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Abstract

The problem of online packet scheduling to minimize the required conventional grid energy for

transmitting a fixed number of packets given a common deadline is considered. The total number

of packets arriving within the deadline is known, but the packet arrival times are unknown, and can

be arbitrary. The proposed algorithm tries to finish the transmission of each packet assuming all future

packets are going to arrive at equal time intervals within the left-over time. The proposed online algorithm

is shown to have competitive ratio that is logarithmic in thenumber of packet arrivals. The hybrid energy

paradigm is also considered, where in addition to grid energy, energy is also available via extraction

from renewable sources. The objective here is to minimize the grid energy use. A suitably modified
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version of the previous algorithm is also shown to have competitive ratio that is logarithmic in the

number of packet arrivals.

I. INTRODUCTION

Minimizing energy consumption under delay constraints is aclassical resource allocation

problem, which has been very well studied in literature [1]–[10]. Shorter the delay, larger is the

energy required, and clearly, there is a tradeoff between these two fundamental quantities. The

problem is even more important for the modern setup, where devices are increasing becoming

smaller with limited battery sizes, and where effective energy utilization is fundamental for

efficient network operation by maximizing the node lifetimeand consequently expanding the

network lifetime.

The energy-delay tradeoff has been studied in variety of settings. For example, for an AWGN

channel, [1] studies the packet scheduling problem for minimizing transmission energy, where a

fixed number of packets arrive successively in time, and haveto be transmitted before a common

deadline. Assuming that packet arrival times are known ahead of time (called the offline setting),

an optimal algorithm is derived in [1]. A more general problem than studied in [1], is where

each packet has an individual hard deadline [2], [3]. With individual hard deadlines, the optimal

algorithms are known in the offline setting [2], [3], or when the packet arrival times are i.i.d.

and follow a given distribution [4].

Similar results are available for fading/time-varying channels, where typically an average

delay constraint is considered [5], [10], [11], and the problem is to minimize the average power

consumption. A hard deadline result is also known from [7]. Amore specific case of energy-delay

tradeoff with ’small’ delay constraint has been addressed in [6] for the fading channels.

The energy-delay tradeoff problem becoming even more challenging, when in addition to

the conventional grid energy there is an additional energy source that is powered by renewable

energy, popularly called as energy harvesting (EH). The problem of minimizing transmission

time/delay when only an EH source is available has been well studied in literature. For example,

for the AWGN channel, an optimal offline algorithm has been derived for a single transmitter-

receiver pair in [12], whose online counterpart that is2-competitive for arbitrary energy arrivals

August 11, 2018 DRAFT



3

has been found in [13]. With only an EH source, the problem of multiple packet transmissions

with individual hard deadlines has been studied recently in[14]. Similarly, for the fading channel,

an optimal offline algorithm has been derived for a single transmitter-receiver pair in [15], while

for broadcast and MAC channels in [16]–[19].

The problem where both the grid and the EH energy are concurrently available is relatively less

well-studied and is inherently a hard problem. Starting with [20], some progress has been made

in [11], where optimal offline (under some conditions on battery size etc.), and two heuristic

online algorithms are derived. The general online problem has remained unsolved.

In this paper, when only grid energy is available, we first consider the classical packet

scheduling problem for minimizing transmission energy [1], where a fixed number of packetsP

arrive successively in time, and have to be transmitted before a common deadlineT . In contrast

to the offline case studied in [1], in this paper, we consider the more realistic and challenging

online scenario, where information about packet arrivals is knownonly causally. Moreover,

unlike [4], we do not make any stochastic assumptions on the inter-arrival times for the packets,

and consider the arbitrary packet inter-arrival time case,where even an adversary can choose

them. Thus, our model is the most general one, and is applicable for any setting where packet

inter-arrival times are time-variant or difficult to estimate etc.

To characterize the performance of an online algorithm, we consider the metric of competitive

ratio that is defined as the ratio of the energy used by the online algorithm and the offline optimal

algorithm, maximized over all packet inter-arrival time sequences. The competitive ratio is a

worst case guarantee on the performance of an online algorithm and is independent of modeling

assumptions.

We assume that att = 0, the number of packetsP and common deadlineT are known. We

show in Remark 1, that ifP is not known ahead of time, then the competitive ratio of any online

algorithm is unbounded. Let on arrival of a new packet at timet, the number of packets left to

arrive beP (t). Then the main idea behind the proposed algorithmON is that it assumes that

the futureP (t) packets are going to arrive at equal intervals in the left-over time ofT − t, and

attempts to finish transmitting the current packet in timeT−t
P (t)+1

. Since the future inter-arrival time

sequence is unknown and arbitrary, algorithmON may have to idle, i.e. it can finish transmitting
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the current packet before the next packet arrives, in which case it has to use more energy than

required by the optimal offline algorithm, that never idles.We show that the competitive ratio

of theON algorithm is no more than1 + logP , whereP is the total number of packets.

Note that the derived competitive ratio is independent of the common deadline timeT , and

the number of bits contained in each packet. Ideally, we would also have liked the competitive

ratio to be independent ofP and be a constant, however, for many similar scheduling and load-

balancingonlineproblems, the best results on competitive ratio also scale logarithmically in the

number of packets/users (equivalent quantity of interest)[21]–[23]. We would like to note that

1+logP is the best bound we can show theoretically for theON algorithm, however, simulations

suggest that the competitive ratio ofON is far better than that and is close to1 for the examples

considered.

Our derived results are for the most general input setting for this classical problem, and to the

best of our knowledge no online algorithms with provable guarantees on the competitive ratios

are known in the literature.

