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Abstract—We consider the decentralized bandwidth/rate
allocation problem in multi-rate multicast service provisioning
with strategic users. We demonstrate that such a situation
is the combination of a market problem and a public goods
problem. We present a mechanism/game form which possesses
the following properties when the users’ utilities are concave:
(1) It implements in Nash equilibria the solution of the
corresponding centralized rate allocation problem in multi-rate
multicast service provisioning. (2) It is individually rational.
(3) It is budget-balanced at all Nash equilibria of the game
induced by the mechanism/game form as well as at all off
equilibrium messages/strategies that result in feasible allocations.

Index Terms— Multi-rate Multicast Service Provisioning,
Strategic users, Mechanism design, Markets, Public goods, Nash
equilibrium.

I. INTRODUCTION

A. Motivation and Challenges

Multicasting provides an efficient method of transmitting
data in real time applications from one source to many users.
The source sends one copy of a message to its users and this
copy is replicated only at the branching points of a multicast
tree. Real life examples of such multicast applications
are audio/video broadcasting, teleconferencing, distributed
databases, financial information, electronic newspapers,
weather maps and experimental data. Conventional multicast
studies the problem in which the rate received by all the
users of the same multicast group is constant. The inherent
problem with such a formulation is that a constant rate will
overwhelm the slow receivers while starving the fast ones.
multi-rate multicast transmissions can be used to address this
problem by allowing a receiver to obtain data at a rate that
satisfies its requirements. Single-rate and multi-rate multicast
problems have been extensively studied. A survey of the
existing literature on multicast and its comparison with the
results of this paper appears later in this section.

All existing literature on multi-rate multicast assumes non-
strategic users. As we explain in section I-B below, the
nature of the problem suggests that strategic behavior may
be beneficial to the users. Strategic behavior results in new
challenges (conceptual and technical) in multi-rate multicast.
In this paper we study, within the context of mechanism
design, the decentralized rate allocation problem in multi-
rate multicast with strategic users. We formulate the problem,
propose a mechanism for rate allocation, analyze the properties
of the proposed mechanism, compare our results with the
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existing literature on multi-rate multicast, and discuss open
problems.

B. Why is strategic behavior justified?

Strategic behavior in multi-rate multicast can be justified
as follows. The literature on multi-rate multicast with non-
strategic users reveals that the problem has characteristics of
the free-rider problem. That is, at any network link, a member
of a multicast group is charged only if it requests the maximum
rate/bandwidth within the group at that link. As a result of this
feature of the problem, users are incentivized to misrepresent
their demand for bandwidth; by slightly reducing its demand,
a user can increase its overall utility because it slightly reduces
its own satisfaction from the quality of service it receives, but
pays considerably less tax. Thus, strategic behavior may result
in higher overall utility for a user than non-strategic behavior.

C. Contribution of the paper

The main contributions of this paper are:
1) The formulation of the multi-rate multicast service provi-

sioning problem in wired networks with arbitrary topol-
ogy and strategic users.

2) The discovery of a decentralized rate allocation mech-
anism for multi-rate multicast service provisioning in
networks with arbitrary/general topology and strategic
users, which possesses the following properties.
(P1) The mechanism implements the solution of the

centralized multi-rate multicast service provisioning
problem in Nash equilibria. That is, the allocation
corresponding to each Nash equilibria (NE) of the
game induced by the mechanism is a globally
optimal solution of the corresponding centralized
multi-rate multicast service provisioning problem.

(P2) The mechanism is individually rational, that is, the
network users/users voluntarily participate in the
rate allocation process.

(P3) The mechanism is budget-balanced1 at all feasible
allocations, that is, at all the allocations that corre-
spond to NE messages/strategies as well as at all
the allocations that correspond to off-equilibrium
messages/strategies.

The results of this paper are also a contribution to the theory
of mechanism design. In Section II we show that the multi-
rate multicast problem with strategic users is the combination
of a market and a public goods problem with strategic users.
Such problems have not been previously investigated within
the context of mechanism design.

1In a budget-balanced mechanism the sum of the taxes paid by a subset of
users is equal to the sum of subsidies received by the rest of the users.
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D. Comparison with related work

Within the context of single rate and multi-rate multicast
problems, studies have addressed issues of bandwidth/rate
allocation [1]–[10], [16], [17], routing [8], [11]–[13] and
reliability [14], [15]. Most of the literature on rate allocation
is done via the notion of fairness [1], [2], [6], [7], [9].
The authors of [1] develop a unified framework for diverse
fairness objectives via the notion of fair allocation of utilities.
A more general approach to rate allocation is via utility
maximization. Utility maximization is more general because
rate allocation with the fairness property is utility maximizing
when the utility has a special form. The authors of [10],
[16] and [17] investigated multi-rate multicast problems with
a utility maximization objective. In all the aforementioned
papers, it is assumed the agents/users are not strategic, that
is, they are price-takers who are willing to follow/obey the
rules of the resource allocation mechanism.

In contrast to all the above papers, our paper considers
the multi-rate multicast problems with strategic users, that is,
users which are self-utility maximizers, and do not necessarily
obey the rules of the resource allocation mechanism, but have
to be incentivized/induced to follow them. To the best of our
knowledge, our paper is the first to present a mechanism
possessing properties (P1)-(P3) for the multi-rate multicast
service provisioning problem with strategic users.

