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Abstract—For more than 40 years, Earth observation satellites
have been regularly providing images of glaciers that can be used
to derive surface displacement fields and study their dynamics. In
the context of global warming, the analysis of Displacement Field
Time Series (DFTS) can provide useful information. Efficient
data mining techniques are thus required to extract meaningful
displacement evolutions from such large and complex datasets. In
this paper, a pattern-based data mining approach which handles
confidence measures is proposed for analyzing DFTS. In order
to focus on the most reliable measurements, a displacement
evolution reliability measure is defined. It is aimed at assessing
the quality of each evolution and pruning the search space.
Experiments on two different DFTS (annual displacement fields
derived from optical data over Greenland ice sheet and 11-day
displacement fields derived from SAR data over Alpine glaciers)
show the potential of the proposed approach.

Index Terms—Satellite image time series (SITS), displacement
field time series (DFTS), confidence measure, data mining, glacier
dynamics, climate change.

I. INTRODUCTION

Studying glacier dynamics is of primary interest to assess
the local impact of climate change and derive their contribution
to the sea level rise. One effective way to characterize glacier
evolutions consists in analyzing Displacement Field Time Se-
ries (DFTS) obtained from Satellite Image Time Series (SITS)
(e.g., [1], [2], [3], [4]). When it comes to automatically gain
insights into a DFTS, data mining techniques are to be consid-
ered. A DFTS is indeed a large and complex spatiotemporal
vectorial data volume that cannot be explored manually. As
reported in [5], [6], sequential pattern mining techniques can
be successfully applied to SITS. They can also be used to mine

DFTS, as evidenced in [7], allowing to discover interesting
displacement evolutions over time and space.

Nevertheless, in [7], confidence measures were not taken
into account. These measures express the quality of the
measured displacements and to which extent DFTS data
can be trusted. They are computed either while building
DFTS, e.g., by considering correlation peaks, full widths at
half maximum, or signal to noise ratio ([8], [9]) if amplitude
correlation is performed, or also once a DFTS has been
obtained, by assessing the spatial and/or temporal distribution
of the displacement vectors (e.g., [10], [11]). Confidence
measures are available for each data point, i.e., they are
available for each location and for each pair of acquisitions.
They therefore represent datasets that are as large and complex
as DFTS data themselves.

To our knowledge, no automatic method for discover-
ing displacement evolutions from DFTS while handling
confidence measures is available. In the state-of-the-art ap-
proaches such as [10], [11] or [12], displacement evolutions
analysis is performed as follows: after having estimated
the data quality by computing confidence measures, low
confidence data points are filtered out using the same
threshold for the whole dataset. A few transects in the
areas of interest are then chosen manually. In turn,
displacement profiles are drawn along these transects,
at different dates, and are overlaid on the same graph.
The displacement evolutions and the possible impact of
remaining quality fluctuations are finally assessed by visual
inspection. Such an approach has been for example applied
in [10] to exhibit the decadal slowdown of the Greenland
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Ice Sheet and in [12] to characterize the evolution of glacier
surges in Karakoram region.

In this paper, the proposed method aims to automati-
cally extract displacement evolution profiles as sequential
patterns that are built on data points whose average
quality is acceptable. When compared with 1D transect-
based approaches, the advantage of our proposal is that
it completes them by providing a 2D view of the evolution
profiles for large areas in the form of maps. Sequential
patterns can indeed automatically extract any kind of
displacement evolutions covering sufficiently large and
homogeneous areas, without being limited to transects.
Experiments on two datasets of very different quality show
that the method confirms the evolutions reported along
transects in [10] and [13], and provides the spatial extent
of the corresponding phenomena.

An alternative strategy, based on a combination of state-
of-the-art techniques, would be to filter out low confidence
data points (e.g., [10], [11], [12]) and mine sequential pat-
terns as done in [7] to analyze the displacement evolutions
of the remaining data. When compared with such a filter-
based approach, the benefit of our proposal is that it cap-
tures evolutions accounting for larger parts of the dataset.
It indeed averages and checks confidence measures at the
evolution pattern occurrence level instead of removing all
low confidence data points. This is achieved by extending
the notion of evolution pattern occurrences, which is a
fruitful approach in data mining as demonstrated by the
works about probabilistic databases (e.g., [14], [15]). The
extension proposed in this paper does not consider data
distributions as done in such probabilistic settings since it
is aimed at handling a displacement quality measure such
as the confidence one.

In summary, this paper presents an approach for extracting
reliable displacement evolution patterns from DFTS data by
exploiting confidence measures at the pattern occurrence
level. Its main contributions are: (1) the definition of a re-
liability measure for displacement evolution patterns, (2) a
pruning technique to reduce the search space, and (3) the
application of the proposed approach to the monitoring of
glacier displacement field time series. Experimental results
are presented for high quality annual displacement fields
built from a Landsat medium resolution optical SITS and
low quality 11-day displacement fields computed from a
TerraSAR-X high resolution radar SITS. These DFTS
respectively cover the Greenland ice sheet and Alpine
glaciers.
This paper is structured as follows: Section II presents the
proposed method along with the assessment framework
and the parameter setting, while Section III reports both
qualitative and quantitative experimental results. Finally,
Section IV draws conclusions and gives future work
directions. Preliminary ideas regarding this contribution
were presented in [16].