Next, we generalize the energy arrival paradigm, and consider the same problem of minimizing

energy for transmitting multiple packets given a common deadline, when energy from both the

grid and the EH source is available. In this hybrid energy source scenario, if the energy harvesting

profile is arbitrary, then it is easy to see that no online algorithm can have bounded competitive

ratio, since if large amount of EH energy arrives close to thedeadline, the offline algorithm will

use it intelligently, while the online algorithm may not. Thus, for this case, one has to make the

assumption that the EH energy profile is stochastic, and energy arrivals are identically distributed

across time. The inter-arrival times are still allowed to bearbitrary. We propose a natural greedy

extension of theON algorithm, that uses the EH energy as quickly as possible andfor as long

as possible while keeping the same transmission times for each packet as prescribed by the

ON algorithm. Similar to the only grid energy case, we show thatthe competitive ratio of our

algorithm in this hybrid energy scenario is bounded byc(1 + logP ) for constantc > 1. Using

numerical results, we conclude that the competitive ratio of the proposed algorithm is actually

very close to1 for the considered examples, and it is expected to do well in the online setting.
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II. M ODEL

We consider a single transmitter-receiver pair, that wantsto communicateP packets that arrive

within time [0, T ), with a common deadline ofT for all P packets, i.e., all packets should be

delivered by timeT . The number of bits in each packet is assumed to be equal toB. The

transmitter is connected to two sources of energy through which it extracts power: i) the grid

(conventional), and ii) a battery that is replenished by a energy harvester that is powered by a

renewable energy source. Naturally, there is a cost associated to the grid energy usage, whereas

renewable energy is available at zero cost. Thus, the objective is to minimize the total grid energy

used to transmit theP packets by common deadline timeT .

We use the Shannon formulaB = t log
(

1 + E
t

)

to find the energy needed to sendB bits in

time durationt, as

f(t) = t(2B/t − 1).1 (1)

The rate of power transfer is denoted asR = E
t
.

We assume that the first packet arrives att = 0, and the inter-arrival time between theith and

the (i+1)th packet is given byai. Thus, a packet arrival sequence is represented as a sequence

:

AP = (a1, a2, a3, ..., aP−1, aP ),

where,ai ≥ 0 and
P−1
∑

i=1

ai < T and
P
∑

i=1

ai = T . We have introduced the extra timeaP that

accounts for the time difference between the last (P th) packet arrival at time
∑P−1

i=1 ai andT .

See Fig. 1 for an illustration. Let∆T
P be the set of sequences representing packet inter-arrival

times with number of packets equal toP , i.e.,

∆T
P =

{

(a1, a2, a3, ..., aP ) | ai ≥ 0,
P
∑

i=1

ai = T

}

.

SinceP andT are fixed, we will use justA and∆ instead ofAP and∆T
P for simplicity.

Following prior work and to keep the system complexity low, we assume that bits from

different packets cannot be transmitted at the same. Thus, packets are transmitted one after

another in a sequential fashion.

1More generally with noise powerN0 and bandwidthW , f(t) = N0Wt(2B/(tW ) − 1)).
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Definition 1: For packeti, let si ≥
∑i−1

j=1 aj and fi be the start and the finish time of

transmission of packeti, respectively. Then we defineti = fi − si to be the transmission time

for packeti.

Definition 2: With packet transmission timesti, the total energy used by an online algorithm

ALG to transmitP packets is given by2

EALG (A) =

P−1
∑

i=0

f(ti).

To distinguish the optimal offline algorithmOPT from any online algorithm, letdi be the packet

transmission times ofOPT, and total energy used byOPT to transmit theP packets be

EOPT (A) =
P−1
∑

i=0

f(di).

Definition 3: The competitive ratio of algorithm ALG is defined as :

µALG = max
A∈∆

EALG(A)

EOPT(A)
,

whereOPT is the optimal offline algorithm.

The competitive ratio is the worst case ratio of the cost of the online algorithm and the optimal

offline algorithm over all possible inter-arrival sequences, and has been used extensively to

quantify the performance of online algorithms.

We first consider the scenario where no energy harvesting is available, and the objective is

to minimize the grid energy usage. In prior work [1], this problem has been addressed in the

offline scenario, where the inter-arrival time sequenceA is revealed ahead of time, non-causally.

We consider a more realistic online scenario, whereA is revealed causally, and whereA can

be arbitrary with no distribution information. To keep the problem non-degenerate, however, we

assume that the number of packetsP is known ahead of time. In Remark 1, we show that ifP

is unknown, even ifP can take only two values∈ {1, 2}, the competitive ratio is unbounded

for any online algorithm.

Remark 1: If the number of packetsP is not known ahead of time, then we show that the

competitive ratio of any online algorithm is unbounded. Consider the case whenP is either1

2For ease of exposition we have indexed packets as{0, . . . , P − 1}
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or 2, but that is unknown to the online algorithm ahead of time. Also let T = 1. If P = 2,

then leta1 = 1
2
. Then until timet = 1

2
, any online algorithm does not know whetherP = 1 or

P = 2. Without this information, let any online algorithm spend energyE1 until time t = 1
2

and

transmitB0 ≤ B bits of the first packet.

Using the energy functionf(t) = t(2B/t − 1), if P = 1, i.e., no packet arrives at timet = 1
2
,

then the total energy used by the online algorithm is given by1
2
(22B0−1)+ 1

2
(22(max{B−B0,0})−1),

while if P = 2, it is 1
2
(22B0 − 1) + 1

2
(22(2B−B0) − 1), since from timet = 1

2
onwards it has to

transmit2B − B0 bits in the left-over time interval[1
2
, 1].

Moreover, since the optimal offline algorithm knows the exact value ofP ahead of time, the

total energy it spends is(2B−1) if P = 1, and(22B−1) if P = 2, since it transmits first packet

completely by time1
2

knowing thatP = 2. Thus, the competitive ratio of any online algorithm

ALG is lower bounded by

µALG ≥ min
B0

max

{

1
2
(22B0 − 1) + 1

2
(22(B−B0) − 1)

2B − 1
,

1
2
(22B0 − 1) + 1

2
(22(2B−B0) − 1)

22B − 1

}

.

