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Abstract

The problem of online packet scheduling to minimize the nesgliconventional grid energy for
transmitting a fixed number of packets given a common deadbinconsidered. The total number
of packets arriving within the deadline is known, but the kgicarrival times are unknown, and can
be arbitrary. The proposed algorithm tries to finish the gnaission of each packet assuming all future
packets are going to arrive at equal time intervals withel#it-over time. The proposed online algorithm
is shown to have competitive ratio that is logarithmic in thenber of packet arrivals. The hybrid energy
paradigm is also considered, where in addition to grid enezgergy is also available via extraction

from renewable sources. The objective here is to minimizedghd energy use. A suitably modified
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version of the previous algorithm is also shown to have cditipe ratio that is logarithmic in the

number of packet arrivals.

I. INTRODUCTION

Minimizing energy consumption under delay constraints islassical resource allocation
problem, which has been very well studied in literature [10}. Shorter the delay, larger is the
energy required, and clearly, there is a tradeoff betweerethwo fundamental quantities. The
problem is even more important for the modern setup, whevee® are increasing becoming
smaller with limited battery sizes, and where effective rggpeutilization is fundamental for
efficient network operation by maximizing the node lifetiraed consequently expanding the
network lifetime.

The energy-delay tradeoff has been studied in variety dingst For example, for an AWGN
channel,[[1] studies the packet scheduling problem for miiing transmission energy, where a
fixed number of packets arrive successively in time, and habwe transmitted before a common
deadline. Assuming that packet arrival times are known @lo¢sime (called the offline setting),
an optimal algorithm is derived in[1]. A more general probl¢han studied in ]1], is where
each packet has an individual hard deadline [2], [3]. Witthvidual hard deadlines, the optimal
algorithms are known in the offline settingl [2],] [3], or wheretpacket arrival times are i.i.d.
and follow a given distribution [4].

Similar results are available for fading/time-varying ohals, where typically an average
delay constraint is considered [5], [10], [11], and the peaibis to minimize the average power
consumption. A hard deadline result is also known from [7in8re specific case of energy-delay
tradeoff with 'small’ delay constraint has been addresseffj for the fading channels.

The energy-delay tradeoff problem becoming even more ehgihg, when in addition to
the conventional grid energy there is an additional eneagyce that is powered by renewable
energy, popularly called as energy harvesting (EH). Thélpra of minimizing transmission
time/delay when only an EH source is available has been weldied in literature. For example,
for the AWGN channel, an optimal offline algorithm has beenwvael for a single transmitter-

receiver pair in[[12], whose online counterpart thakisompetitive for arbitrary energy arrivals
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has been found in [13]. With only an EH source, the problem aftiple packet transmissions
with individual hard deadlines has been studied recentf§4h Similarly, for the fading channel,
an optimal offline algorithm has been derived for a singlegnaitter-receiver pair iri [15], while
for broadcast and MAC channels in [16]-[19].

The problem where both the grid and the EH energy are contiyravailable is relatively less
well-studied and is inherently a hard problem. Startincdf&0], some progress has been made
in [11], where optimal offline (under some conditions on éattsize etc.), and two heuristic
online algorithms are derived. The general online proble® temained unsolved.

In this paper, when only grid energy is available, we first sider the classical packet
scheduling problem for minimizing transmission energy {&here a fixed number of packets
arrive successively in time, and have to be transmittedrbedloccommon deadlin&. In contrast
to the offline case studied inl[1], in this paper, we consither more realistic and challenging
online scenario, where information about packet arrivals is knewty causally. Moreover,
unlike [4], we do not make any stochastic assumptions onrtteg-arrival times for the packets,
and consider the arbitrary packet inter-arrival time caglegre even an adversary can choose
them. Thus, our model is the most general one, and is appidabany setting where packet
inter-arrival times are time-variant or difficult to estitaaetc.

To characterize the performance of an online algorithm, aresicer the metric of competitive
ratio that is defined as the ratio of the energy used by th@emligorithm and the offline optimal
algorithm, maximized over all packet inter-arrival timegaences. The competitive ratio is a
worst case guarantee on the performance of an online dgoand is independent of modeling
assumptions.

We assume that d@t= 0, the number of packet® and common deadling are known. We
show in Remark]1, that if’ is not known ahead of time, then the competitive ratio of anljne
algorithm is unbounded. Let on arrival of a new packet at timmne number of packets left to
arrive be P(t). Then the main idea behind the proposed algoritbh is that it assumes that
the future P(¢) packets are going to arrive at equal intervals in the leéirdime of 7' — ¢, and
attempts to finish transmitting the current packet in tigie—-. Since the future inter-arrival time

ty+1°

sequence is unknown and arbitrary, algoritbfd may have to idle, i.e. it can finish transmitting
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the current packet before the next packet arrives, in whagde dt has to use more energy than
required by the optimal offline algorithm, that never idlg¢e show that the competitive ratio
of the ON algorithm is no more than + log P, where P is the total number of packets.

Note that the derived competitive ratio is independent ef tbmmon deadline timé&, and
the number of bits contained in each packet. Ideally, we daldo have liked the competitive
ratio to be independent d? and be a constant, however, for many similar scheduling aad-|
balancingonline problems, the best results on competitive ratio also scgarithmically in the
number of packets/users (equivalent quantity of interfii)}-[23]. We would like to note that
1+log P is the best bound we can show theoretically for @¢ algorithm, however, simulations
suggest that the competitive ratio ON is far better than that and is close tdor the examples
considered.

Our derived results are for the most general input settinghis classical problem, and to the
best of our knowledge no online algorithms with provablergagees on the competitive ratios
are known in the literature.