E. Organization of the paper

The rest of the paper is organized as follows. In section
II we formulate the multi-rate multicast service provisioning
problem with strategic users. In section III we describe the
allocation mechanism/game form we propose for the solution
of the multi-rate multicast service provisioning problem. In
section IV we analyze the properties of the proposed mecha-
nism. We conclude in section V.

II. THE MULTI-RATE MULTICAST PROBLEM WITH
STRATEGIC NETWORK USERS, PROBLEM FORMULATION

In this section we present the formulation of the multi-
rate multicast problem in wired communication networks with
strategic users. We proceed as follows, In section III-B we
formulate the centralized multi-rate multicast problem the
solution of which we want to implement in Nash equilibria.
In section III-C we formulate the decentralized multi-rate
multicast problem with strategic network users; We state our
assumptions, our objective and provide an interpretation of the
equilibrium concept (Nash equilibrium) in which we want to
implement the solution of the centralized problem of section
III-B.

A. The centralized problem

We consider a wired network with N disjoint groups
of strategic users; we denote the set of groups by N =
{G1, G2, · · · , GN}. The network topology, the capacity of the
network links, and the routes assigned to users’ services are

fixed and given. We denote user j in group Gi by (j,Gi). The
utility function of user (j,Gi), Gi ∈ N , has the form

V(j,Gi)(x(j,Gi), t(j,Gi)) = U(j,Gi)(x(j,Gi))− t(j,Gi). (1)

The term U(j,Gi)(x(j,Gi)) expresses user (j,Gi)’s
satisfaction from the service x(j,Gi) it receives. The
term t(j,Gi) represents the tax (money) user (j,Gi) pays
for the services it receives. We assume that U(j,Gi) is a
concave and increasing function of the service x(j,Gi) user
(j,Gi) receives, and t(j,Gi) ∈ R. When t(j,Gi) > 0 user
(j,Gi) pays money for the services it receives; this money is
paid to other network users. When t(j,Gi) < 0 user (j,Gi)
receives money from other users. Overall, the amount of
money paid by some of the network users must be equal to
the amount of money received by the rest of the users so that∑
Gi∈N

∑
j∈Gi t(j,Gi) = 0.

Denote: by L the set of links of the network; by cl the
capacity of link l; by R(j,Gi) the set of links l, l ∈ L, that
form the route of user (j,Gi), (as pointed out above each
user’s route is fixed); by Gi(l) the set of users in Gi who
use link l, i.e., Gi(l) = {j : j ∈ Gi and l ∈ R(j,Gi)}; by
xGi(l) the maximum amount of bandwidth requested by
group Gi at link l, i.e., xGi(l) := maxj∈Gi(l){x(j,Gi)};
by Gi

max(l) the set of users in Gi using link
l and request xGi(l) amount of bandwidth, i.e.,
Gi

max(l) := {(j,Gi) : x(j,Gi) = xGi(l)}; by (j,Gmax
i (l)) a

user in Gmax
i (l); by LGi the set links used by users in group

Gi, i.e., LGi := {l : ∃(j,Gi) s.t. l ∈ R(j,Gi)}; by Rmax
(j,Gi)

the set of links l, l ∈ R(j,Gi), such that x(j,Gi) = xGi(l), i.e.
Rmax

(j,Gi)
= {l : l ∈ R(j,Gi) s.t. (j,Gi) = (j,Gmax

i (l))}; by
Ql the set of groups that include at least one user using link
l, i.e., Ql := {Gi : l ∈ LGi}.

We assume that a central authority (the network manager)
has access to all of the above information. The objective of
this authority is to solve the following centralized optimization
problem that we call Max.0.

max
x,t

∑
Gi∈N

∑
j∈Gi

[
U(j,Gi)(x(j,Gi))− t(j,Gi)

]
subject to ∑

Gi∈Ql

max
j∈Gi(l)

x(j,Gi) ≤ cl, ∀ l ∈ L, (2)∑
Gi∈N

∑
j∈Gi

t(j,Gi) = 0, (3)

x(j,Gi) ≥ 0, ∀j ∈ Gi, Gi ∈ N , (4)

where (x, t) = (x(j,Gi), t(j,Gi), j ∈ Gi, Gi ∈ N ). The
inequalities in (2) express the capacity constraints that must
be satisfied at each network link. The equality in (3) expresses
the fact that the budget must be balanced, i.e., the total amount
of money paid by some of the users must be equal to the
amount of money received by the rest of the users. The
inequalities in (4) express the fact that the users’ received
rates x(j,Gi), Gi ∈ N , must be nonnegative. Every (x, t) that
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satisfies (2)-(4) is called a feasible allocation/solution.

Problem Max.0 is equivalent to problem Max.1 below,

max
x

∑
Gi∈N

∑
j∈Gi

U(j,Gi)(x(j,Gi))

subject to ∑
Gi∈Ql

∑
(j,Gi)∈Gi(l)

x(j,Gi) ≤ cl, ∀j ∈ Gi(l), l ∈ L

(5)
x(j,Gi) ≥ 0,∀j ∈ Gi, Gi ∈ N , (6)

in the following sense. The set of inequalities in (5)
and (6) result in the same domain of solutions x as
the set of inequalities in (2) and (4). Thus, any optimal
solution (x(j,Gi), j ∈ Gi, Gi ∈ N ) of problem Max.1
along with any t = {t(j,Gi), j ∈ Gi, Gi ∈ N} such that∑
Gi∈N

∑
j∈Gi t(j,Gi) = 0 is also an optimal solution

(x∗(j,Gi), t
∗
(j,Gi)

, j ∈ Gi, Gi ∈ N ) of Max.0. We will refer to
Max.1 as the centralized multi-rate multicast problem.