It is easy to see that for any value ofB0 that the online algorithm chooses, the competitive ratio

grows exponentially inB.

III. N O ENERGY HARVESTING

In this section, we consider the case when no renewable source is available, and the objective

is to minimize the grid energy usage for transmitting theP packets. Supposing that the inter-

arrival time sequenceA is known ahead of time, an optimal offline algorithm has been derived

in [1], which we present here for completeness sake, as well for an easier presentation of our

online algorithm.

A. Optimal Offline Algorithm

The optimum offline algorithmOPT for minimizing the total energy for transmittingP packets

with a common deadline is given by Algorithm 1 [1]. From (1), it is clear that transmitting at
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Algorithm 1: OPT

initialize k0 = 0;

for j := 0 to P − 1 do

mj+1 = max
k∈{1,2,3,...,P−kj}

{

1
k

k
∑

i=1

akj+i

}

kj+1 = max
k∈{1,2,3,...,P−kj}

{

k : 1
k

k
∑

i=1

akj+i = mj+1

}

end

for i := 0 to P − 1 do

di = mj such thatkj−1 < i ≤ kj ;

end

return (d0, d1, ..., dP−1);

a slower rate (power), minimizes the energy required. SincesequenceA is known ahead of

time, theOPT algorithm makes sure that the transmitter never idles by transmitting at rate

(slower/faster) depending on the next packet arrival times(large/short).

The offline algorithm computes the largest averagem1 of partial sums ofai’s starting from

index i = 1 to P , and sets the first transmission time, i.e. packet transmission finish time, equal

to m1 for each of the firstk1 number of packets, wherek1 is the highest index such that the

average of partial sums ofai’s is m1. It then repeats the same procedure after indexk1. The

algorithm never idles andith packet is transmitted immediately after the transmission of the

(i− 1)th packet ends.

The packet transmission times output byOPT, di’s, are such that
P−1
∑

i=0

di = T , sinceA is

known ahead of time, and the algorithm can ensure the non-idling property.

Also, since the transmission ofith packet cannot start before its arrival, we also have that,

ℓ
∑

i=1

di ≥
ℓ
∑

i=1

ai, (2)

for any 0 ≤ ℓ ≤ P − 1. Moreover, another useful property ofOPT [1] is that,

di ≥ di+1 ∀i = 0, 1, . . . P − 1, (3)
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i.e., the transmission times decrease with the index of the packets, which is intuitive, since

otherwise we could stretch the transmission time and decrease the energy usage. We will make

use of (3) repeatedly while analyzing the competitive ratioof theON algorithm.

Next, we present an important property of theOPT algorithm that will be useful for the

analysis of our online algorithm.

Lemma 1: [1] If the inter-arrival time sequenceA is such thatai ≥ ai+1, ∀ i = 1, . . . , P −1,

then, di−1(OPT) = ai, i.e., the optimal offline algorithm finishes each packet exactly at the

arrival time of the next packet.

Proof: Note that theOPT algorithm computes the largest averages of partial sums ofai’s

in each round. For the case whenai ≥ ai+1, then in each iteration ofOPT, trivially, di−1 = ai,

by the definition of theOPT.

Now, we describe our online algorithm calledON and then derive its competitive ratio.

B. Online AlgorithmON

In light of Remark 1, we assume that att = 0, the number of packetsP and common deadline

T are known. Let on arrival of a new packet at timet, the number of packets left to arrive be

P (t). Then the main idea behind the algorithm is that it assumes that the futureP (t) packets are

going to arrive at equal intervals in the left-over time ofT−t, and attempts to finish transmitting

the current packet in timeT−t
P (t)+1

(transmission time). Since the inter-arrival time sequence A is

unknown and arbitrary, this algorithm may have to idle, i.e.it can finish transmitting the current

packet before the next packet arrives, in which case it has touse more energy than required by

theOPT algorithm, that never idles. We later show that the competitive ratio ofON is no more

than1 + logP .

A more formal description of the algorithm is as follows. Thetransmitter starts sending the

first packet at time0 with transmission timeT
P

. If the second packet arrives before the finish

time of the first packet, the second packet is added to the queue and waits for the current

transmission to complete. Once the first packet transmission is complete at timeT
P

, the second

packet is transmitted with transmission time ofT
P

. Similarly, for theith packet: if packet arrives

before timet = (i−1)T
P

, its added to the queue and transmitted starting from the time at which
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the (i− 1)th packet’s transmission got completed with transmission time T
P

. If suppose, thejth

packet arrives after the finish time of the(j− 1)th packet. Then for the time between the arrival

of the jth packet and the finish time of the(j − 1)th packet, the transmitter has no packets in

the queue and is said to be ’idle’, and does not consume any power. In such a case, at the time

of the arrival of thejth packet at time
∑j

i=1 ai, we update :

T ← T −

j
∑

i=1

ai,

P ← P − j.

The algorithm now repeats the same procedure with the newT and P , and outputs packet

transmission timesti, i = j, . . . , P − 1.

With algorithmON, the transmission time for theith packet is given by :ti = min



ti−1,
T−

i∑

n=1
an

P−i





or equivalently,

ti = min









T

P
,
T − a1
P − 1

,
T − a1 − a2

P − 2
, ...,

T −
i
∑

n=1

an

P − i









.