Next, we generalize the energy arrival paradigm, and censite same problem of minimizing
energy for transmitting multiple packets given a commondtliee, when energy from both the
grid and the EH source is available. In this hybrid energys®scenario, if the energy harvesting
profile is arbitrary, then it is easy to see that no online algm can have bounded competitive
ratio, since if large amount of EH energy arrives close todeadline, the offline algorithm will
use it intelligently, while the online algorithm may not. Ud) for this case, one has to make the
assumption that the EH energy profile is stochastic, andygragrivals are identically distributed
across time. The inter-arrival times are still allowed todbeitrary. We propose a natural greedy
extension of theON algorithm, that uses the EH energy as quickly as possiblef@nds long
as possible while keeping the same transmission times fcin packet as prescribed by the
ON algorithm. Similar to the only grid energy case, we show that competitive ratio of our
algorithm in this hybrid energy scenario is boundeddby + log P) for constantc > 1. Using
numerical results, we conclude that the competitive ratithe proposed algorithm is actually

very close tol for the considered examples, and it is expected to do welénanline setting.
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II. MODEL

We consider a single transmitter-receiver pair, that wamt®mmunicate” packets that arrive
within time [0, 7), with a common deadline df for all P packets, i.e., all packets should be
delivered by timeT. The number of bits in each packet is assumed to be equal. tdhe
transmitter is connected to two sources of energy througichwit extracts power: i) the grid
(conventional), and ii) a battery that is replenished by argy harvester that is powered by a
renewable energy source. Naturally, there is a cost ageddia the grid energy usage, whereas
renewable energy is available at zero cost. Thus, the dgdastto minimize the total grid energy
used to transmit thé packets by common deadline tinié

We use the Shannon formula = tlog (1 + £) to find the energy needed to sefubits in
time durationt, as

) =25~ 1)H (1)

The rate of power transfer is denoted As= .
We assume that the first packet arriveg at 0, and the inter-arrival time between tkié and

the (i + 1) packet is given by:;. Thus, a packet arrival sequence is represented as a sequenc

Ap = (ay,a3,as, ...,ap_1, ap),

P-1 P

where,a; > 0 and > a; < T and ) a; = T. We have introduced the extra time that
=1 =1

accounts for the time difference between the Ia&t" packet arrival at timey"/' a; and T,

See Fig[l for an illustration. LeA” be the set of sequences representing packet inter-arrival

times with number of packets equal ¢ i.e.,

P
Agz {(a'laa'Qva?)v"'va'P) | azZO,Zaz:T}
i=1

Since P andT are fixed, we will use justl and A instead ofAr and AL for simplicity.
Following prior work and to keep the system complexity lowe w@ssume that bits from
different packets cannot be transmitted at the same. Thatkeps are transmitted one after

another in a sequential fashion.

More generally with noise poweN, and bandwidthiV, f(t) = NoWt(25/") — 1)).
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Definition 1: For packeti, let s; > Z;;ll a; and f; be the start and the finish time of
transmission of packet respectively. Then we defing = f; — s; to be the transmission time
for packets.

Definition 2: With packet transmission timeg the total energy used by an online algorithm

ALG to transmit P packets is given

Eao (A) — Z 1k,

To distinguish the optimal offline algorith@PT from any online algorithm, lei; be the packet

transmission times o®PT, and total energy used QPT to transmit theP packets be

Bopr (4) = Y_ /().

Definition 3: The competitive ratio of algorithm ALG is defined as :

= Imax 7EALG (A)
HALG HeX Eopr(A)

whereOPT is the optimal offline algorithm.

The competitive ratio is the worst case ratio of the cost efdhline algorithm and the optimal
offline algorithm over all possible inter-arrival sequesicand has been used extensively to
guantify the performance of online algorithms.

We first consider the scenario where no energy harvestingagahle, and the objective is
to minimize the grid energy usage. In prior work [1], this Iplem has been addressed in the
offline scenario, where the inter-arrival time sequerces revealed ahead of time, non-causally.
We consider a more realistic online scenario, whdrés revealed causally, and where can
be arbitrary with no distribution information. To keep thelplem non-degenerate, however, we
assume that the number of packétds known ahead of time. In Remaltk 1, we show thaPif
is unknown, even ifP can take only two values {1,2}, the competitive ratio is unbounded
for any online algorithm.

Remark 1:If the number of packet$’ is not known ahead of time, then we show that the

competitive ratio of any online algorithm is unbounded. €ider the case wheR is either1

%For ease of exposition we have indexed packet$0as. ., P — 1}
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or 2, but that is unknown to the online algorithm ahead of timesAletT = 1. If P = 2,
then leta; = % Then until timet = % any online algorithm does not know whethr= 1 or
P = 2. Without this information, let any online algorithm spenteegy F; until time ¢ = % and
transmit By < B bits of the first packet.

Using the energy functiorf(¢) = ¢(25/* — 1), if P =1, i.e., no packet arrives at tinte= 1,
then the total energy used by the online algorithm is gived @y” — 1)+ 1 (22(max{B-5o.0}) _1),
while if P =2, itis 1(22% — 1) + 1(22(28-50) — 1), since from timet = 1 onwards it has to
transmit2B — B, bits in the left-over time intervall}, 1].

Moreover, since the optimal offline algorithm knows the éxadue of P ahead of time, the
total energy it spends i@F —1) if P =1, and(2?2 —1) if P = 2, since it transmits first packet
completely by time% knowing thatP = 2. Thus, the competitive ratio of any online algorithm

ALG is lower bounded by

UALG > minmax
Bo

%(22B0 _ 1) + %(22(2B—Bo) _ 1)
228 _ | '

b = 1) + 40 - )
2B —1 ’

It is easy to see that for any value Bjf, that the online algorithm chooses, the competitive ratio

grows exponentially ins.

[1I. NO ENERGY HARVESTING

In this section, we consider the case when no renewable esigigvailable, and the objective
is to minimize the grid energy usage for transmitting fegackets. Supposing that the inter-
arrival time sequencel is known ahead of time, an optimal offline algorithm has beernved
in [1], which we present here for completeness sake, as welah easier presentation of our

online algorithm.