II. METHODOLOGY

A DFTS computed from a SITS and defined for a set of
time stamps T = {t1, . . . , tn} gives, for each t ∈ T and for
each pixel location (x, y), the displacement vector observed
between date t and another date at location (x, y). Such a vec-
tor can also be considered as a velocity if the original SITS
has a regular temporal sampling or if the displacements are
divided by elapsed times. In the case of glaciers, this holds
only if ablation and accumulation effects are neglected
or if horizontal displacements are measured, which is the
case in our experiments. Consequently, in this paper, the
proposed method is described by focusing on velocities
though it can process either displacements or velocities
indistinguishably. It is based on the following workflow:

1) a symbolic displacement field time series is built and
confidence measures are computed,

2) reliable Grouped Frequent Sequential patterns (GFS-
patterns) are extracted from the symbolic displace-
ment field time series,

3) the most promising reliable GFS-patterns and their
corresponding Spatio Temporal Localization maps
(STL-maps) are selected and ranked.

The structure of this section follows this workflow depicted
in Figure 1. In addition, Section II-D presents the assess-
ment framework of the proposed method and Section II-E
details the parameter setting.

A. Data preparation

Once a DFTS is available, a first optional step is
standardization. Then, the DFTS is encoded into symbols
to obtain a symbolic displacement field time series. In
addition, if no confidence measures originating from the
DFTS computation are available, then they are established
from the DFTS itself.

1) DFTS standardization: This step is optional and the
remaining steps could be applied to a non-standardized
DFTS. Nevertheless, it is recommended to standardize
the displacement fields to make them comparable. This
is done for example in [10] or in [11] where velocities are
standardized by computing median differential velocities:
velocities are centered with respect to their median value
before being normalized.

If standardized velocities are not provided beforehand,
we propose in this paper to compute robust standardized
estimates by exploiting the local stationarity and homo-
geneity of DFTS data. Let ~v(x, y, t) be the velocity vector
observed between date t and another date at location (x, y).
The initial DFTS is reduced by performing a low-pass
filtering and sub-sampling based on a spatial tiling. Let
Ωi,j,t be the list of the values of ‖~v(x, y, t)‖ contained in
a tiling window wi,j,t, and Ωi,j be the concatenation of
the lists Ωi,j,1,Ωi,j,2, . . . ,Ωi,j,n (i.e., all values over time in
windows of indices (i, j)). Let MADi,j denotes the Median
Absolute Deviation at location (i, j) and defined simply as:

MADi,j = median
z∈Ωi,j

{|z −median(Ωi,j)|} (1)
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Fig. 1: From displacement field time series to reliable GFS-patterns: the workflow.

Then, the values describing the displacement fields are
the median differential velocities at each timestamp t, and
they are obtained for each window wi,j,t as follows:

mdv(i, j, t) =
median(Ωi,j,t)−median(Ωi,j)

MADi,j
(2)

The values are centered and normalized by using the
median and the MAD instead of a mean and a standard
deviation in order to make this standardization robust to
the presence of outliers. The resulting measure captures
the evolution of the median of the velocity values over
one tiling window wi,j,t compared to the median value
over all the windows at the same location (i, j) for t ∈ T .

2) Symbolic DFTS generation: The method presented in
this paper does not focus on precise variations of displacement
values but rather aims to exhibit their evolutions over time
and space at a more abstract level. Therefore, the next step
consists in encoding the magnitude of the displacements
using symbols of a discrete domain computed by equal

frequency bucketing (percentiles). In the experiments reported
in Section III, three symbols are used to represent the
magnitude of velocities: 1=low, 2=medium and 3=high.
This leads to a symbolic displacement field time series
containing for each location (x, y) an evolution sequence
seq(x, y) = 〈(t1, α1), . . . , (ti, αi), . . . , (tn, αn)〉 where each
ti is a timestamp and the associated αi is the symbol encoding
the magnitude of the velocity at date ti. Notice that other
features of the DFTS could be encoded instead of the velocity
magnitudes, as for instance displacement directions.

3) Confidence measure computation: The proposed
method requires each displacement to be characterized
by a confidence value expressing to which extent it
can be trusted. If no confidence measures are available
beforehand, then they can be obtained either by exploiting
redundant observations or the flow direction stationarity.

Redundant observations. Let ~V(x, y, t) be a set of velocity
estimates computed from different pairs of images. For the
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displacement observed at location (x, y) and date t, this
set can be used to calculate both the velocity ~v(x, y, t) and
its corresponding confidence ρ(x, y, t). In this paper, one
of the confidence measure that is used is the velocity vector
coherence introduced in [11] and defined as follows:

ρ(x, y, t) =


‖∑~v∈~V(x,y,t) ~v‖∑

~v∈~V(x,y,t)‖~v‖
, if

∑
~v∈~V(x,y,t) ‖~v‖ 6= 0

1, otherwise
(3)

It behaves as the coherence in SAR interferometry: it
varies in the interval [0, 1]. It is equal to 1 if all vector
estimates point in the same direction, and tends to 0 if these
vector estimates have uniform random directions.

Flow direction stationarity. If no redundant observations
are available, then the stationarity of the flow direction
can be used to derive confidence measures reflecting the
temporal directional coherence of the 2D velocity vectors.
For example, in [17] or [18], the assumption of a dis-
placement flow in the direction of the maximum downhill
slope was considered to study glaciers. This implies that,
for a given location, the glacier displacement direction at
different dates must be similar.