Let the ratio of the remaining time and the number of packets yet to arrive at theℓth packet

arrival bexℓ =
T−

ℓ∑

n=1
an

P−ℓ
∀ 0 ≤ ℓ ≤ P − 1. Thenti can be expressed as :

ti = min
ℓ≤i

(xℓ) . (4)

Algorithm 2: ON

initialize t0 =
T
P

;

for i := 0 to P − 2 do

ti+1 = min



ti,
T−

i∑

n=1
an

P−i



;

end

return (t0, t1, t2, t3, ..., tP−1);
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Compared to theOPT algorithm,ON will pay a penalty, if the inter-arrival times are much

larger than its assumption of them being equally spaced. Thepenalty arises because in such

cases,ON has to idle, and consequently transmit packets in shorter time consuming larger energy

compared to theOPT algorithm. We make this intuition concrete in Theorem 1, where we show

that the worst case input that maximizes the competitive ratio for ON is of the type when the

inter-arrival times are decreasing, i.e.,ai ≥ ai+1, i = 0, . . . , P − 1. When ai ≥ ai+1, ON has

to idle after finishing every packet transmission. To see this, with ai ≥ ai+1, a1 > T/P , hence

ON idles from timeT/P (where it finishes the first packet transmission) tilla1. From timea1

onwards,ON treatsa1 as time0 and restarts the process, and hence has to idle after finishing

each packet transmission.

In Fig. 1, we give a concrete example of transmission times set by theON algorithm and the

offline optimal algorithmOPT for a particular sequenceA. The gaps in time-line forON are

because of its possible idling whichOPT completely avoids.

Figure 1. Illustration ofON andOPT for a particular inter-arrival sequenceA.

C. Competitive Ratio Analysis ofON

We now show that the worst case inter-arrival sequence (ai’s) for algorithm ON is such

that ai ≥ ai+1. This condition essentially implies that theON algorithm has to idle after
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finishing transmission of every single packet. To prove this, we show that given any inter-arrival

sequenceA, we can construct another feasible inter-arrival sequenceA′ for which ai ≥ ai+1

and EOPT(A) = EOPT(A
′), while the energy spent byON increases in the latter case, i.e,

EON(A) ≤ EON(A
′).

Lemma 2:Let A′ be the inter-arrival sequence that is output (packet transmission times) of

the optimal offline algorithmOPT with inter-arrival sequenceA, i.e.,A′ ← OPT(A). Then, we

have

EON(A
′) ≥ EON(A), (5)

EOPT(A
′) = EOPT(A). (6)

Remark 2:Note thatA is a P -length sequence, but the last element ofA is auxiliary, since

packet0 starts at time0, and only the firstP − 1 elements represent the inter-arrival times of

P − 1 other packets. The output{d0, . . . , dP−1} of OPT(A) is of lengthP , with transmission

times for the successiveP packets. So when we consider output ofOPT(A) as an input toON

or OPT, we mean thatai+1 = di for i = 0, . . . , P − 1 andaP = T −
∑P−1

i=1 ai.

Remark 3:From (3), we have that elements ofA′ are such thatd0 ≥ d1 ≥ · · · ≥ dP−1. Thus,

Lemma 2 shows that with decreasing inter-arrival sequences, the competitive ratio increases for

ON.

Now we present the proof of Lemma 2.

Proof: We prove this by showing that the packet transmission times for OPT remain the

same withA or A′, whereas they decrease forON with A′ in comparison toA. Let, A′ =

(d0, d1, . . . , dP−1). Note thatdi ≥ 0 and
P−1
∑

i=0

di = T , hence as explained in Remark 2,A′ is a

valid packet arrival sequence, and thereforeA′ ∈ ∆.

Let, (ti)
P
i=1 and(t′i)

P
i=1 be the packet transmission times set byON for A andA′, respectively.

We first prove that the energy consumed byON acting onA′ is greater with respect toA by

showing that the transmission times for each packet decrease in A′, and hence the total energy

increases with respect toA. From (4), we know that for packet inter-arrival time sequence A,
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with ON,

xℓ =

T −
ℓ
∑

n=1

an

P − ℓ
,

ti = min
l≤i

(xℓ),

and,

x′
ℓ =

T −
ℓ
∑

n=1

dn

P − ℓ
,

t′i = min
ℓ≤i

(x′
ℓ).

Therefore, using (2), we have

T −
ℓ
∑

n=1

an

P − ℓ
≥

T −
ℓ
∑

n=1

dn

P − ℓ
, ∀ℓ.

Hence, by definition ofxℓ, xℓ ≥ x′
ℓ, ∀ℓ. Therefore,

min
l≤i

(xl) ≥ min
l≤i

(x′
l) ∀i,

ti ≥ t′i ∀i,

Since the energy function (1) is inversely proportional to transmission time,

f(t′i) ≥ f(ti) ∀i,
P−1
∑

i=0

f(t′i) ≥
P−1
∑

i=0

f(ti),

Eon(A
′) ≥ Eon(A).

Thus, we have proved (5).

From (3), we know thatA′ = {d0, . . . , dP−1} is such thatdi ≥ di+1. Therefore, from Lemma

1, we have that withOPT, the transmission times remain same for both packet sequencesA and

A′. HenceOPT uses identical energy forA or A′, proving (6).
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Now, we show that the worst case packet sequence that maximizes the competitive ratio of

ON is such thatai’s are decreasing.

Theorem 1:Let A = {A ∈ ∆ : µON(A) ≥ µON(A
′), ∀ A′ ∈ ∆} be the set of inter-arrival

time sequences that have the worst competitive ratio. Let∆D ⊆ ∆ be such that

∆D =

{

(a1, a2, . . . , aP ) | ai ≥ ai+1,
P
∑

i=1

ai = T

}

,

∀i ∈ {1, ..., P}. Then

A ∩∆D 6= φ.

Theorem 1 implies that at least one of the worst inter-arrival sequences belongs to set∆D.

Proof: Let A ∈ A. Then consider

Anew ← OPT (A) ,

i.e., Anew is the output of theOPT given the inputA ∈ A for ON. Note thatAnew ∈ ∆D from

(3). Using Lemma 2, we have,EON (Anew) ≥ EON (A), while EOPT (A
new) = Eoff (A) from

Lemma 1.