A. Optimal Offline Algorithm

The optimum offline algorithn®PT for minimizing the total energy for transmitting packets

with a common deadline is given by Algorithm [1 [1]. Frohd (1f)js clear that transmitting at
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Algorithm 1: OPT

initialize ky = 0;

for j:=0to P—1do

k
1
miy1 = max T E Q. +i
J ke{123,..P—ki} | F =

Fiv = ke{1,21,§l,?f.}fp—kj} ke %iéakﬁi - mj“}
end
fori:=0to P—1do

d; = m; such thatk;_, <i < kj;
end

return (do, dy, ..., dp_1);

a slower rate (power), minimizes the energy required. SseguenceA is known ahead of
time, the OPT algorithm makes sure that the transmitter never idles bystratting at rate
(slower/faster) depending on the next packet arrival tigeage/short).

The offline algorithm computes the largest averageof partial sums ofa,;’s starting from
indexi = 1 to P, and sets the first transmission time, i.e. packet transoniggish time, equal
to m, for each of the firstt; number of packets, wherk, is the highest index such that the
average of partial sums af;’s is m,. It then repeats the same procedure after inbexThe
algorithm never idles and” packet is transmitted immediately after the transmissibithe
(i — 1)" packet ends.

The packet transmission times output 6T, d;’s, are such tha&:1 d; = T, since A is
known ahead of time, and the algorithm can ensure the ndnrgiqﬂro;;zgty.

Also, since the transmission &f* packet cannot start before its arrival, we also have that,

)4 )4
=1 =1
for any0 < ¢ < P — 1. Moreover, another useful property 6PT [1] is that,

dZZdZ_HV’L:O,l,P—l, (3)
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i.e., the transmission times decrease with the index of #mekgts, which is intuitive, since
otherwise we could stretch the transmission time and dsert®e energy usage. We will make
use of [B) repeatedly while analyzing the competitive raficghe ON algorithm.

Next, we present an important property of tB€T algorithm that will be useful for the
analysis of our online algorithm.

Lemma 1: [1] If the inter-arrival time sequencé is such that; > a;1, Vi=1,..., P—1,
then, d,_1(OPT) = «;, i.e., the optimal offline algorithm finishes each packetctlyaat the
arrival time of the next packet.

Proof: Note that theOPT algorithm computes the largest averages of partial sums'®f
in each round. For the case when> a;,,, then in each iteration ddPT, trivially, d;_; = a;,
by the definition of theOPT. [ |

Now, we describe our online algorithm call@N and then derive its competitive ratio.

B. Online AlgorithmON

In light of Remark 1, we assume thattat 0, the number of packet8 and common deadline
T are known. Let on arrival of a new packet at timpethe number of packets left to arrive be
P(t). Then the main idea behind the algorithm is that it assunegstie futureP(¢) packets are
going to arrive at equal intervals in the left-over timelof-¢, and attempts to finish transmitting
the current packet in timg% (transmission time). Since the inter-arrival time seqeeAds
unknown and arbitrary, this algorithm may have to idle, itean finish transmitting the current
packet before the next packet arrives, in which case it haséomore energy than required by
the OPT algorithm, that never idles. We later show that the comipetitatio of ON is no more
than1 + log P.

A more formal description of the algorithm is as follows. Tinansmitter starts sending the
first packet at time) with transmission time%. If the second packet arrives before the finish
time of the first packet, the second packet is added to theegaed waits for the current
transmission to complete. Once the first packet transnmssicomplete at tim%, the second
packet is transmitted with transmission time%).fSimiIarIy, for thei™* packet: if packet arrives

before timet = (i — 1)+, its added to the queue and transmitted starting from the &trwhich
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the (i — 1) packet’s transmission got completed with transmissioret%n If suppose, thg*"

packet arrives after the finish time of tfig— 1) packet. Then for the time between the arrival
of the j** packet and the finish time of thg — 1) packet, the transmitter has no packets in
the queue and is said to be ’idle’, and does not consume angrpwsuch a case, at the time

of the arrival of thej** packet at timezg':1 a;, we update :

J
T+T-) a,
i=1
P+ P—j

The algorithm now repeats the same procedure with the heand P, and outputs packet

transmission times;,i = j,..., P — 1.

i
T—> an
1

With algorithmON, the transmission time for th& packet is given byt; = min | #;_1, 5

or equivalently,

T_ n
T T—a T—ay—as 2a

ti: i =y ) PREES) .
M D P P P—i

Let the ratio of the remaining time and the number of packetsty arrive at the"” packet
4

T-3 an

arrival bexr, = —=— V0 < /¢ < P —1. Thent; can be expressed as :

t; = I?SI? () . (4)

Algorithm 2: ON

initialize to = %;
for i:=0to P—2do
T— ZZ: an

n=1

P—i !

ti—l—l = min tz s

end

return (to, ti,12,13, ..., tp_l);
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Compared to th®©PT algorithm, ON will pay a penalty, if the inter-arrival times are much
larger than its assumption of them being equally spaced. pemalty arises because in such
casesON has to idle, and consequently transmit packets in shorter tonsuming larger energy
compared to th©PT algorithm. We make this intuition concrete in Theorem 1, rehee show
that the worst case input that maximizes the competitivie far ON is of the type when the
inter-arrival times are decreasing, i.e;,> a;.1,7 = 0,..., P — 1. Whena; > a;;1, ON has
to idle after finishing every packet transmission. To ses, thith a; > a;,1, a; > T/ P, hence
ON idles from time7'/P (where it finishes the first packet transmission) dill From timea,
onwards,ON treatsa; as time0 and restarts the process, and hence has to idle after figishin
each packet transmission.

In Fig.[d, we give a concrete example of transmission timéd®wgehe ON algorithm and the
offline optimal algorithmOPT for a particular sequencd. The gaps in time-line foON are

because of its possible idling whi¢gbPT completely avoids.

I ,I ¢ ,I ________ I( ,F—, Packet

Arrival

R e ] e R e e I

k| 7

Figure 1. lllustration ofON andOPT for a particular inter-arrival sequence

C. Competitive Ratio Analysis &N

We now show that the worst case inter-arrival sequengs)(for algorithm ON is such

that a; > a;;1. This condition essentially implies that tH@N algorithm has to idle after
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finishing transmission of every single packet. To prove, twis show that given any inter-arrival
sequenced, we can construct another feasible inter-arrival sequetictor which a; > a;.1
and Eopt(A) = Eopt(A’), while the energy spent b®N increases in the latter case, i.e,
Eon(A) < Eon(A).