In this case, for each location (x, y) and for each
timestamp t, the confidence measure of the velocity ρdisp
is defined as:
ρdisp(x, y, t) ={

cos ( ̂~ux,y,t, ūx,y), if cos ( ̂~ux,y,t, ūx,y) ≥ 0

0, otherwise
(4)

where ~ux,y,t is the unit velocity vector in location (x, y)
at timestamp t and ūx,y =

∑n
t=1 ~ux,y,t reflects the global

velocity direction over the sequence located in (x, y). The
cosine operator is used to measure the angular difference
between the global velocity direction and the velocity
vector at timestamp t. The larger is the angle, the smaller
is the confidence. In order to get robust estimates, and
as previously explained in Section II-A1, the original size
of the acquisitions is reduced by tiling each velocity field
with windows noted wi,j,t, where t is the velocity field
time stamp and (i, j) is a sub-sampled location. The final
measure ρ(i, j, t) is then chosen to be the median of the
confidence ρdisp over the window wi,j,t.

B. Reliable GFS-pattern extraction

In this section, the concept of Grouped Frequent
Sequential pattern (GFS-pattern) is recalled before being
extended to the concept of reliable GFS-pattern for which
an efficient extraction technique is proposed.

1) GFS-patterns: As introduced in [7], the Grouped Fre-
quent Sequential patterns (GFS-patterns) of [5] can be adapted
to analyze symbolic displacement time series. Let us recall
their corresponding definitions in this context. A sequential
pattern β is here a pattern of the form β1 → β2 → · · · → βm
where β1 . . . βm are any symbols used for the encoding.

A location (x, y) is termed covered by β if somewhere
in seq(x, y) we find symbol β1 and then some time later
β2 and so on, before finally observing symbol βm. More
formally, let seq(x, y) = 〈(t1, α1), (t2, α2), . . . , (tn, αn)〉 be
an evolution sequence, then location (x, y) is covered by β
if there exist i1 < i2 < · · · < im so that β1 = αi1 , β2 =
αi2 , . . . , βm = αim . In this case, o = 〈ti1 , ti2 , . . . , tim〉 is
called an occurrence of β in seq(x, y). In addition, tik , defined
for all k ∈ {1, . . . ,m}, is called the kth occurrence date of o.

The GFS-patterns [5] are the sequential patterns that are
frequent and grouped. The term frequent means that a pattern
covers at least σ locations (x, y) in the studied area (i.e., it
covers at least a minimum surface). A pattern β is said to occur
in a grouped way if, on average, a location covered by β is
surrounded by at least κ other locations in its 8-neighborhood
that are also covered by β. This second constraint is used to
ensure that the occurrences of β are not spatially too isolated.
The parameters σ and κ are respectively called the surface
threshold and the grouping threshold.

To visualize the location in space and time of a pattern
β, a Spatio Temporal Localization map (STL-map) is
drawn. The STL-maps of β is simply an image where a
pixel at location (x, y) is black if (x, y) is not covered
by β, and is otherwise displayed with a color indicating
the ending date of the first minimal occurrence of β
in seq(x, y). An occurrence o = 〈ti1 , ti2 , . . . , tim〉 of
pattern β is minimal if β does not occur in any proper
subinterval [t, t′] ⊂ [ti1 , tim ]. The first minimal occurrence
of β in a sequence seq(x, y) is the one with the earliest
occurrence dates. More formally, a minimal occurrence
o = 〈ti1 , ti2 , . . . , tim〉 is the first minimal occurrence if for
all minimal occurrences o′ = 〈t′i1 , t′i2 , . . . , t′im〉, we have
tik ≤ t′ik ,∀k ∈ {1, . . . ,m}.

2) Reliable GFS-patterns: Starting from GFS-patterns,
our proposal is to handle confidence measures at the
pattern occurrence level to focus on reliable patterns
without having to threshold the whole dataset at the data
point level. Let ρ(x, y, t) denote the confidence associated to
location (x, y) for timestamp t. The method does not focus
on a particular measure of confidence, the intuition is simply
that the higher is the confidence ρ(x, y, t), the more confident
one can be in the values of the displacement field at date t for
location (x, y).

The notion of reliability is now considered at different
scales. From ρ(x, y, t) we define ρocc(x, y, o) the reliability
measure of an occurrence o = 〈ti1 , ti2 , . . . , tim〉 in a sequence
seq(x, y) as ρocc(x, y, o) = min{ρ(x, y, t)|t in tuple o}. This
measure adopts a conservative point of view, associating to
an occurrence o the minimal confidence of its constituting
elements.

At the sequence level, the reliability of a pattern β in a
sequence seq(x, y) aims to reflect to which extent seq(x, y)
contains a good quality occurrence of this pattern. If β covers
location (x, y), then this measure is defined as ρpat(x, y, β) =
maxo∈O{ρocc(x, y, o)} where O is the set of occurrences of
β in seq(x, y). Consequently, instead of relying on the
standard sequential pattern [19] and GFS-pattern [5]
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schemes that only check whether a pattern occurs or not
in a sequence, the notion of occurrence is here extended
to select the most reliable one.