Hence,
EON(A

new)

EOPT(Anew)
≥

EON(A)

EOPT(A)
,

and in particular
EON(A

new)

EOPT(Anew)
≥

EON(A
′)

EOPT(A′)
,

for anyA′ ∈ ∆ by the definition ofA. ThereforeAnew also belongs toA, and

A ∩∆D 6= φ.

We now prove a useful result about packet transmission timesset by theON algorithm when

ai’s are decreasing.

Lemma 3: If the inter-arrival time sequenceA = (ai)
P
i=1 ∈ ∆D, then {ti}

P−1
i=0 = ON(A) is

such that

ti =

T −
i
∑

n=1

an

P − i
.

August 11, 2018 DRAFT



15

Proof: Recall that forA = (ai)
P
i=1 ∈ ∆D, we have,a1 ≥ a2 ≥ · · · ≥ aP . Therefore, from

(4),

ti = min
l≤i

(xℓ),

wherexℓ =
T−

ℓ∑

n=1
an

P−ℓ
. Let T ′ = T −

ℓ
∑

n=1

an and P ′ = P − ℓ. Hence,xℓ = T ′

P ′
, and consider

xℓ+1 =
T−

ℓ+1∑

n=1
an

P−ℓ−1
= T ′−aℓ+1

P ′−1
.

Note thataℓ+1 ≥ aℓ+2 ≥ ... ≥ aP−1 ≥ aP . Hence,(P − ℓ) aℓ ≥
P
∑

n=ℓ+1

an = T−
ℓ
∑

n=1

an, P
′aℓ+1 ≥

T ′ or equivalently,aℓ+1 ≥
T ′

P ′
. As a result,

xℓ+1 =
T ′ − aℓ+1

P ′ − 1
≤

T ′ − T ′

P ′

P ′ − 1
=

T ′

P ′
= xℓ.

Hence,ti = min
ℓ≤i

(xℓ) = xi =
T−

i∑

n=1
an

P−i
.

D. Competitive Ratio Computation

We are now ready to compute an upper bound on the competitive ratio of theON algorithm,

by making use of Theorem 1, that states that the worst case arrival sequence forON is when

ai ≥ ai+1.

Theorem 2:The competitive ratio of theON algorithm is upper bounded by

µON ≤ 1 + log (P ) .

Proof: We prove the Theorem via induction on the number of packetsP . For ease of

exposition, we index the inter-arrival sequenceA by the the number of packets it contains, i.e.,

A = Ak if the number of packets inA are k. Using Theorem 1, we will only consider inter-

arrival sequences belonging to∆D. ConsiderP = 1, where the first packet is available at time

0, and no more packets arrive thereafter. Hence both theON and theOPT algorithms use the

same energy to transmit one packet, andµon (A1) = 1.

Now, assume that the result holds for any sequenceAk of k packets, i.e.,µON (Ak) ≤ 1 +

log (k), and consider a sequenceAk+1 of k + 1 packets.
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Let A(k + 1) = {A ∈ ∆(k + 1) : µON(A) ≥ µON(A
′) ∀ A′ ∈ ∆(k + 1)}, where

∆(k + 1) =

{

(a1, a2, . . . , ak, ak+1) |ai ≥ 0,
k+1
∑

i=1

ai = T

}

,

i.e., all possible inter-arrival sequences withk + 1 packets. Recall thatak+1 is auxiliary since

packet0 arrives at time0.

Let A∗
k+1 ∈ A(k + 1) ∩∆D(k + 1), where∆D(k + 1) ⊆ ∆(k + 1) with ai ≥ ai+1, ∀ i. The

setA(k + 1) ∩∆D(k + 1) 6= φ from Theorem 1.

Consider the output ofON andOPT, if the input inter-arrival sequence isA∗
k+1, i.e., let

(ti(k + 1))ki=0 ← ON
(

A∗
k+1

)

(7)

(di(k + 1))ki=0 ← OPT
(

A∗
k+1

)

, (8)

where we have made explicit that the algorithm is working with k + 1 packets by indexing the

packet transmission timesti and di, with the number of packets asti(k + 1), and di(k + 1),

respectively.

SinceA∗
k+1 =

(

a∗1, a
∗
2, a

∗
3, ..., a

∗
k+1

)

is such thata∗i ≥ a∗i+1, ∀ i, we consider the new (sub)-

sequence,A∗
k = {a∗2, a

∗
3, ..., a

∗
k+1} of k packets, whereT =

∑k+1
i=2 a

∗
i . Hence withA∗

k, the 0th

packet arrives at time0, the first packet arrives at timea∗2 and so on, anda∗k+1 is the auxiliary

time, i.e. after allk packets have arrived tillT . See Fig. 2, for a pictorial description of the

construction.

Figure 2. Illustration of the construction used in the induction stepin proof of Theorem 2.
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SinceAk hask packets andai’s are decreasing,A∗
k ∈ ∆D(k). Therefore, from Lemma 3 and

Lemma 1,

ON (A∗
k) = (ti(k))

k−1
i=0 , (9)

OPT (A∗
k) = (di(k))

k−1
i=0 , (10)

respectively, where more importantly, the corresponding

ti+1(k + 1) = ti(k), i = 0, . . . , k − 1, (11)

in (7) and (9), and

di+1(k + 1) = di(k), i = 0, . . . , k − 1, (12)

in (8) and (10). That is, the transmission times to transmit the lastk packets ofA∗
k+1 used by

both theON and theOPT are identical to the transmission times ofk packets ofA∗
k, respectively.

This is the key step of the proof to proceed via induction, that is made possible via Lemma 3

and Lemma 1 as a result of the worst case input arrival sequence belonging to∆D. Using the

induction hypothesis, we have that the competitive ratio ofON for A∗
k with k packets is bounded

by 1 + log (k).