Lemma 2:Let A’ be the inter-arrival sequence that is output (packet trassan times) of
the optimal offline algorithmOPT with inter-arrival sequencd, i.e., A’ < OPT(A). Then, we

have
Eon(4) > Eon(A), (5)
Eort(A") = Eopr(A). (6)

Remark 2:Note thatA is a P-length sequence, but the last elementdofs auxiliary, since
packet( starts at time), and only the firstP — 1 elements represent the inter-arrival times of
P — 1 other packets. The outpytiy, ...,dp_1} of OPT(A) is of length P, with transmission
times for the successive packets. So when we consider outputGR®T(A) as an input tdON
or OPT, we mean thati;,, = d; fori =0,..., P — 1 andap =T — 3. a,.

Remark 3:From (3), we have that elements df are such thatly > d; > --- > dp_;. Thus,
Lemmal2 shows that with decreasing inter-arrival sequertbescompetitive ratio increases for
ON.

Now we present the proof of Lemma 2.

Proof: We prove this by showing that the packet transmission tinoeOPT remain the
same with A or A’, whereas they decrease fON with A’ in comparison toA. Let, A’ =
(do,dy,...,dp_1). Note thatd; > 0 and I_Dil d; = T, hence as explained in Remark 2, is a
valid packet arrival sequence, and the;;?ﬂree A.

Let, (t,)1_, and(#,)’_, be the packet transmission times setQdy for A and A, respectively.

We first prove that the energy consumed®l acting onA’ is greater with respect td by
showing that the transmission times for each packet deengad’, and hence the total energy

increases with respect td. From [4), we know that for packet inter-arrival time sequeed,
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with ON,

¢
T-5 ap
o n=1
xﬁ - P_g )
t; = IFSI?('TZ%
and,
¢
T->d,
x/ _ n=1
¢ P—(
r . /
t; = min(z))

Therefore, using (2), we have

l l
T—> a, T->d,
n=1 > 1
P = P4

Hence, by definition ofc,, z, > zj, V¢. Therefore,

. > . / .
min(z;) > min(z) Vi,

Since the energy function](1) is inversely proportionalremsmission time,

f&) = ft) Vi,

i f(t) = i f(t:),

Eon(A") > Eg(A).

Thus, we have proved](5).

13

From (3), we know thatd’ = {dy, ...,dp_1} is such thatl; > d;,,. Therefore, from Lemma

[, we have that wittOPT, the transmission times remain same for both packet seqaenand

A’. HenceOPT uses identical energy fod or A’, proving [6).
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Now, we show that the worst case packet sequence that maarthiz competitive ratio of
ON is such that;’'s are decreasing.

Theorem 1:Let A = {A € A: pon(A) > pon(4'), V A’ € A} be the set of inter-arrival
time sequences that have the worst competitive ratio.AgtC A be such that

P
AD: {(al,ag,...,&p) | a; Zai+l7zai:T},

i=1

Vi e {1,...,P}. Then
ANAp # ¢.

Theoren( ]l implies that at least one of the worst inter-arseguences belongs to s&iy.

Proof: Let A € A. Then consider
A"+ OPT (A),

i.e., A" is the output of theOPT given the inputA € A for ON. Note thatA™* € Ap from
(3). Using Lemmd 2, we haveion (A™") > Eon (A), while Egpt (A™") = Eox (A) from
Lemmall.

Hence,

Eon(A™") - Eon(A)
Eopt(A™®) = Eopr(A)’

and in particular

EON(Anew) > EON(A/)
Eopt(Amev) = Eopr(A’)’

for any A’ € A by the definition ofA. ThereforeA™* also belongs to4, and

ANAp # 6.

u

We now prove a useful result about packet transmission tseedy theON algorithm when
a;'s are decreasing.

Lemma 3:1f the inter-arrival time sequencd = (a;)._, € Ap, then{t;}5! = ON(A) is

such that
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Proof: Recall that forA = (ai)il € Ap, we have,a; > ay > --- > ap. Therefore, from
@),

ti = I{lgl?(xg)u

14
T— Z an 14 , .
wherez, = —=—. LetT" =T — " a, and P' = P — (. Hence,z, = %, and consider
. Zil n=1
N
_ n=1  _ T'—ap
Le+1 = "pg1 = “P-1 -
P V4
Note thatay 1 > apy0 > ... > ap_1 > ap. Hence(P — ) ay, > > a,=T-> a,, Plag, >
n=~0+1 n=1
. T/
T' or equivalently,a,y1 > +. As a result,
T —ap _ - 7
x = = — = XIy.
T -1 Pt
T— ZL: an
Hence,t; = min (z,) = z; = ———.
< -t

D. Competitive Ratio Computation

We are now ready to compute an upper bound on the competiie of theON algorithm,
by making use of Theorem 1, that states that the worst casalasequence foON is when
a; 2> Qiy1-

Theorem 2:The competitive ratio of thé®N algorithm is upper bounded by
pon < 1+1log(P).

Proof: We prove the Theorem via induction on the number of packetd-or ease of
exposition, we index the inter-arrival sequentéy the the number of packets it contains, i.e.,
A = A, if the number of packets inl are k. Using Theorenill, we will only consider inter-
arrival sequences belonging to,. ConsiderP = 1, where the first packet is available at time
0, and no more packets arrive thereafter. Hence bothOideand theOPT algorithms use the
same energy to transmit one packet, agl(A;) = 1.

Now, assume that the result holds for any sequetgef k packets, i.e.ion (Ax) < 1+

log (k), and consider a sequeneg_; of k + 1 packets.
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Let A(k + 1) = {A € Ak +1) : on(A) > pon(A) ¥ A € A(k +1)}, where

k41
Alk+1) = {(al,aQ, ey Qg Qpyt) g > O,Zai = T} ,

i=1

i.e., all possible inter-arrival sequences witht 1 packets. Recall thai,; is auxiliary since
packet0 arrives at timeD.