The reliability measure ρ retained for a pattern in a dataset
is then simply the mean of its reliability over all the locations
covered by the pattern:

ρ(β) =

∑
(x,y)∈cov(β) ρpat(x, y, β)

|cov(β)| (5)

where cov(β) is the set of locations (x, y) covered by β and
|cov(β)| is the size of this set. Low reliability occurrence
measures are thus compensated by high ones. A pattern is
then said to be reliable if its reliability measure in the dataset
is greater or equal to a reliability threshold γ, i.e., ρ(β) ≥ γ.

This constraint allows to select patterns built on velocity
values that reach on average a given level of reliability. In
addition, it can also lead to a more efficient extraction of the
reliable GFS-patterns when used as an active constraint during
the search for these patterns. This can be done as follows,
by defining an upper bound of ρ(β). Let pattern β be called
a subpattern of a pattern β′, denoted β ≺ β′, if β can be
obtained by removing one or more symbols from β′. The
function ρ(β) is not anti-monotonic, in the sense that β ≺ β′
does not imply ρ(β) ≥ ρ(β′). Let us define ρ̃(β) as

ρ̃(β) =

∑
(x,y)∈cov(β) ρpat(x, y, β)

σ
(6)

where σ is the surface threshold. The function ρ̃(β) is anti-
monotonic because β ≺ β′ implies that cov(β) ⊇ cov(β′)
and thus ρ̃(β) ≥ ρ̃(β′). Moreover, since σ is the minimal
possible value for the surface covered by a GFS-pattern then
σ ≤ |cov(β)| and so for all β we have ρ̃(β) ≥ ρ(β) providing
thus an upper bound of the reliability of β.

During the search for the reliable GFS-patterns these
properties allow to reduce the search space as follows. If we
find a pattern β such that ρ̃(β) is strictly lesser than γ the
minimum reliability threshold, then this implies that for all β′

such that β ≺ β′ we have γ > ρ̃(β) ≥ ρ̃(β′) ≥ ρ(β′). Thus
β′ can be excluded from the search space since its reliability
cannot reach the γ threshold. This potential reduction of
the number of candidate patterns, using anti-monotonicity,
can be incorporated in many pattern mining approaches as
the general pattern-growth technique for sequences [20] on
which is based our implementation. It should be noticed that,
in addition to this pruning, the finding of the occurrence
of a pattern β having the highest reliability in a sequence
(needed to compute ρpat(x, y, β) for each location) can be
done efficiently using dynamic programming, as it is the case
for similar problems like sequence alignment.

C. Pattern selection and ranking

Finally, though surface, connectivity and reliability con-
straints are applied to focus on the most interesting
sequential patterns, reliable GFS-patterns can still be nu-
merous. Thus, in order to get the most detailed evolutions,
the maximal reliable GFS-patterns are selected. These

maximal patterns are the ones that are not a subpattern of
any other reliable GFS-pattern. End-users are then guided
towards the most promising maximal patterns using a
randomization-based ranking procedure. This method was
introduced in [21]. It is aimed at identifying the STL-
maps/patterns that are either hardly or fully destroyed by
randomization. In other words, the STL-maps obtained for
original DFTS are compared with the ones obtained for
randomized DFTS using a normalized mutual information
measure. The latter is used to produce a ranking ranging
from the most expected STL-maps/patterns to the most
unexpected ones, with respect to the symbol distributions
in the symbolic DFTS. The K most expected and the K
most unexpected reliable GFS-patterns are finally retained,
with K a user defined parameter.

D. Assessment of the proposed method

The results of data mining techniques are assessed
according to their nature [22]. When considering classifica-
tion, standard Quality Assessment Measures (QAM) such
as accuracy, precision, or recall measures are computed.
Other global models of the data such as clustering are
for example assessed using entropy, Sums of Squared
Errors (SSE) or silhouette coefficients. The assessment of
patterns such as reliable GFS-patterns is based on quality
assessment measures that are different. Extracted models
are indeed not global ones but are local dependencies
describing parts of the dataset.

The surface measure used in this paper corresponds
to the support measure, which is the standard QAM
for frequent sequential patterns, as originally defined
in [19]. It gives the number of sequences in which
a pattern occurs. Sequential patterns whose support
measure is higher than a user-defined threshold are said
to be frequent. Frequent sequential patterns are further
assessed using their support measures to focus either
on the less or on the most frequent ones. This measure
makes sense within the original scheme. For example,
each sequence could be a purchasing sequence holding for
a certain customer. Consequently, the support measure of
frequent sequential pattern gives the number of customers
sharing this purchasing pattern, which is a very direct
and simple indicator.