Now consider the competitive ratio ofON for A∗
k+1 with k + 1 packets, i.e.,

µON

(

A∗
k+1

)

=

k
∑

i=0

f (ti(k + 1))

k
∑

i=0

f (di(k + 1))

,

which on expanding gives

µON

(

A∗
k+1

)

=

f (t0(k + 1)) +
k
∑

i=1

f (ti(k + 1))

k
∑

i=0

f (di(k + 1))

. (13)

Now from (11) and (12), recall that,ti+1(k+1) = ti(k) for i = 0, . . . , k− 1, anddi+1(k+1) =

di(k) for i = 0, . . . , k − 1. Hence the corresponding energy functions are also identical, i.e.

f(ti+1(k + 1)) = f(ti(k)) andf(di+1(k + 1)) = f(di(k)), for i = 0, . . . , k − 1. Therefore, from

August 11, 2018 DRAFT



18

(13), we haveµON

(

A∗
k+1

)

=

f (t0(k + 1)) +
k−1
∑

i=0

f (ti(k))

f (d0(k + 1)) +
k−1
∑

i=0

f (di(k))

,

≤

f (t0(k + 1)) + (1 + log (k))
k−1
∑

i=0

f (di(k))

f (d0(k + 1)) +
k−1
∑

i=0

f (di(k))

, (14)

where the inequality follows from the induction hypothesisthat states thatON(A∗
k) ≤ 1+log (k).

Hence, rewriting (14),

µON

(

A∗
k+1

)

= (1 + log (k)) +

f (t0(k + 1))− (1 + log (k)) f (d0(k + 1))

f (d0(k + 1)) +
k−1
∑

i=0

f (di(k))

,

≤ (1 + log (k)) +
f (t0(k + 1))
k
∑

i=0

f (di(k + 1))

,

(a)

≤ (1 + log (k)) +
f
(

T
k+1

)

(k + 1)f
(

T
k+1

) ,

= 1 + log (k) +
1

k + 1
,

(b)

≤ 1 + log (k + 1) ,

where in (a) the numerator follows sincet0(k + 1) = T
k+1

from Lemma 3 because ofai ≥

ai+1, and the denominator follows from the convexity off(.), 1
k+1

k+1
∑

i=1

f (di(k + 1)) ≥ f
(

T
k+1

)

,

whereas, (b) follows from the fact that,
k+1
∫

k

1
x
dx ≥ 1

k+1
(k + 1− k) = 1

k+1
, log (k + 1)−log (k) ≥

1
k+1

.

Discussion:In this section, we proposed a simple online algorithm that assumes that the future

packets arrive at equal time intervals and derived its competitive ratio. Since no information is

available about the packet arrival times, it is a natural strategy. We first showed that the worst

case input sequence for this algorithm is when the inter-arrival times are decreasing, in which

case the algorithm has to idle for some time at the end of each packet transmission. This result

August 11, 2018 DRAFT



19

was key in deriving the competitive ratio of this algorithm and show that it scales logarithmic

in the number of packets, and is independent of the common deadline.

To the best of our knowledge our theoretical bound on the competitive ratio without assuming

anything about the inter-arrival times is the first such result. To complete the characterization

of online algorithms for this classical packet scheduling problem, a matching lower bound on

the competitive ratio would have been useful. However, currently that is beyond the scope of

this paper and it is unclear whether1 + logP is the best competitive ratio or not. For similar

scheduling and load balancing problems [21]–[23], the best(theoretically) known competitive

ratios also scale logarithmically in the quantity of interest, e.g. number of users/packets, etc. In

the next section, we consider a more general framework, where an additional renewable energy

source is available and the objective is to minimize the use of grid energy.

IV. GRID + ENERGY HARVESTING

In this section, we generalize the packet scheduling problem when there are two sources

of energy; conventional (grid) and renewable (EH). The EH energy is stored in a battery, and

replenished at each subsequent energy arrival subject to the battery constraints.3 Once again the

object of interest is to minimize the use of grid energy in transmitting theP packets within

common deadline timeT , but now in the presence of the EH source, thereby exploitingas much

EH energy as possible.

Similar to Remark 1, one can show that if the EH energy arrivalepochs and amounts are

arbitrary, then the competitive ratio of any online algorithm will be arbitrarily large. For example,

if large amount of renewable energy arrives close to the deadline time of T , then any online

algorithm may not use all of that energy, while the optimal offline algorithm will, making the

competitive ratio large.

Thus, we restrict ourselves to the case when the amount of EH energy that arrives at any time

t is a random variable that is identically distributed acrosstime, but whose distribution may or

may not be known ahead of time to the online algorithm. To exploit the EH energy, we propose

3We assume that the battery capacity is large enough and it never overflows.
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a natural greedy extension ofON, call it EH− ON, that uses as much EH energy as possible

while following the power profile of the earlier proposed online algorithmON. As before, the

information about energy arrivals and packet arrival timesis revealed causally.

A. Online Algorithm EH− ON

The transmission time set by the proposed online algorithm EH−ON with EH is identical to

the online algorithmON without EH. Therefore, the power profile (the power transmitted at any

time) of EH−ON is identical to that of theON algorithm. The only non-trivial decision to make

is: which energy source to use at each time to support the power profile set byON. For that

purpose, with EH−ON, the transmitter follows a greedy policy and uses the renewable energy

from the battery for as long as possible to support the power profile of ON. The transmitter

disconnects from the battery only when there is no energy in the battery and switches over to

the grid.

Let ti denote the transmission time of theith packet fromON, and letRi denote the power

(energy/time) used to transmit theith packet byON. Let n(i) be the number of renewable energy

arrival instants during the transmission of theith packet, i.e. within time interval[si, fi] set by

the ON algorithm, where thejth EH energy arrival instant happens at timeτij with amount

Eij , j = 1, . . . , n(i). Let E idle
i be the total EH energy arrived after the transmission ofith packet

and before the start of the transmission of(i + 1)th packet. LetBi represent the total energy

present in the battery at the start of the transmission ofith packet. LetBmax be the energy

capacity of the battery. Algorithm EH-ON describes how the renewable energy is used. The

basic idea of this algorithm is to use renewable energy as quickly as possible and for as long

as possible, to minimize the grid energy, whereGi represents the grid energy used to transmit

packeti. The algorithm describes when to use the EH energy and the grid energy, respectively.