Let Ay, € A(k+1)NAp(k+1), whereAp(k +1) € A(k + 1) with a; > a;41, V i. The
setA(k+1)NAp(k+ 1) # ¢ from TheoreniIL.

Consider the output o®ON and OPT, if the input inter-arrival sequence i, i.e., let

(ti(k + 1)) < ON (4;.,) (7)
(di(k +1))i_g <= OPT (Af,y) (8)

where we have made explicit that the algorithm is workinghwiitt- 1 packets by indexing the
packet transmission times and d;, with the number of packets as(k + 1), andd;(k + 1),
respectively.

Since A;,, = (a}, a3, a3, ...,a},,) is such thata} > a7, ,, V i, we consider the new (sub)-
sequenceA; = {a3,a3,...,a; .} of k packets, wherd’ = S ¥) ar. Hence with A;, the 0"
packet arrives at time, the first packet arrives at timg and so on, and;,_, is the auxiliary
time, i.e. after allk packets have arrived till". See Fig[ R, for a pictorial description of the

construction.

. . . . .
a, a, a, py ap
> < > < O
> < > < >
t=0 t=T
.
a, ags ap ap
-

t=0 t=T=T-a

Figure 2. lllustration of the construction used in the induction steproof of TheoreriP.
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Since A, hask packets and;’s are decreasingd; € Ap(k). Therefore, from Lemmal 3 and
Lemmall,

ON(A) = (t(k),p » 9)
OPT (4) = (di(k)iy (10)

respectively, where more importantly, the corresponding
ti(k+1)=t;(k),i=0,... k-1, (11)

in (@) and [[9), and

in @) and [10). That is, the transmission times to transhétlastk packets ofA;_; used by
both theON and theOPT are identical to the transmission timeskopackets ofA}, respectively.
This is the key step of the proof to proceed via inductiont tkanade possible via Lemnia 3
and Lemmdll as a result of the worst case input arrival seguieelonging toA . Using the
induction hypothesis, we have that the competitive ratiONffor A; with k& packets is bounded
by 1 + log (k).
Now consider the competitive ratio 6N for A;_. , with £ + 1 packets, i.e.,
> 6k + 1)

HON (AZ.H) = & )
;) fdi(k + 1))

which on expanding gives
k

f (to(k +1)) + 3 f (ti(k + 1))
pon (Aiy) = — : (13)
> f (di(k + 1))

1=0

Now from (11) and[(1R), recall that; ,(k+ 1) = ¢;(k) for i =0,...,k—1, andd;1(k+ 1) =

d;(k) for i = 0,...,k — 1. Hence the corresponding energy functions are also idgniie.

fltii(k+1)) = f(t:(k)) and f(dis1(k + 1)) = f(di(k)), for i =0,..., k — 1. Therefore, from
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(A3), we haveuon (4;, ;)

f%%+m+§fW@)

Flofh+ )+ X 7 ()

k—1

S (to(k +1)) + (1 +log (k) > f (di(k))
1=0 7 (14)

f%%+m+§f@W)

where the inequality follows from the induction hypothesiat states tha®N(A;) < 1+log (k).

IA

Hence, rewriting[(14),

pon (Ap1) = (1+1log(k)) +
f(to(k+1)) = (1 +log (K)) f(do(k + 1))

f%%+m+§f%®)

;f (di(k+1))

f (75)
h+1)f (&)
1

= 14log (k) + ——
+og()+k+1,

Y

IA

< (1+log(k))+

(0)
< l14log(k+1),

where in (a) the numerator follows sincé (k + 1) = k+1 from Lemma[iB because of;, >

a;41, and the denominator follows from the convexity £ ), =5 Z fldik+1)) > f (7).

k+1

whereas, (b) follows from the fact thagf tdr > 25 (k+1—k) = 5, log (k + 1) —log (k) >

1 ]

F+1
Discussionin this section, we proposed a simple online algorithm tsatines that the future

packets arrive at equal time intervals and derived its cditiyeeratio. Since no information is
available about the packet arrival times, it is a naturadtegy. We first showed that the worst
case input sequence for this algorithm is when the intevartimes are decreasing, in which

case the algorithm has to idle for some time at the end of eackep transmission. This result
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was key in deriving the competitive ratio of this algorithmdashow that it scales logarithmic
in the number of packets, and is independent of the commodlidea

To the best of our knowledge our theoretical bound on the @titiye ratio without assuming
anything about the inter-arrival times is the first such lesto complete the characterization
of online algorithms for this classical packet schedulimghfem, a matching lower bound on
the competitive ratio would have been useful. However, enity that is beyond the scope of
this paper and it is unclear whethér- log P is the best competitive ratio or not. For similar
scheduling and load balancing problems|[21]+-[23], the Ilggnsoretically) known competitive
ratios also scale logarithmically in the quantity of intree.g. number of users/packets, etc. In
the next section, we consider a more general framework, avaeradditional renewable energy

source is available and the objective is to minimize the usgrid energy.

IV. GRID + ENERGY HARVESTING

In this section, we generalize the packet scheduling probihen there are two sources
of energy; conventional (grid) and renewable (EH). The Eldrgy is stored in a battery, and
replenished at each subsequent energy arrival subjecetbattery constrain&()nce again the
object of interest is to minimize the use of grid energy imsmitting the P packets within
common deadline tim&’, but now in the presence of the EH source, thereby exploé@sgiuch
EH energy as possible.

Similar to RemarK 11, one can show that if the EH energy arra@bchs and amounts are
arbitrary, then the competitive ratio of any online algaomitwill be arbitrarily large. For example,
if large amount of renewable energy arrives close to the ldeadime of 7', then any online
algorithm may not use all of that energy, while the optimdliré algorithm will, making the
competitive ratio large.