Let E(l) be the set of inequalities defined by (5) for link l.
Evey element of E(l) is denoted by e(l)(e(l) ∈ E(l)). Define
E(l, (j,Gi)) ⊆ E(l) by

E(l, (j,Gi)) := {e(l) ⊆ E(l) : x(j,Gi) appears in e(l)}.

Let U denote the set of functions

U : R+ ∪ {0} → R+ ∪ {0} (7)

where U is concave and increasing, and R+ denotes the
set of non-negative real numbers. Let T denote the set of
all possible network topologies, network resources and user
routes. Consider problem Max.1 for all possible realizations

×Gi∈N ×j∈Gi U(j,Gi) × T ∈ U
∑
Gi∈N

|Gi| × T, (8)

of the users’ utilities, the network topology, its resources
and the users’ routes. Then the solution of Max.1 for each
(U, T ) ∈ U

∑
Gi∈N

|Gi| × T defines a map

Γ : U
∑
Gi∈N

|Gi| × T→ A, (9)

where A ∈ R
∑
Gi∈N

|Gi|
+ is the set of all possible

rate/bandwidth allocations to the network’s users. We call Γ
the solution of the centralized problem.

B. The decentralized problem with strategic users

We consider the network model of the previous section with
the following assumptions on its information structure.

(A1) Each user knows only his own utility; this utility is
his own private information. Each user also knows
the function space U to which the utilities of all other
users belong.

(A2) Each user behaves strategically, that is, each user
is not a price-taker. The users’s objective is to
maximize his own utility function.

(A3) The network manager knows the topology and re-
sources of the network. This knowledge is the man-
ager’s private information. The network manager is
not a profit-maker (i.e. he does not have a utility
function).

(A4) The network manager receives requests for service
from the network users. Based on these requests, he
announces to each user (j,Gi),
1) The multicast group to which the user belongs.
2) The set of links that form user (j,Gi)’s route,
R(j,Gi).

3) The capacity of each link in R(j,Gi).
(A5) Based on the network manager’s announcement,

each strategic user competes for resources (band-
width) at each link of his route with the other users
in that link2.

From the above description it is clear that the information
in the network is decentralized. Every user in each group
only knows his own utility but does not know the other
users’ utilities or the network’s topology and its resources.
The network manager knows the network’s topology and its
resources, but does not know the users’ utilities. It is also
clear that the network manager (which is not profit maker)
acts like an accountant who sets up the users’ routes, specifies
the users competing for resources/bandwidth at each link,
collects the money from the users (j,Gi) that pay tax (i.e.
t(j,Gi) > 0) and distributes it to those users who receive
money.

As a consequence of assumptions (A1)-(A5) we have at
each link of the network a decentralized resource allocation
problem which can be studied/analyzed within the context
of implementation theory [18]. These decentralized resource
allocation problems are not independent/decoupled, as the
rate that each user receives at any link of his own route must
be the same. This constraint is dictated by the nature of the
multi-rate multicast service provisioning problem and has a
direct implication on the nature of the mechanism/game form
we present in section III.

Under the above assumptions the objective is to determine
a game form/mechanism which has the following properties:
for each realization (T,U(j,Gi), j ∈ Gi, Gi ∈ N ),

(P1) All Nash equilibria (NE) of the game induced by
the mechanism result in allocations that are optimal
solutions of the corresponding centralized problem
Max.1.

(P2) The mechanism is individually rational, that is, the
network users voluntarily participate in the decentral-
ized bandwidth allocation process.

(P3) The budget is balanced at every equilibrium point of
the game induced by the game form as well as off
equilibrium.

2Since in this paper we present decentralized resource allocation mecha-
nisms in equilibrium form, it is reasonable to assume that during the play of
the game at each link l ∈ L, each user of link l learns the set of the other
users competing for bandwidth at l.
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Before we proceed with the specification of our game
form/mechanism we comment on the appropriateness of NE as
an equilibrium/solution concept for the decentralized resource
allocation problem under consideration. Two aspects/features
of the problem and the solution we seek are crucial in
establishing NE as an appropriate solution concept. (F1) The
fact that the problem’s environment (i.e. the users’ utilities, the
network topology and resources) is stable, that is, it does not
change before the network users/agents reach their equilibrium
behavior. (F2) The fact that we are looking for mechanisms
in equilibrium form that possesses (P1)-(P3). Because of these
features NE is an appropriate solution concept for the problem
under consideration. As Nash points out in his ”mass-action”
interpretation of NE points, (which is valid under (F1)-(F2)),
“It is unnecessary to assume that participants have full knowl-
edge of the total structure of the game...but the participants are
supposed to accumulate empirical information on the relative
advantages of the various pure strategies at their proposal”,
J. Nash, PhD thesis ( [19] pg. 21). An interpretation similar
to that of Nash also appears in [21] (pp. 69-70) and in [20]
where the authors state: “We interpret our analysis as applying
to an unspecified (message exchange) process in which users
grope their way to a stationary message and in which the
Nash property is a necessary condition for stationarity”. In
this paper we adopt NE as an equilibrium/solution concept,
and interpret it in the same way as in [19]–[21]. A philosophy
similar to ours has also been adopted in [22]–[24].