Back to reliable GFS-pattern, if we were to mimic
what is done for frequent sequential patterns, then they
would have been to be assessed using the surface, the
connectivity, the reliability and the normalized mutual
information measures. These numerous measures must
be balanced by taking into account the final application,
which is not as straightforward as for standard sequential
patterns. A more direct and still objective assessment
is to measure, on average, to which extent extracted
patterns describe the dataset in terms of data points, as
we are interested in both the spatial and the temporal
dimensions. Let β = β1 → β2 → · · · → βm be a frequent
grouped sequential pattern. If a location (x, y) is covered
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by β, the most reliable occurrence of β in seq(x, y) is
composed of m elements. Thus, the Data Point cover of
β with these reliable occurrences over all locations is
DPcover(β) = cover(β) ∗ m. Let R be the set of the
reliable GFS-patterns obtained as a result of the proposed
method. The Mean Data Point cover of R is defined as
follows:

MDPcover(R) =

∑
β∈RDPcover(β)

|R| (7)

This measure is exploited in this paper to compare
the proposed method with the closest competing method.
The latter is built on the available state-of-the-art ap-
proaches [10], [11], [12], [7]. It extracts and selects the
same number of GFS-patterns from the same symbolic
DFTS whose low confidence data points have been filtered
out in a first place. As for the proposed method, the
maximal GFS-patterns are selected and ranked using a
randomization-based procedure to build a final set of GFS-
patterns containing as many patterns as obtained with
the proposed approach. For the sake of clarity, in the
remaining of this paper, this competing method is termed
filter-based GFS-pattern extraction. It does not require
parameter γ, but needs the same other parameters and
an additional one, ρfilter, the confidence threshold used to
filter out low confidence data points.

E. Parameter setting

The parameter setting is performed as follows. First, the
grouping threshold is set to κ = 5. This is a standard setting
for exhibiting meaningful geophysical phenomena (see [5] and
[7]). It ensures that if an evolution is retained, then, when it
occurs at a location (x, y), it also occurs, on average, in at
least 5 locations of the 8-neighborhood of (x, y). Evolutions
occurring in isolated locations only are thus discarded.

The second parameter is σ, the surface threshold. It is set
so as to retrieve the largest number of maximal GFS-patterns,
i.e., to obtain, in some sense, the richest description.

With regard to the reliability threshold γ, the more stringent
it is (i.e., closer to 1), the lower is the number of retrieved
patterns. Its value is chosen so as to reach a trade-off between
the number of patterns and their quality (reliability). To
find such a compromise, a very simple objective function to
maximize is used: the product of the threshold γ and the
number of patterns obtained for this threshold. It is noted
o(γ) = γ× p with p the number of reliable maximal GFS-
patterns that are extracted.

The parameters for the filter-based GFS-pattern extrac-
tion (see Section II-D) are chosen so as to consider the
closest setting, ρfilter is set to the value of γ and the same
values as for the proposed method are used for κ and σ.
Finally, K is set to 20, which is a standard setting [21],
to get the 20 most expected and the 20 most unexpected
patterns.

III. EXPERIMENTS

A. Greenland ice sheet

1) Dataset: For this experiment, we directly use the
DFTS that was prepared and used in [10] to exhibit a decadal
slowdown in the ablation zone of the western Greenland
Ice Sheet. It was built from a series of Landsat images
(Landsat 5, 7 and 8) spanning three decades, from 1985 to
2013. It contains annual median differential velocities that
were spatially aggregated and sub-sampled to get reliable
estimates. The final resolution is 240× 240 m and a zone
of 458×500 pixels is described for 20 timestamps. The first
seven fields correspond to years 1985 to 1999 (one field every
two-year interval) and the thirteen other fields correspond to
years 2000 to 2013 (one field every one-year interval).

The symbolic DFTS is built by encoding mean dif-
ferential velocity values using three symbols (1, 2 and
3) and an equal frequency bucketing. For each location
(x, y), this leads to an evolution sequence seq(x, y) =
〈(t1, α1), . . . , (ti, αi), . . . , (tn, αn)〉 with ti ∈ T and αi ∈
{1, 2, 3}, where symbol 1 denotes a slow velocity, 2 a velocity
close to the median value, and 3 a higher velocity.

Finally, each median differential velocity value, and
thus each symbol, is associated to a confidence measure
that was computed and used in [10]. It is given by the
velocity vector coherence computed according to Equation
3 by aggregating several observations of the one-year
displacements (see Section II-A3). Most locations in the
selected region suffer from important loss of confidence as
shown in figures 2a, 2b and 2c, that give, for each location
(x, y), the minimum, maximum and mean of the confidence
measure ρ(x, y) over the series (according to the color scale
of Figure 2d).

2) Parameter values: The parameter setting is performed
according to Section II-E. Consequently:
• The grouping threshold κ is set to 5.
• The surface threshold σ is set to 7.5% according to

Figure 3a. The latter presents the numbers of maximal
patterns output when varying the minimum surface
threshold (expressed as a percentage of the 458× 500
pixels of the area).

• The reliability threshold γ is set to γ = 0.85 according
to Figure 3b. The latter presents the product of
threshold γ and the number of patterns obtained
versus γ, i.e. o(γ) = γ × p.

• The minimum confidence threshold ρfilter used by the
filter-based method is set to γ = 0.85.

• The number of the most expected (respectively
unexpected) patterns K is to 20, i.e. 40 patterns are
selected.

3) Quantitative results: The proposed method extracts,
selects and ranks 375 maximal reliable GFS-patterns
before outputting R, the 40 patterns result set. Its mean
cover is MDPcover(R) = 201, 981.6 data points.

The filter-based GFS-pattern extraction method also
extracts, selects and ranks 375 maximal patterns that differ
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(a) Minimum confidence. (b) Maximum confidence. (c) Average confidence.

(d) Color scale.