Thus, we restrict ourselves to the case when the amount ofriekyy that arrives at any time
t is a random variable that is identically distributed acrosege, but whose distribution may or

may not be known ahead of time to the online algorithm. To @xphe EH energy, we propose

3We assume that the battery capacity is large enough and ér meerflows.
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a natural greedy extension OfN, call it EH — ON, that uses as much EH energy as possible
while following the power profile of the earlier proposed iael algorithmON. As before, the

information about energy arrivals and packet arrival tinsegevealed causally.

A. Online Algorithm EH- ON

The transmission time set by the proposed online algorittin-EON with EH is identical to
the online algorithnON without EH. Therefore, the power profile (the power transmitat any
time) of EH— ON is identical to that of th€®N algorithm. The only non-trivial decision to make
is: which energy source to use at each time to support the ppredile set byON. For that
purpose, with EH- ON, the transmitter follows a greedy policy and uses the reb&venergy
from the battery for as long as possible to support the powefil of ON. The transmitter
disconnects from the battery only when there is no energhenbattery and switches over to
the grid.

Let ¢; denote the transmission time of tifé packet fromON, and letR; denote the power
(energy/time) used to transmit tié packet byON. Letn(i) be the number of renewable energy
arrival instants during the transmission of tie packet, i.e. within time intervals;, f;] set by
the ON algorithm, where the/’ EH energy arrival instant happens at time with amount
Eij,j=1,...,n(i). Let E¥ be the total EH energy arrived after the transmissioit'opacket
and before the start of the transmission(of+ 1)"* packet. LetB; represent the total energy
present in the battery at the start of the transmissiorit’ofoacket. LetB. be the energy
capacity of the battery. Algorithm EIN describes how the renewable energy is used. The
basic idea of this algorithm is to use renewable energy asklyuas possible and for as long
as possible, to minimize the grid energy, whéferepresents the grid energy used to transmit
packeti. The algorithm describes when to use the EH energy and tdeegergy, respectively.

We next show that under some natural assumptions on the Htlgorocess, we can show
that the EH— ON algorithm has a competitive ratio ef1 + log P), wherec is a constant. So
essentially, both the EH ON and theON have competitive ratios that scale identically in the
number of packetd.

Consider the optimal offline algorithm with EH, EH OPT. Clearly, for any packet inter-
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Algorithm 3: EH-ON

initialize to >> L, ey = E® =0, Gy = f (to);

Ey, : k' energy arrival during packet transmission;

n(i) : total number of energy arrivals durin§ packet transmission;

E9e : total harvested energy that arrives after the completioit"opacket but before the
start of transmission of thé + 1) ** packet, its0 if there is no idling time;

for i :=1to P do

i—1
T— Z ap
=1

ti=min | 41, s |

Use powerR; = £ to transmit packet;
B; = min (Bmax, Bi-1 + B3 4+ Gioq — f (ti-1));
for j:=1ton(i) do

B = max <Bmax, iii Ey + Bi);

e; = max (ej_1, 7,;R; — B);

_ (Tii—mij-1)Ri—(ej—e;—-1).
= B :

w
Use EH source in time intervat; ;_,, 7, ,_1 + w);
Use Grid energy source in time interval ;_; + w, 7 ;1;

end

n(i)
B = max (BmaXa Z Ei, + Bi) ;
k=1

G; = max (en), f (ti) — B);

end

arrival sequencel, the total energy (grid + EH) used by EHOPT is EZ,_opt = Edpr, Where
E&pr is the total energy needed by the optimal offline algoritBfT in the no EH case. Let
the optimal grid energy that EH OPT uses beG2, opt-

Let the sum of all the EH energy that arrives in time interiéall’/2| be E,, and that arrives

in time interval[1'/2, T] be E,., respectively. Then the following remark is in order.
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Remark 4:Let all the EH energy, + E, that actually arrives over several instants in interval
[0,7] be made available to EH OPT at time¢ = 0 itself. Then it follows that the grid energy
used by the EH- OPT is lower bounded by§pr — (E, + E,.).

To keep the competitive ratio non-trivial, for a fixed packeer-arrival time sequencd, we

have to assume that for any realization of EH energy arrivals

Equivalently this condition implies that only EH energy istrsufficient for the optimal offline
algorithm to transmit all the” packets, even if all the EH energy is available at tinéf this
condition is violated, then any online algorithm cannot benpetitive.

Assumption l:iLetn = E (E,) = E(E,). We assume that

(m — 1)Egpy

<
" 2m

(15)

for some constantn > 1 and anyA. It is a reasonable assumption since the amount of EH
energy arriving at any time does not depend on the numberaieps, while the total energy
needed (grid + EHYopt is increasing inP. Since P is typically large, it is safe to make this
assumption. It is also important to make this assumptiogesotherwise the actual grid energy

used by the optimal offline algorithm
EéPT - (EZ + Er)

can be arbitrarily small, making the online algorithm havieitaarily bad competitive ratio.

Theorem 3:Under Assumptior]l, the competitive ratio of EHON is upper bounded by
m(1 + log P), for smallestn > 1 that satisfies Assumptidg 1.

Proof: From Remark, recall that the total enerfy,_opt used by EH- ON is such that
Een_opt > E¢ + E,, since otherwise the competitive ratio can be unbounded.

Let the energy that the algorith@N (Section Ill-B) uses without any EH energy for packet
inter-arrival time sequencd in time interval(0, /2], be E§, , and in time interva[T'/2, T be
E§n. respectively. By the definition d®N, it is easy to follow that for anyl, E§y , < Edy.,.
since otherwise we can increase the packet transmissies tihile decreasing the overall energy

requirement.
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Recall that the total energy used by EHON is same as the total energy used O to
transmit all theP packets, only EH- ON sources some of its energy requirement from the EH

source. Therefore, from the optimality of EHOPT,
EéN,e + EéN,r > Een-opr-
Hence it follows that

EéN,Z + EéN,r > Ey+ E,

—
S]
N

2EﬂéN,r

v

EZ +Er7

E,+ E,
2 Y

A
EON,r

v

where (a) follows sinceEgy , < E{y .- In particular,

e > 2
which implies that the amount of energy used by EKDN in time-interval[T'/2, T is at least
half the energy that arrives in intervdl, 7'/2]. Since EH— ON is a greedy algorithm in terms
of using the EH energy, and all df, is available at time = 7'/2, it follows that EH— ON uses
at leastE,/2 amount of EH energy by the deadliffé Therefore the grid energ§on used by
EH — ON is at mostEgy , + Egy . — Ei/2.