C. Key features/natures of the problem

Multi-rate multicast service provisioning with strategic users
is the combination of a market problem and a public goods
problem. Thus, the model as well as the allocation problem
are new, even within the context of the mechanism design.
Specifically, resource allocation among groups is a market
problem; resource allocation among the users of the same
group is a public goods problem.
The market component: One can see that bandwidth allo-
cation among groups is a market problem as follows. One
can consider a group as a single agent. The demand of this
group at each link of the network is the maximum of demands
of the users of the group on that link. So, with each group
considered a single agent/singleton the multi-rate multicast
service provisioning problem with strategic users becomes
equivalent to the unicast service provisioning problem with
strategic users. It is well known [22] that the unicast service
provisioning problem with strategic users is a market problem
with strategic users. At each link, the price per unit of
bandwidth paid collectively by each group3 using the link is
the same.
The public goods component: One can see that the resource
allocation problem among the users of the same group is a
public goods problem as follows. At equilibrium, the group
receives at each link of the network a bandwidth/rate equal
to the maximum requested by a user in the group. Each

3The price per unit of bandwidth paid collectively by each multicast group
at a link l is equal to the sum of the prices paid by the members’ of the group
who use the link l.

user of the group receives, in general, different rate, and the
members of the group that use the link must collectively pay
the price per unit of bandwidth charged at the link. At each
link, each user of a group using the link contributes, in general,
a different percentage of the price per of unit of bandwidth
charged at that link; this percentage depends on the amount
of bandwidth received by the user, the user’s utility, and the
number of users that are present in the group and use the link.
Consequently, the resource allocation problem along users of
the same group is a public goods problem.
In the following two sections we present a mechanism/game
form for the problem formulated in this section and prove that
it possess properties (P1-P3) stated in section II-B.

III. A MECHANISM FOR RATE ALLOCATION

Based on the characteristics of the multi-rate multicast
problem, we present guidelines for the design of rate allocation
mechanisms in section III-A. In section III-B, we specify a
mechanism/game form for the decentralized rate allocation
problem formulated in section II. In section III-C, we discuss
and interpret the components of the mechanism.

A. Guidelines for the design of the mechanism

In section II-C we pointed out that the multi-rate multicast
problem with strategic users is the combination of a
market problem and a public goods problem. Therefore,
the mechanism for rate allocation must capture both
aspects/components of the problem. We now discuss the
attributes a mechansim must have so that it can capture the
market component and the public goods component of the
multi-rate multicast problem.

To address the market characteristics of the problem the
mechanism must be such that:

(i) All groups that use a particular link must pay the same
price per unit of bandwidth at the link.

(ii) The bandwidth allocation to groups at each link must
satisfy the link’s capacity constraint.

(iii) The budget must be balanced, that is the sum of payments
of all the groups that use the network must be equal to
zero at equilibrium and off equilibrium.

To address the public goods characteristics of the problem
the mechanism must be such that:
(iv) At any link l, different users of the same group that

use the link pay, in general, different prices per unit of
bandwidth at link l. Specifically: if user a of group G
requires more bandwidth than user b of group G at link
l, user a must not pay less per unit of bandwidth at link l
than user b. In general, if users a and b require the same
amount of bandwidth at link l, they do not necessarily
pay the same price per unit of bandwidth at l because
they may have different utility functions.

(v) The price that user i of group G pays per unit of band-
width at a particular link that he uses must not be under
his control; that is, the price must be determined by the
messages/strategies of the other users that use the same
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link. This feature of the mechanism is a consequence of
the users’ strategic behavior.

With these considerations in mind we proceed to specify our
mechanism.

B. Specification of the mechanism

A game form/mechanism ( [18], [22], [23]) consists of
two components M, f . The component M denotes the users’
message/strategy space, M defines the information the users
are allowed to communicate with one another during the
message exchange process. The component f is the outcome
function; f defines for every message/strategy profile, the
bandwidth/rate allocated to each user and the tax (subsidy)
each user pays (receives). For the decentralized resource
allocation problem formulated in section II we propose a game
form/mechanism the components of which we describe below.

Message space: The message/strategy space for user (j,Gi),
j ∈ Gi, Gi ∈ N , is given by M(j,Gi) = R|R(j,Gi)

|+1

+ .
Specifically, a message of user j is of the form

m(j,Gi) =

[
x(j,Gi), π

lj1
(j,Gi)

, π
lj2
(j,Gi)

, · · · , π
lj|R(j,Gi)

|

(j,Gi)

]
,

where |R(j,Gi)| denotes the number of links along the route
R(j,Gi). The component x(j,Gi) denotes the bandwidth/rate
user (j,Gi) requests at all the links of his route. The compo-
nent π

ljk
(j,Gi)

∈ [0,Υ]4, 0 ≤ Υ < ∞, k = 1, 2, · · · , |R(j,Gi)|,
denotes the price per unit of bandwidth user (j,Gi) is willing
to pay at link ljk of his route.