Fig. 2: Confidence of each location in Greenland over the series: (a) minimum, (b) maximum, (c) average. (d) Confidence
color scale: from 0 (dark blue) to 1 (dark green).
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(c) Number of extracted patterns vs. individual DPcover measures.

Fig. 3: (a) Surface threshold setting. (b) Reliability threshold setting. (c) Number of the extracted patterns vs. individual
DPcover measures.
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from the ones obtained with the proposed method. Its 40
patterns result set R′ covers fewer data points in average:
MDPcover(R

′) = 188, 418.6 data points.
This variation of the quality assessment measure

MDPcover shows that the proposed method extracts
patterns that, on average, account for 7.2% more data
points than what can be achieved with filter-based
GFS-patterns. More details about the cover distribution
are given in Figure 3c by the histogram of the number of
patterns with respect to the cover values. It shows that
GFS-patterns (in blue) tend to cover more data points
than filter-based GFS-patterns (in orange).

Concerning the resource consumption, the whole process
implemented in C and Python (from data discretization to
STL-maps selection) requires 813 seconds using a single
core of an Intel Xeon 3.5GHz running Linux (Ubuntu). The
maximal memory consumption is 311 MB.

4) Qualitative results: The qualitative results are dis-
cussed by considering the STL-maps of the extracted pat-
terns. These maps reflect different evolutions over various re-
gions at different times, and three among the best ranked ones
are presented in figures 4a, 5a and 5b drawn on a grayscale
background image. The locations of the main relevant glaciers
are indicated by labels (1), (2) and (3) Figure 4b. The first two
maps are complementary evidences of the regional slowdown
reported in [10]. The one given in Figure 4a corresponds to a
deceleration pattern: 3 → 3 → 2 → 2 → 2 → 2 → 2 → 2 →
1 → 1. The map shows with colored dots all the locations
where this pattern is found in the data. For each of these
locations, the color indicates the date at which the last 1 of
the pattern is found (according to the color scale of Figure 6).
The highlighted part in the middle is the Nordenskjöld glacier
(1), for which a slowdown along one longitudinal transect was
exhibited in [10]. The map shows that this deceleration pattern
also occurs in the northern part, close to the Sarqardliup
sermia (3), and in the South in the area of the Polonia
glacier (2). Notice that according to the color scale the end
pattern is observed earlier in the middle-left part (mostly blue)
than in the northern and southern parts (magenta). Another
displacement type, different from this progressive slowdown,
is depicted in complementary areas in Figure 5a. Here, the
associated pattern 3 → 3 → 3 → 3 → 3 → 3 → 3 → 2 → 1
underlines a long stable period at a (locally) high speed level
before a sudden deceleration. A dedicated search in the dataset
shows that the sequence of the symbols 2 in the pattern
of Figure 4a ends by 2006-2007, while for the less gradual
slowdown of Figure 5a the end of the sequence of the symbols
3 occurs earlier (by 2003-2005).

A third map is given Figure 5b. It corresponds to pattern
1→ 1→ 3→ 1→ 1→ 1→ 1 that could suggest a singular
speedup within a sequence of low speed level. It highlights in
blue the area (3) of the Sarqardliup sermia and Alangordliup
sermia. Again a specific verification in the dataset shows that
there is a local maximum at level 3 over 1997-1999 in the
North of area (3) and over 1990-1992 in its southern part.

These three maps of coherent patterns given in figures 4

and 5 are spatially consistent with the mean of the velocity
confidence measures depicted in Figure 2c. However, it should
be noticed that a simple preprocessing strategy based on a
selection of the regions having a high mean for the confidence
measure over the series (locations in green, Figure 2c) would
not have been sufficient. Indeed, it would not have prevented
us from building poor quality pattern occurrences in these
regions, because as shown in Figure 2a, poor data velocity
confidence (in blue) can be observed almost everywhere in
the area. Moreover, as evidenced in Figure 2b, for nearly all
locations, there exist some dates showing good confidence
measures (in green). This potentially allows reliable occur-
rences of patterns to be built even in areas where the mean of
the confidence measure is low. These observations advocate
for the handling of the confidence at the occurrence level, as
for instance in the reliability measure-based method proposed
in this paper: it allows to extract meaningful velocity evolution
maps covering areas that would have been filtered out if,
for example, we were to rely on a filter-based extraction.

B. Alpine glaciers

1) Dataset: The proposed approach has also been applied
to explore short time displacement evolutions over Alpine
glaciers in the Mont Blanc massif. The DFTS is built us-
ing 26 TerraSAR-X images (ascending track), with a pixel
resolution of about 2 m × 2 m. The series was acquired
between 05/31/2009 and 09/25/2011. It covers the French
part of the Mont Blanc massif and contains its four main
glaciers: Argentière, Mer de Glace, Bossons, and Taconnaz.
It is composed of two distinct periods, one in 2009 from
May 31 to October 21 and another in 2011 from May 5
to September 25. The two periods contain 13 images each
(one image every 11 days). Glacier displacements can be more
easily observed during these periods of the year compared to
other ones because there is less snow.