Moreover, we know that the grid energy used by EHDPT is at leastEg,r — (E, + E,)
which by definition is positive. Since the EH energy arrivabgess has identical distribution
across time, we have that

E{E, + E,} = AE{E,/2} (16)

Therefore, the expected competitive ratio for EHON

_ E{Gon}
~ E{Gen-ort}’
EéN,Z + EgN,r —E{E,/2} (17)
= Egpr —E{E,+ E,}
From Assumptiomld,
0 < (m — 1) Egpy (18)

2m
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for some constanin and any A. Therefore, multiplying and dividing by1 + log P) and
subtractingl /2 from the denominator if_(18), we get

(m — V(1 + log P) By
~ 2m(l+logP)—-1

(19)

which on rewriting is equivalent to

(1 +log P) E§pr — ¢
EéPT —2n

<m(1+logP). (20)

A A
From Theorend |2, we know thaﬁ%&)’w < 1+1log P, and hence the RHS df (20) is equal to

OPT

LHS of (I7), and we get that for some constant> 1,
w<m(l+logP). (22)

Discussion:In this section, we considered the case when energy fromthetigrid and an EH
source is available. In this scenario, the biggest chadldog any online algorithm is to ensure
that enough EH energy is used up and the leftover EH energynsniaed, since the optimal
offline algorithm is going to completely use up all the EH gyefTo keep the competitive ratio
non-trivial, we assumed that the total energy arriving fritta EH source is not too large and
the optimal offline algorithm has to use ’significant’ grideegy to transmit all theP packets.
To ensure that enough EH energy is used, we proposed a gretetgion of theON algorithm
that uses the same power transmission profile and transemiigies as prescribed by ti&N
algorithm, and sources its energy requirement from the Hhcgoas long as possible, otherwise
uses the grid energy source. Under this assumption, we shtivaeé the new online algorithm
EH—ON at least uses half of the EH energy arriving in the first halfhaf deadline time, while
the optimal algorithm can at most use all the energy thatesriill the deadline time. Since the
EH energy arrivals are identically distributed across tithés allows us to reuse the competitive
ratio bound that we derived on ti@&N algorithm to show that the competitive ratio of EHON
is at most some constant timés+ log P). Thus, both theON and its greedy extension have

the same scaling in the competitive ratio as a function ofrilnber of packets.
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V. SIMULATIONS

In this section, we provide numerical results to better ustded the competitive ratio @N.
For all simulations without energy harvesting, we assunag tihe packet inter-arrival times
are exponentially distributed with meahy P, andT = 100 secs, packet siz& = 200kb and
the number of packets are taken to 2i¥). Moreover, noise power spectral density is taken to
be 1071 Watt/Hz and bandwidth- IMHz. In Fig.[3, we plot the (simulated) competitive ratio
of ON together with the theoretical bound df+log P. We see that the competitive ratio ON
is close tol (optimal), and much smaller than the theoretical bounibgfP.

In Fig.[4, we also plot the competitive ratio for the worsteasquence; > a,,, as a function
of P, where for each value aP, the worst values of; are found via optimization. In particular,
we start with inter-arrival times, are exponentially distributed with med&ry P, and then steer
the inter-arrival times in the direction of increasing thempetitive ratio via gradient descent
algorithms. We restrict to small values &f, since otherwise the optimization for finding the
worst casez; is prohibitive. Even for this case, the competitive ratioQi is fairly close tol.

In Figs.[5 and 6, we plot the competitive ratio performanc©®ANfwhile varying the deadline
timesT" and packet size#, together with the theoretical upper bound. From all theréguit
is clear thatON performs very close to the optimal.

For the hybrid energy arrival scenario, we assume that tloggbanter-arrival times:; are
exponentially distributed with meafi’/P, EH energy inter-arrival epochs are exponentially
distributed with meaf’/(IN+1), whereN = 20 (if not varied) is the total number of EH epochs.
Moreover, the amount of energy arrival at each EH epoch © etponentially distributed with
mean10 mJ. Once again we usé = 100 secs, while larger packet size 8f= 500 kb and the
number of packets are taken to b@0. In Fig.[d, we plot the (simulated) competitive ratio of
EH — ON together and observe that similaN it is very close to the optimal. In Fig] 8 we plot

the competitive ratio of EH- ON as a function of average energy harvested.

VI. CONCLUSIONS

In this paper, we considered the online setting of a clakgigdblem of minimizing energy

for transmitting multiple packets given a common deadlwéhout making any assumptions
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Figure 3. Competitive ratio of th@©N with different number of packets”) and the theoretical upper bound.
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Figure 4. Competitive ratio of th©N with different number of packetd®) under worst case input of inter-arrival time > a;41.

on the packet inter-arrival times. We showed that even fo tfost general input model, the
proposed algorithn®N, has a competitive ratio that only grows logarithmicallytwihe number
of packets and is independent of the common deadline. Thelaied performance of the

proposed algorithm is far better than the theoreticallyrgoieed performance, and for most
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Figure 5. Competitive ratio of th@©N with different deadline time6I") and the theoretical upper bound.
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Figure 6. Competitive ratio of th@©N with different packet sizeGB) and the theoretical upper bound..

cases it is very close to the optimal. Thus, a natural quegtiat remains open is : whether

the competitive ratio analysis of tH@N can be tightened to show that it is a constant, or can a

lower bound be derived that shows that no online algorithm ltave competitive ratio smaller

than logarithm of the number of packets. For the hybrid eneage, where both conventional

August 11, 2018 DRAFT



28

Competitive ratio
[ [ = I
= N N N o P
[N [N S > P
T T T ;

(g

o

=
T

1 i i i i i
200 250 300 350 400 450 500
Number of packets

Figure 7. Competitive ratio of the EH- ON with different number of packetB.
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Figure 8. Competitive ratio of the EH- ON with different average energy harvested.

and renewable energies are available, we show that a nafeadly extension oON has very

similar theoretical performance, is and very close to thinogd numerically.

