf,i

1− 2Fi
+

LfH3(1/R
2
f,i)

1 + (H2 − Lf/Rf,i)H3
(18)

The first term of (18) is a decreasing function of Rf,i

because from (10),

• Fi is an increasing function of Rf,i due to Pe(Rf,i)
increasing with Rf,i.

•
dFi

dRf,i
is also an increasing function of Rf,i. This is

because dFi

dRf,i
=

dPe(Rf,i)
dRf,i

increases with Rf,i, which

comes from the hypothesis that Pe(Rf,i) is a convex

function of Rf,i.

Moreover, it is clear that the second term of (18) is a strictly

decreasing function of Rf,i.

Therefore, it can be concluded that for Rf,i ∈ [Rmin, R
0
f,i],

dCi

dRf,i
is a strictly decreasing function of Rf,i, which means

that Ci is a strictly concave function of Rf,i. This implies that

Si is a unimodal function.
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