Remark 1: Due to the nature of the multi-rate multicast ser-
vice provisioning problem (see section II) the bandwidth/rate
allocated to any user (j,Gi), j ∈ Gi, Gi ∈ N , must be the
same at all links of his route. Thus, the nature of message
m(j,Gi) is a consequence of the above requirement.
Outcome Function: The outcome function f

f : ×Gi∈N ×j∈GiM(j,Gi) →

R
∑
Gi∈N

|Gi|
+ × R

∑
Gi∈N

∑
(j,Gi)∈Gi

|R(j,Gi)
|

is defined as follows: for any

m := (mi∈G1
,mj∈G2

, · · · ,mk∈GN ) ∈M

where
M := ×Gi∈N ×j∈GiM(j,Gi),

f(m) = f(mi∈G1
,mj∈G2

, · · · ,mk∈GN )

=
(
(x(i,G1), t(i,G1)), · · · , (x(k,GN ), t(k,GN ))

)
,

where t(j,Gi) := (t
lj1
j , t

lj2
j , · · · , t

lj|Rj,Gi |

j ), for every (j,Gi),
j ∈ Gi, Gi ∈ N , is the tax (subsidy) that user (j,Gi)
pays (receives) to (from) the other users, through the
network manager, for each link ljk ∈ R(j,Gi), and
x(j,Gi), j ∈ Gi, Gi ∈ N , represents the amount of

4For technical resons (c.f. Theorem 5) we choose Υ to be arbitrary and
large but finite.

bandwidth/rate allocated to user (j,Gi).

The tax t
ljk
j , k = 1, 2, · · · , |R(j,Gi)|,∀j ∈ Gi, Gi ∈ N , is

defined in accordance with the number of multicast groups
using link l. We consider four cases.

• Case A. |Ql| = 1

Let Ql = {Gζ}. Then, for any j ∈ Gζ(l),

tl(j,Gζ) = I
{
x(j,Gζ) = xGζ (l)

}
×

{
0 · I{xGζ (l) ≤ cl}+

1{xGζ (l) > cl}
1− 1{xGζ (l) > cl}

}
.

The function I{·} denotes the indicator function, i.e.,

I{A} =

{
1 if A holds;
0 otherwise.

The function 1{A}, used throughout the paper, is defined as
follows

1{A} =

{
1− ε if A holds;
0 otherwise.

where ε is bigger than zero and sufficiently small5; ε is chosen
by the mechanism designer.
• Case B. |Ql| = 2

Let Ql = {Gζ , Gζ+1}. We consider two subcases,
|Gζmax(l)| ≥ 2 and |Gζmax(l)| = 1.

Part BI: |Gζmax(l)| ≥ 2.
Let the label of (j,Gζ) in Gmax

ζ (l) be (k,Gmax
ζ (l)). Then:

If (j,Gζ) ∈ Gmax
ζ (l),

tl(k,Gζ) = π(k+1,Gζmax(l))x(j,Gζ) +
Φ2
Gζmax(l)

α|Gζmax(l)|

−2
PGζ+1(l)

max

|Gζmax(l)|
ΦGζmax(l)

[
xGζ+1(l) + x(j,Gζ) − cl

γ

]
+Ξl(j,Gζ) (10)

If (k,Gζ) /∈ Gmax
ζ (l) then tl(k,Gζ) = 0,

where α and γ are sufficiently large constants, PGmax
ζ (l) =∑

j∈Gζmax(l) π(j,Gζmax(l)), and k+1 is defined mod (|Gmax
ζ |),

and

ΦGζmax(l) = PGζmax(l) − PGζ+1
max(l)

Ξl(j,Gζ) =
1{x(j,Gζ) > 0}1{xGζ+1(l) + x(j,Gζ) − cl > 0}

1− 1{x(j,Gζ) > 0}1{xGζ+1(l) + x(j,Gζ) − cl > 0}

Part BII: If |Gζmax(l)| = 1. Then:
If (j,Gζ) ∈ Gmax

ζ (l),

tl(j,Gζ) = PGmax
ζ+1 (l)x(j,Gζ) +

Φ2
Gζmax(l)

α

−2PGζ+1
max(l)ΦGζmax(l)

[
xGζ+1(l) + x(j,Gζ) − cl

γ

]
+Ξl(j,Gζ) (11)

5Therefore, when A and B (both) hold, then 1{A}1{B}
1−1{A}1{B} ≈

1
0+

is well
defined and it becomes a large number.
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If (j,Gζ) /∈ Gmax
ζ (l) then tl(j,Gζ) = 0.

• Case C. |Ql| = 3

Let Ql = {Gζ , Gζ+1, Gζ+2}. We consider two
subcases,|Gζmax(l)| ≥ 2 and |Gζmax(l)| = 1.

Part CI: |Gζmax(l)| ≥ 2. Then:
Let the label of (j,Gζ) in Gmax

ζ (l) be (k,Gmax
ζ (l)). Then:

If (j,Gζ) ∈ Gmax
ζ (l),

tl(j,Gζ) = π(k+1,Gζmax(l))x(j,Gζ) +
Φ̄2
Gζmax(l)

α |Gζmax(l)|

−2
P−Gζmax(l)

|Gζmax(l)|
Φ̄Gζmax(l)

[E−Gζmax(l) + x(j,Gζ)

γ

]
+Ξ̄l(j,Gi) (12)

If (j,Gζ) /∈ Gmax
ζ (l) then tl(j,Gζ) = 0.