The original size of the images is 10484×9560 pixels. First,
we describe how this data have been processed to compute
the displacement fields at full resolution, and then have been
reduced to a size of 3494 × 3186 to get robust estimates.
Synthetic Aperture Radar (SAR) images contain amplitude
and phase information, which both can be used to estimate
different kinds of displacements. For Alpine glaciers, rapid
surface changes are likely to reduce the phase coherence
and amplitude information is more adapted for calculating
glacier displacements (e.g., [8], [17], [25]). Moreover, instead
of having only displacements in the line of sight with phase-
based methods, amplitude-based methods give us displace-
ment vectors expressed in azimuth and range directions.
Thus, to compute the displacement fields the amplitude cross-
correlation method implemented in the EFIDIR Tools1 is used.
After having applied a glacier mask from the Randolph
Glacier Inventory2, the cross-correlation is performed for
every consecutive image pair, with a correlation window size
of 65 pixels and a search window size of 105 pixels. A total
of 25 displacement fields expressed in m/day is obtained.

1http://efidir.poleterresolide.fr/index.php/effidir-tools
2https://www.glims.org/RGI/
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(a) 3→ 3→ 2→ 2→ 2→ 2→ 2→ 2→ 1→ 1. (b) Glacier locations.

Fig. 4: (a) STL-maps for pattern 3 → 3 → 2 → 2 → 2 → 2 → 2 → 2 → 1 → 1. (b) Three of the main glaciers in the study
area of the Greenland Ice Sheet: (1) Nordenskjöld glacier, (2) Polonia glacier and (3) Sarqardliup sermia and Alangordliup
sermia (names from [23] and [24]) .

(a) 3→ 3→ 3→ 3→ 3→ 3→ 3→ 2→ 1. (b) 1→ 1→ 3→ 1→ 1→ 1→ 1.

Fig. 5: STL-maps for the patterns (a) 3→ 3→ 3→ 3→ 3→ 3→ 3→ 2→ 1 and (b) 1→ 1→ 3→ 1→ 1→ 1→ 1.

Fig. 6: STL-map color scale: from 1985 in red to 2013 in magenta decomposed in 20 timestamps.

Median differential velocities are then computed by
applying Equation 2 as well as the corresponding low-pass

filtering and sub-sampling using a 3 × 3 tiling windows.
Consequently, the initial velocity field size of 10484×9560
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is reduced to 3494× 3186, which, in addition to supplying
robust estimates, will lower resource consumption when
it comes to extracting patterns. The symbolic DFTS is
then built from the median differential velocities values
by quantization, using an equal frequency bucketing and
symbols 1, 2 and 3 (denoting again low, medium and high
values).

From the initial DFTS that is available at full resolution,
and following the flow coherence strategy presented in
Section II-A3, the confidence of each remaining data
point, noted ρdisp, is then obtained according to
Equation 4. Finally, as explained in Section II-A3, the
confidence ρ(i, j, t) associated with median differential
velocity values of the low resolution series is computed
over each tiling window. For each location (i, j), the
minimum, maximum, and average values over time of
ρ(i, j, t) are given in Figure 7. It can be noticed that the
minimum is close to 0 for nearly the whole area, while
the maximum reach a value of 1 only in limited regions.
This is very different from the Greenland series. Even
though the confidence measure is not formally the same
as in the previous series, from a qualitative point of view,
the Mont Blanc series offers a weaker confidence. These
lower confidence values are consistent with the fact that
for the Greenland series several pairs of images were
combined to produce one displacement field [10] whereas
a single image pair is used for each displacement field
for the Mont Blanc series. Lower confidence values also
come from the SAR imagery which suffers from the
presence of speckle affecting the amplitude images as
a multiplicative noise. On the TerraSAR-X time series,
the speckle is decorrelated on the fast changing glacier
surface (the InSAR coherence is close to 0) and reduces
the performances of the cross-correlation methods that
are used to compute DFTS. Consequently, confidence
levels rarely exceeds 0.5, whereas they are often higher
than 0.8 with optical data.

2) Parameter values: The parameter setting is performed
according to Section II-E:
• The grouping threshold κ is set to 5.
• The surface threshold σ is set to 4% according to

Figure 8a.
• The reliability threshold γ is set to γ = 0.22 according

to Figure 8b. This value is lower than the one used
for the Greenland series, which is consistent since, as
shown by Figure 7, lower confidences are observed
for this Mont Blanc massif series.

• The minimum confidence threshold ρfilter used by
the filter-based method is set to γ = 0.22.

• The number of the most expected (respectively unex-
pected) patterns K is to 20.

3) Quantitative results: On this DFTS, the proposed
method extracts, selects and ranks 5625 maximal reliable
GFS-patterns. The set R of the resulting 40 patterns has
a mean cover MDPcover(R) equal to 5, 231, 810.6 data
points.

The filter-based GFS-pattern extraction method
extracts, selects and ranks 6484 maximal reliable GFS-
patterns. It outputs a set R′ of 40 patterns whose mean
cover is MDPcover(R

′) = 3, 410, 626.7 data points. The
proposed method extracts patterns that, on average,
account for 53.4% more data points. This improvement is
by far greater than the one observed for the Greenland
series and directly comes from the fact the Mont Blanc
massif series is a low confidence one. In other words,
the lower confidence measures are, the more effective
the handling of confidence measure at the occurrence
level is, which allows to explore parts of the dataset that
would have been filtered out by a filter-based GFS-pattern
extraction. Figure 8c confirms this behavior: all reliable
GFS-patterns (in blue) cover more data points that
filter-based GFS-patterns (in orange).