August 11, 2018 DRAFT



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

29

REFERENCES

E. Uysal-Biyikoglu, B. Prabhakar, and A. El Gamal, “Eggrefficient packet transmission over a wireless liHEEE/ACM
Transactions on Networking (TONjol. 10, no. 4, pp. 487-499, 2002.

L. Miao and C. G. Cassandras, “Optimal transmission dalieg for energy-efficient wireless networks.” INFOCOM,
2006.

M. Zafer, E. Modianoet al, “A calculus approach to minimum energy transmission pedicwith quality of service
guarantees,” ifNFOCOM 2005. 24th Annual Joint Conference of the IEEE Cdempand Communications Societies.
Proceedings IEEEvol. 1. IEEE, 2005, pp. 548-559.

W. Chen, M. J. Neely, and U. Mitra, “Energy efficient schédg with individual packet delay constraints: offline and
online results,” iNINFOCOM 2007. 26th IEEE International Conference on Corap@ommunications. |IEEE |EEE,
2007, pp. 1136-1144.

M. Agarwal, V. S. Borkar, and A. Karandikar, “Structurpfoperties of optimal transmission policies over a rangoml
varying channel,’Automatic Control, IEEE Transactions pwol. 53, no. 6, pp. 14761491, 2008.

R. Berry, “Optimal power-delay tradeoffs in fading chmis?small-delay asymptoticsfhformation Theory, |IEEE
Transactions onvol. 59, no. 6, pp. 3939-3952, 2013

J. Lee and N. Jindal, “Asymptotically optimal policiesrfhard-deadline scheduling over fading channdisformation
Theory, IEEE Transactions owol. 59, no. 4, pp. 2482-2500, 2013.

M. J. Neely, “Opportunistic scheduling with worst casglay guarantees in single and multi-hop networks INFOCOM,
2011 Proceedings IEEE IEEE, 2011, pp. 1728-1736.

——, “Optimal energy and delay tradeoffs for multiuser@less downlinks,Information Theory, IEEE Transactions ,on
vol. 53, no. 9, pp. 3095-3113, 2007.

R. Srivastava and C. E. Koksal, “Energy optimal trarssiin scheduling in wireless sensor networkg/ireless
Communications, IEEE Transactions,arol. 9, no. 5, pp. 1550-1560, 2010

J. Gong, S. Zhou, and Z. Niu, “Optimal power allocatioor fenergy harvesting and power grid coexisting wireless
communication systemsCommunications, IEEE Transactions,orol. 61, no. 7, pp. 3040-3049, 2013.

J. Yang and S. Ulukus, “Optimal packet scheduling in aergy harvesting communication systenfdmmunications,
IEEE Transactions gnvol. 60, no. 1, pp. 220-230, January 2012.

R. Vaze, “Competitive ratio analysis of online algbrits to minimize packet transmission time in energy hamgsti
communication system,” iNFOCOM, 2013 Proceedings IEERpril 2013, pp. 115-1123.

F. Shan, J. Luo, W. Wu, M. Li, and X. Shen, “Discrete ratheduling for packets with individual deadlines in energy
harvesting systems3elected Areas in Communications, IEEE Journglai. 33, no. 3, pp. 438-451, 2015.

0. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yefi@ransmission with energy harvesting nodes in fading less
channels: Optimal policies Selected Areas in Communications, IEEE Journalmi. 29, no. 8, pp. 1732-1743, 2011.
M. A. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optial packet scheduling on an energy harvesting broadcast link
Selected Areas in Communications, IEEE Journalai. 29, no. 8, pp. 1721-1731, 2011.

J. Yang and S. Ulukus, “Optimal packet scheduling in dtiple access channel with energy harvesting transmijtters

Communications and Networks, Journal @bl. 14, no. 2, pp. 140-150, 2012.

August 11, 2018 DRAFT



30

[18] O. Ozel, J. Yang, and S. Ulukus, “Optimal broadcast daliag for an energy harvesting rechargeable transmitiér &
finite capacity battery,Wireless Communications, IEEE Transactions wol. 11, no. 6, pp. 2193—-2203, 2012.

[19] M. Antepli, E. Uysal-Biyikoglu, and H. Erkal, “Optimadacket scheduling on an energy harvesting broadcast B#técted
Areas in Communications, IEEE Journal,orol. 29, no. 8, pp. 1721-1731, September 2011.

[20] Y. Cui, V. K. Lau, and Y. Wu, “Delay-aware BS discontirus transmission control and user scheduling for energy
harvesting downlink coordinated mimo systenSifnal Processing, IEEE Transactions, aol. 60, no. 7, pp. 3786-3795,
2012.

[21] Y. Azar, A. Z. Broder, and A. R. Karlin, “On-line load tmicing,” Theoretical Computer Scienceol. 130, no. 1, pp.
73-84, 1994,

[22] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waartsp*“lihe routing of virtual circuits with applications to Iddalancing
and machine schedulingJournal of the ACM (JACM)vol. 44, no. 3, pp. 486-504, 1997.

[23] O. Gobel, M. Hoefer, T. Kesselheim, T. Schleiden, and\®cking, “Online independent set beyond the worst-case:
Secretaries, prophets, and periods,’Automata, Languages, and ProgrammingSpringer, 2014, pp. 508-519.

August 11, 2018 DRAFT



	I Introduction
	II Model
	III No Energy Harvesting
	III-A Optimal Offline Algorithm
	III-B Online Algorithm ON
	III-C Competitive Ratio Analysis of ON
	III-D Competitive Ratio Computation

	IV Grid + Energy Harvesting
	IV-A Online Algorithm EH-ON

	V Simulations
	VI Conclusions
	References