Part CII: |Gζmax(l)| = 1.
If (j,Gζ) ∈ Gmax

ζ (l),

tl(j,Gζ) = P−Gζmax(l)x(j,Gζ)

−2P−GζmaxΦ̄Gζmax(l)

[E−Gζmax(l) + x(j,Gζ)

γ

]
+

Φ̄2
Gζmax(l)

α
+ Ξ̄l(j,Gi)

(13)

If (j,Gζ) /∈ Gmax
ζ (l) then tl(j,Gζ) = 0, where

E−Gζmax(l) := xGζ+1(l) + xGζ+2(l)− cl,

PGζmax(l) :=
∑

j∈Gζmax(l)

π(j,Gζmax(l)),

P−Gζmax(l) :=
PGζ+1

max(l) + PGζ+2
max(l)

2
,

Φ̄Gζmax(l) := PGζmax(l) − PGζ+1
max(l),

Ξ̄l(j,Gi) :=
1{x(j,Gζ) > 0}1{E−Gmax

ζ (l) + x(j,Gζ) > 0}
1− 1{x(j,Gζ) > 0}1{E−Gmax

ζ (l) + x(j,Gζ) > 0}

• Case D. |Ql| > 3
Let Gi ∈ Ql. We consider two subcases, |Gimax(l)| ≥ 2
and |Gimax(l)| = 1.

Part DI: |Gimax(l)| ≥ 2.
Let the label of (j,Gi) in Gmax

i (l) be (k,Gmax
i (l)). Then:

If (j,Gi) ∈ Gmax
i (l),

tl(j,Gi) = π(k+1,Gimax(l))x(j,Gi) +
Φ̄2
Gmax
i (l)

|Gimax(l)|

−2
P−Gimax

|Gimax(l)|
Φ̄Gmax

i (l)

[E−Gimax(l) + x(j,Gi)

γ

]
+Ξ(j,Gi) +

ΓlGi
|Gmax

i (l)|
(14)

If (j,Gi) /∈ Gmax
i (l) then

tl(j,Gi) = 0. (15)

where E−Gimax(l), PGimax(l), and P−Gimax(l) are defined by
equations similar to (18)-(20).

Part DII: |Gimax(l)| = 1.
If (j,Gi) ∈ Gmax

i (l),

tl(j,Gi) = P−Gimaxxj,Gi + Φ̄2
Gmax
i (l)

−2P−GimaxΦ̄Gmax
i (l)

[E−Gimax(l) + x(j,Gi)

γ

]
+Ξ(j,Gi) + ΓlGi (16)

If (j,Gi) /∈ Gmax
i (l) then

tl(j,Gi) = 0, (17)

where,

E−Gimax(l) :=
[ ∑
Gk∈Ql
Gk 6=Gi

xGk(l)
]
− cl, (18)

PGimax(l) :=
∑

j∈Gimax(l)

π(j,Gimax(l)), (19)

P−Gimax(l) :=

∑
Gk∈Ql
Gk 6=Gi

PGkmax(l)

|Ql| − 1

=

∑
Gk∈Ql
Gk 6=Gi

∑
j∈Gkmax(l) π(j,Gkmax(l))

|Ql| − 1
, (20)

ΓlGi :=∑∑
Gs,Gr∈Ql
Gr 6=Gs 6=Gi

(
2PGsmax(l)PGrmax(l)

(
1 +

xGs (l)
γ

))
(|Ql| − 1)(|Ql| − 2)

+

2
∑∑∑

Gs,Gr,Gt∈Ql
Gt 6=Gs 6=Gr 6=Gi

PGrmax(l)PGsmax(l)EGtmax(l)

(|Ql| − 1)2(|Ql| − 3)γ

−
2
∑∑∑

Gs,Gr,Gt∈Ql
Gt 6=Gs 6=Gr 6=Gi

PGrmax(l)PGtmax(l)xGs(l)

(|Ql| − 1)2(|Ql| − 3)γ

+

2
∑∑

Gs,Gr∈Ql
Gs 6=Gr 6=Gi

PGrmax(l)PGsmax(l)EGrmax(l)

(|Ql| − 1)2(|Ql| − 2)γ

−
2
∑∑

Gs,Gr∈Ql
Gs 6=Gr 6=Gi

PGrmax(l)PGrmax(l)xGs(l)

(|Ql| − 1)2(|Ql| − 2)γ

−
2P 2
−Gimax(l) E−Gimax(l)

γ
−

∑
Gs∈Ql
G 6=Gi

PGsmax(l)
2

(|Ql| − 1)

−P 2
−Gimax(l). (21)

Next we specify additional subsidies Sl that user
(j,Gi), j ∈ Gi, Gi ∈ N , may receive. For that matter we
consider all links l ∈ L where |Ql| ≤ 3. For each such link l,
we define the quantity

Sl :=
∑
Gζ∈Ql

∑
(j,Gζ)∈Gζmax(l)

−tl(j,Gζ)I{Case B}

+
∑
Gζ∈Ql

∑
(j,Gζ)∈Gζmax(l)

−tl(j,Gζ)I{Case C} (22)
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Since α and γ are sufficiently large,

Sl = o(1)−
∑

Gζ ,Gζ∈Ql

PGmax
ζ (l)xGζ (l)I{Case B(Part BI)}

−
∑

Gζ ,Gζ∈Ql

PGmax
ζ (l)xGζ (l)I{Case C(Part CI)}

−
∑

Gζ ,Gζ∈Ql

P−Gmax
ζ (l)xGζ (l)I{Case B(Part BII)}

−
∑

Gζ ,Gζ∈Ql

P−Gmax
ζ (l)xGζ (l)I{Case C(Part CII)}

:= o(1)− Sl+. (23)

For each l ∈ L where |Ql| ≤ 3 the network manager
chooses at random a user kl /∈

⋃
Gi∈Ql Gi and assigns the

subsidy Sl to user kl. Let l1, l2, · · · , lr be the set of links
such that |Qli | ≤ 3, and let kli be the corresponding users
that receive Sli .