We next show that under some natural assumptions on the EH arrival process, we can show

that the EH− ON algorithm has a competitive ratio ofc(1 + logP ), wherec is a constant. So

essentially, both the EH− ON and theON have competitive ratios that scale identically in the

number of packetsP .

Consider the optimal offline algorithm with EH, EH− OPT. Clearly, for any packet inter-
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Algorithm 3: EH-ON

initialize t0 >> T
P

, e0 = E idle
0 = 0, G0 = f (t0);

Eik : kth energy arrival duringith packet transmission;

n(i) : total number of energy arrivals duringith packet transmission;

E idle
i : total harvested energy that arrives after the completion of ith packet but before the

start of transmission of the(i+ 1) th packet, its0 if there is no idling time;

for i := 1 to P do

ti = min



ti−1,
T−

i−1∑

l=1

al

P−i+1



;

Use powerRi =
f(ti)
ti

to transmit packeti;

Bi = min
(

Bmax, Bi−1 + E idle
i−1 +Gi−1 − f (ti−1)

)

;

for j := 1 to n(i) do

B = max

(

Bmax,
j−1
∑

k=1

Eik +Bi

)

;

ej = max (ej−1, τi,jRi −B);

w =
(τi,j−τi,j−1)Ri−(ej−ej−1)

Ri
;

Use EH source in time interval[τi,j−1, τi,j−1 + w);

Use Grid energy source in time interval[τi,j−1 + w, τi,j];

end

B = max

(

Bmax,
n(i)
∑

k=1

Eik +Bi

)

;

Gi = max
(

en(i), f (ti)− B
)

;

end

arrival sequenceA, the total energy (grid + EH) used by EH−OPT is EA
EH−OPT

= EA
OPT

, where

EA
OPT

is the total energy needed by the optimal offline algorithmOPT in the no EH case. Let

the optimal grid energy that EH− OPT uses beGA
EH−OPT

.

Let the sum of all the EH energy that arrives in time interval[0, T/2] beEℓ, and that arrives

in time interval[T/2, T ] beEr, respectively. Then the following remark is in order.
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Remark 4:Let all the EH energyEℓ+Er that actually arrives over several instants in interval

[0, T ] be made available to EH−OPT at timet = 0 itself. Then it follows that the grid energy

used by the EH− OPT is lower bounded byEA
OPT
− (Eℓ + Er).

To keep the competitive ratio non-trivial, for a fixed packetinter-arrival time sequenceA, we

have to assume that for any realization of EH energy arrivals,

EA
OPT − (Eℓ + Er) > 0.

Equivalently this condition implies that only EH energy is not sufficient for the optimal offline

algorithm to transmit all theP packets, even if all the EH energy is available at time0. If this

condition is violated, then any online algorithm cannot be competitive.

Assumption 1:Let η = E (Eℓ) = E (Er). We assume that

η ≤
(m− 1)EA

OPT

2m
, (15)

for some constantm > 1 and anyA. It is a reasonable assumption since the amount of EH

energy arriving at any time does not depend on the number of packetsP , while the total energy

needed (grid + EH)EOPT is increasing inP . SinceP is typically large, it is safe to make this

assumption. It is also important to make this assumption, since otherwise the actual grid energy

used by the optimal offline algorithm

EA
OPT
− (Eℓ + Er)

can be arbitrarily small, making the online algorithm have arbitrarily bad competitive ratio.

Theorem 3:Under Assumption 1, the competitive ratio of EH− ON is upper bounded by

m(1 + logP ), for smallestm > 1 that satisfies Assumption 1.

Proof: From Remark 4, recall that the total energyEEH−OPT used by EH−ON is such that

EEH−OPT > Eℓ + Er, since otherwise the competitive ratio can be unbounded.

Let the energy that the algorithmON (Section III-B) uses without any EH energy for packet

inter-arrival time sequenceA in time interval[0, T/2], beEA
ON,ℓ and in time interval[T/2, T ] be

EA
ON,r, respectively. By the definition ofON, it is easy to follow that for anyA, EA

ON,ℓ ≤ EA
ON,r,

since otherwise we can increase the packet transmission times while decreasing the overall energy

requirement.

August 11, 2018 DRAFT



23

Recall that the total energy used by EH− ON is same as the total energy used byON to

transmit all theP packets, only EH−ON sources some of its energy requirement from the EH

source. Therefore, from the optimality of EH− OPT,

EA
ON,ℓ + EA

ON,r ≥ EEH−OPT.

Hence it follows that

EA
ON,ℓ + EA

ON,r ≥ Eℓ + Er,

2EA
ON,r

(a)

≥ Eℓ + Er,

EA
ON,r ≥

Eℓ + Er

2
,

where(a) follows sinceEA
ON,ℓ ≤ EA

ON,r. In particular,

EA
ON,r ≥

Eℓ

2
,

which implies that the amount of energy used by EH− ON in time-interval[T/2, T ] is at least

half the energy that arrives in interval[0, T/2]. Since EH− ON is a greedy algorithm in terms

of using the EH energy, and all ofEℓ is available at timet = T/2, it follows that EH−ON uses

at leastEℓ/2 amount of EH energy by the deadlineT . Therefore the grid energyGON used by

EH− ON is at mostEA
ON,ℓ + EA

ON,r − Eℓ/2.