For this series, the whole process takes 119894 seconds
(about 33 hours and 18 minutes) with a maximal memory
consumption of 7470 MB (same software/hardware
configuration as for the Greenland study).

4) Qualitative results: Extracted reliable GFS-patterns and
their STL-maps reflect different evolutions over the displace-
ment series, and one among the best ranked maps is shown
in Figure 9a. The locations of the relevant glaciers are given
Figure 9b. The map of Figure 9a corresponds to the pattern
3 → 2 → 2 → 1 → 1 → 1 → 1 → 3 → 3 → 2 → 2. It
exhibits two slowdowns: one from level 3 to level 1 and then
from level 3 to level 2. The colors on Figure 9a indicate the
dates of occurrence of the last element of the pattern (the last
symbol 2) and according to the color scale drawn Figure 11,
these dates are by the end of the series (late 2011).

Let us consider the first slowdown captured by the pattern
(i.e., the 3 → 2 → 2 → 1 → 1 → 1 → 1 part). The
beginning of the phenomenon is in early summer 2009 as
depicted Figure 10a that gives the dates of occurrence of the
first symbol 3 of the pattern. Figure 10b shows the dates of
occurrence of the last symbol 1 and it can be observed that
they correspond to the end of the first half of the series (late
summer/fall of year 2009). The second part of the pattern
(i.e., → 3 → 3 → 2 → 2) reveals that the slowdown
was repeated over the second half of the series (year 2011).
Therefore, our pattern based method ranks among the best
maps the one related to an annual cycle of velocity variation, a
well-known glaciological process for temperate glaciers (e.g.,
[26]). This annual cycle phenomenon was already reported
on three transects of the Mont Blanc massif in [13] and [2]
where a slowdown was measured in 2009: on Taconnaz (1)
and Bossons (2) glaciers from their heads to their terminuses,
and from Géant glacier (3) to the Mer de Glace (4) terminus.
In addition to these previous analyses, the STL-map underlines
the 2D spatial extent of the phenomenon, in particular for the
slowdown reported in [13, page 168] 2000 m from the heads
of Taconnaz and Bossons, and in the area of the seracs of the
Géant (locations given Figure 7b as labels b, d and 3′). For the
Bossons glacier such fluctuations are observed till ≈ 3000 m
and suggest that cold-based glacier zone is restricted to higher
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(a) Minimum confidence. (b) Maximum confidence. (c) Average confidence.

(d) Color scale.

Fig. 7: Confidence of each location over the series: (a) minimum, (b) maximum, (c) average. (d) Confidence color scale: from
0 (dark blue) to 1 (dark green).
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Fig. 8: (a) Surface threshold setting. (b) Reliability threshold setting. (c) Number of the extracted patterns vs. individual
DPcover measures.
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altitudes.
In this series of larger size and lower confidence than

the Greenland one, the handling of the confidence at the
occurrence level using a reliability measure still turns out to be
effective to perform a global analysis. The method allows to
search for regularities among the displacement data of all main
glaciers of the French part of the Mont Blanc massif. Finding
such common patterns over space and time is an interesting
feature of the method. It shows for instance (Figure 9a) that
the same slowdown pattern that holds for the Taconnaz and
Bossons glaciers is also strongly shared by the Rognons glacier
(label 7 Figure 9b), the velocity of which has never been
studied up to now.

IV. CONCLUSION

With the quick development of Earth Observation Satellites
and the necessity of research concerning climate change,
DFTS data are increasingly computed and processed to assess
glaciers displacement evolutions. In order to extract mean-
ingful displacement evolution patterns, confidence measures
inherent to this kind of data need to be dealt with. In this paper,
a notion of pattern reliability exploiting confidence measure
at the pattern occurrence level has been introduced so as
to extract displacement evolutions patterns having reliability
values that exceed a user-defined threshold. We also proposed
a method to automatically set this threshold with the aim
of ensuring that extracted patterns are reliable enough and
bring a good description of the dataset. In addition, a pruning
technique using this constraint has been also implemented
to reduce the search space and therefore decrease resource
consumption.

Our method has been applied to two DFTS of very different
quality and covering glaciers of different sizes: an optical-
based one covering Greenland ice sheet glaciers and a radar-
based one covering Alpine glaciers. The results showed that
the proposed method extracts patterns accounting for
larger parts of the dataset when compared to a method
based on state-of-the-art techniques. Meaningful patterns
were extracted from the two types of satellite data. Different
maps were produced to localize these displacement evolutions
in space and time. These evolutions and maps are consistent
with the glaciological knowledge concerning these zones and
extends it by providing 2D maps of the phenomena. Indeed,
1D profiles along transects can be found in the literature
while full 2D maps containing temporal information are
provided for the first time thanks to the proposed method.

Future work includes extending the scope of confidence
measures. Indeed, displacement measures are first quantized
into symbols. Afterwards, confidence measures, that basically
characterize displacement vectors, are directly mapped to these
symbols. Such a raw mapping could be refined by considering
quantization effects. For example, the degrees of membership
to symbols of each displacement measure should be computed
and used. Another information could also be handled: the
confidence of the calculus of each displacement vector derived
from the characteristics of the similarity function. Such a
broader/wider confidence measure would be more represen-
tative of the uncertainty and could be directly handled by the

proposed reliability measure without any modification of the
extraction algorithm.
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