Based on the above, the tax (subsidy) paid (received) by
user (j,Gi), j ∈ Gi, Gi ∈ N , is the following. If (j,Gi) 6=
kl1 , kl2 , · · · klr then

t(j,Gi) =
∑

l∈R(j,Gi)

tl(j,Gi), (24)

where for each l ∈ R(j,Gi), t
l
(j,Gi)

is determined in accordance
with |Ql|. If (j,Gi) = kln for some kln ∈

⋃r
m=1 klm , then

tkli =
∑

l∈Rkli

tlkli
+ Sli , (25)

where Sli is defined by (22) and Rkli is the set of links used
by user kli .

Note that Sli is not controlled by user kli . Thus, the
presence (or absence) of Sli does not influence the strategic
behavior of user kli . We have assumed here that the users
kl1 , kl2 , · · · , klr , are distinct. Expressions similar to the above
hold when the users kl1 , kl2 , · · · , klr are not distinct.

C. Discussion/Interpretation of the Mechanism

We now interpret the mechanism presented in section III-B,
based on the guidelines for its design, presented in section
III-A. We focus on Case D (Part DI). The mechanism’s
interpretation is similar in all other cases. To proceed with
the interpretation we define:

∆
(j,Gi)
1 (l) := π(k+1,Gimax(l))x(j,Gi),

∆
(j,Gi)
2 (l) :=

Φ̄2
Gmax
i (l)

|Gimax(l)|

−2
P−Gimax(l)

|Gimax(l)|
Φ̄2
Gmax
i (l)

[E−Gimax(l) + x(j,Gi)

γ

]
+Ξ(j,Gi)

∆
(j,Gi)
3 (l) :=

ΓlGi
|Gmax

i (l)|
∆

(j,Gi)
4 (l) := I

{
x(j,Gi) = xGi(l)

}
.

Note that Eqs. (14) and (15) can be collectively rewritten as
follows,

tl(j,Gi) =
[
∆

(j,Gi)
1 (l) + ∆

(j,Gi)
2 (l) + ∆

(j,Gi)
3 (l)

]
×∆

(j,Gi)
4 (l).

∆
(j,Gi)
1 (l),∆

(j,Gi)
2 (l),∆

(j,Gi)
3 (l), and ∆

(j,Gi)
4 (l) collectively

represent the tax (subsidy) user (j,Gi) pays (receives) for
using link l. The terms ∆

(j,Gi)
1 (l) and ∆

(j,Gi)
4 (l) (respectively,

∆
(j,Gi)
2 (l) and ∆

(j,Gi)
3 (l)) capture/describe the public good

(respectively, market) component of the problem.

We begin with the interpretation of the public good terms.
Note that user (j,Gi) pays taxes (receives subsidies) at link
l only if his bandwidth demand is the maximum among the
users of group Gi at link l. This is expressed by the term
∆

(j,Gi)
4 (l). By assumption the cardinality of the set users

from Gi who have maximum bandwidth demand at link l
is greater than one. Assume now that (j,Gi) is one of the
users of group Gi that have maximum bandwidth demand
at link l, and let (k,Gmax

i (l)) be the index of this user in
Gmax
i (l). The price per unit of bandwidth at link l that this

user pays is not under his control; it is determined by the
message/strategy (π(k+1,Gimax(l))) of user (k + 1, Gmax

i (l)),
that is user k + 1 of the group Gmax

i (l)6. This is reflected
in the term ∆

(j,Gi)
1 (l) which represents the amount of tax

user (j,Gi) pays for the bandwidth he receives at link l. The
two terms are consistent with the design guidelines associated
with the public good features of the mechanism presented
in section III-A. Specifically, terms ∆

(j,Gi)
1 (l) and ∆

(j,Gi)
4 (l)

demonstrate that: (i) at any link l, if user a of group Gi
receives more bandwidth than user b of the same group, then
user a pays no less for this bandwidth than user b; (ii) if two
users a and b of the same group require maximum amount
of bandwidth at link l they do not necessarily pay the same
price per unit of bandwidth at that link. As a result of the
specification and interpretation of the terms ∆

(j,Gi)
1 (l) and

∆
(j,Gi)
4 (l), the price group Gi pays per unit of bandwidth at

link l is the sum of the prices its users with maximum demand
at link l pay. That is,

PGmax
i (l) =

∑
(j,Gmax

i (l))∈Gmax
i (l)

π(j,Gmax
i (l)).