Moreover, we know that the grid energy used by EH− OPT is at leastEA
OPT
− (Eℓ + Er)

which by definition is positive. Since the EH energy arrival process has identical distribution

across time, we have that

E{Eℓ + Er} = 4E{Eℓ/2} (16)

Therefore, the expected competitive ratio for EH− ON

µ =
E{GON}

E{GEH−OPT}
,

µ ≤
EA

ON,ℓ + EA
ON,r − E{Eℓ/2}

EA
OPT
− E{Eℓ + Er}

. (17)

From Assumption 1,

η ≤
(m− 1)EA

OPT

2m
(18)
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for some constantm and anyA. Therefore, multiplying and dividing by(1 + logP ) and

subtracting1/2 from the denominator in (18), we get

η ≤
(m− 1)(1 + logP )EA

OPT

2m(1 + logP )− 1
2

, (19)

which on rewriting is equivalent to

(1 + logP )EA
OPT
− η

2

EA
OPT
− 2η

≤ m (1 + logP ) . (20)

From Theorem 2, we know that
EA

ON,ℓ+EA
ON,r

EA
OPT

≤ 1 + logP , and hence the RHS of (20) is equal to

LHS of (17), and we get that for some constantm > 1,

µ ≤ m (1 + logP ) . (21)

Discussion:In this section, we considered the case when energy from boththe grid and an EH

source is available. In this scenario, the biggest challenge for any online algorithm is to ensure

that enough EH energy is used up and the leftover EH energy is minimized, since the optimal

offline algorithm is going to completely use up all the EH energy. To keep the competitive ratio

non-trivial, we assumed that the total energy arriving fromthe EH source is not too large and

the optimal offline algorithm has to use ’significant’ grid energy to transmit all theP packets.

To ensure that enough EH energy is used, we proposed a greedy extension of theON algorithm

that uses the same power transmission profile and transmission times as prescribed by theON

algorithm, and sources its energy requirement from the EH source as long as possible, otherwise

uses the grid energy source. Under this assumption, we showed that the new online algorithm

EH−ON at least uses half of the EH energy arriving in the first half ofthe deadline time, while

the optimal algorithm can at most use all the energy that arrives till the deadline time. Since the

EH energy arrivals are identically distributed across time, this allows us to reuse the competitive

ratio bound that we derived on theON algorithm to show that the competitive ratio of EH−ON

is at most some constant times(1 + logP ). Thus, both theON and its greedy extension have

the same scaling in the competitive ratio as a function of thenumber of packets.
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V. SIMULATIONS

In this section, we provide numerical results to better understand the competitive ratio ofON.

For all simulations without energy harvesting, we assume that the packet inter-arrival timesai

are exponentially distributed with meanT/P , andT = 100 secs, packet sizeB = 200kb and

the number of packets are taken to be200. Moreover, noise power spectral density is taken to

be 10−19 Watt/Hz and bandwidth= 1MHz. In Fig. 3, we plot the (simulated) competitive ratio

of ON together with the theoretical bound of1+ logP . We see that the competitive ratio ofON

is close to1 (optimal), and much smaller than the theoretical bound oflogP .

In Fig. 4, we also plot the competitive ratio for the worst case sequenceai ≥ ai+1 as a function

of P , where for each value ofP , the worst values ofai are found via optimization. In particular,

we start with inter-arrival timesai are exponentially distributed with meanT/P , and then steer

the inter-arrival times in the direction of increasing the competitive ratio via gradient descent

algorithms. We restrict to small values ofP , since otherwise the optimization for finding the

worst caseai is prohibitive. Even for this case, the competitive ratio ofON is fairly close to1.

In Figs. 5 and 6, we plot the competitive ratio performance ofON while varying the deadline

timesT and packet sizesB, together with the theoretical upper bound. From all the figures it

is clear thatON performs very close to the optimal.

For the hybrid energy arrival scenario, we assume that the packet inter-arrival timesai are

exponentially distributed with meanT/P , EH energy inter-arrival epochs are exponentially

distributed with meanT/(N+1), whereN = 20 (if not varied) is the total number of EH epochs.

Moreover, the amount of energy arrival at each EH epoch is also exponentially distributed with

mean10 mJ. Once again we useT = 100 secs, while larger packet size ofB = 500 kb and the

number of packets are taken to be400. In Fig. 7, we plot the (simulated) competitive ratio of

EH− ON together and observe that similarON it is very close to the optimal. In Fig. 8 we plot

the competitive ratio of EH− ON as a function of average energy harvested.

VI. CONCLUSIONS

In this paper, we considered the online setting of a classical problem of minimizing energy

for transmitting multiple packets given a common deadline,without making any assumptions
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Figure 3. Competitive ratio of theON with different number of packets(P ) and the theoretical upper bound.
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Figure 4. Competitive ratio of theON with different number of packets(P ) under worst case input of inter-arrival timeai > ai+1.

on the packet inter-arrival times. We showed that even for this most general input model, the

proposed algorithmON, has a competitive ratio that only grows logarithmically with the number

of packets and is independent of the common deadline. The simulated performance of the

proposed algorithm is far better than the theoretically guaranteed performance, and for most

August 11, 2018 DRAFT



27

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
0

1

2

3

4

5

6

7

8

Common Deadline (s)

C
om

pe
tii

ve
 r

at
io

 

 
Competitive Ratio
Upper bound

Figure 5. Competitive ratio of theON with different deadline times(T ) and the theoretical upper bound.
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Figure 6. Competitive ratio of theON with different packet sizes(B) and the theoretical upper bound..

cases it is very close to the optimal. Thus, a natural question that remains open is : whether

the competitive ratio analysis of theON can be tightened to show that it is a constant, or can a

lower bound be derived that shows that no online algorithm can have competitive ratio smaller

than logarithm of the number of packets. For the hybrid energy case, where both conventional
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Figure 8. Competitive ratio of the EH− ON with different average energy harvested.

and renewable energies are available, we show that a naturalgreedy extension ofON has very

similar theoretical performance, is and very close to the optimal numerically.
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