We continue with interpretation of the market terms of
the tax function. The term ∆

(j,Gi)
2 (l) provides the following

incentives to the groups using link l: (1) To bid/propose
the same price per unit of bandwidth at that link. (2) To
collectively request a total bandwidth that does not exceed
the capacity of the link. The incentive provided to all groups
to bid the same price per unit of bandwidth is described by the

term
Φ̄Gmax

i
(l)

|Gimax(l)| =
(PGimax−P−Gimax)

2

|Gimax(l)| . The incentive provided
to all users to collectively request a total bandwidth that does

6The situation where (j,Gi) is the only user of group Gi with the
maximum demand at link l is discussed in other cases (e.g. Case D (Part
DII)), where it is shown again that the price user (j,Gi) pays per unit of
bandwidth at link l is not controlled by him.
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not exceed the link’s capacity is captured by the term

Ξ(j,Gi) =
1{x(j,Gi) > 0}1{E−Gmax

i (l) + x(j,Gi) > 0}
1− 1{x(j,Gi) > 0}1{E l

−Gmax
i (l) + x(j,Gi) > 0}

.

Note that each group is very heavily penalized if it requests a
nonzero bandwidth at l, and, collectively, all the groups using
l request a total bandwidth that exceeds the link’s capacity cl.
A joint incentive provided to all users to bid the same price
per unit of bandwidth and to utilize the total capacity of the
link is captured by the term

−2
P−Gimax(l)

|Gimax(l)|
Φ̄Gmax

i (l)

[E−Gimax(l) + x(j,Gi)

γ

]
.

The goal of the term ∆
(j,Gi)
3 (l) is to lead to a balanced

budget. It is important to note that the term ∆
(j,Gi)
3 (l) is

not controlled by group Gi, consequently, by any user in
group Gi. Therefore, the presence of ∆

(j,Gi)
3 (l) does not affect

the behavior of any user of group Gi. The terms ∆
(j,Gi)
2 (l)

and ∆
(j,Gi)
3 (l) are consistent with the guidelines that were

presented in section III-A concerning the market features of
the mechanism.

IV. PROPERTIES OF THE MECHANISM

We prove that the mechanism proposed in section III has
the following properties. (P1) It implements the solution of
problem Max.0 in Nash equilibria. (P2) It is individually
rational. (P3) It is budget-balanced at every feasible allocation.

We establish the above properties by proceeding as follows.
First, we prove that the game induced by the mechanism
proposed in section III has at lest one pure NE (Theorem
1), and that all NE of the game induced by the game
form/mechanism of section III result in feasible solutions of
the centralized problem Max.0 (Theorem 2). Afterwards, we
establish that the mechanism is budget-balanced at all feasible
allocations. (Lemma 4). Then, we show that network users
voluntarily participate in the allocation process. We do this
by showing that each user’s utility/payoff resulting from the
allocations corresponding to all NE of the game induced by the
mechanism is greater than or equal to zero, the payoff each
user receives when he does not participate in the allocation
process (Theorem 5). Finally, we show that the mechanism
implements in Nash equilibria the solution of the centralized
allocation problem Max.0 (Theorem 6).

We present the proofs of the following theorems and lemmas
in the Appendix.

Theorem 1 (EXISTENCE OF NE): The game induced by the
mechanism of section III has at lest one pure NE.

Theorem 2 (FEASIBILITY): If m∗ = (x∗, π∗) is a NE of the
game induced by the game form of section III and the users’
utility functions, then the allocation x∗ is a feasible solution
of problem Max.0.

The following lemma presents some key properties of NE
prices and rates.

Lemma 3: Let m∗ = (x∗, π∗) be a NE of the game induced
by game form of section III. Then for every l ∈ L and Gi ∈ Ql,

we have,

P ∗−Gimax(l) = P ∗Gimax(l) =: P ∗Gmax(l) ∀ Gi ∈ Ql (26)

P ∗Gmax(l)

[
E∗−Gimax(l) + x∗Gi(l)

γ

]
= 0. (27)

For every user (j,Gi
max(l)) where Gi ∈ Ql, we have,

∂tl(j,Gmax
i (l))

∂xGi(l)

∣∣∣
m=m∗

=

{
π∗(j+1,Gimax(l)), if |Gimax(l)| ≥ 2,

P ∗Gmax(l), otherwise,

and∂U(j,Gmax
i (l))(x(j,Gmax

i (l)))

∂x(j,Gmax
i (l))

−
∑

l∈Rmax
(j,Gi)

∂tl(j,Gmax
i (l))

∂x(j,Gmax
i (l))


m=m∗

= 0.

An immediate consequence of Lemma 3 and the specifica-
tion of the tax for each user, defined by Eqs. (10)-(25), is the
following.

Corollary 1: At every NE m∗ of the mechanism the tax
function has the following form,
tl(j,Gmax

i (l))(m
∗) =

π∗(j+1,Gmax
i (l))x

∗
Gi

(l) Case B, Part BI;
P ∗Gmaxx∗Gi(l) Case B, Part BII;
π∗(j+1,Gmax

i (l))x
∗
Gi

(l) Case C, Part CI;
P ∗Gmaxx∗Gi(l) Case C, Part CII;

π∗(j+1,Gmax
i (l))x

∗
Gi

(l)− P∗Gmax(l)x−Gi (l)
∗

|Gmax
i | Case D, Part DI;

P ∗Gmax(l)

(
x∗Gi(l)− x

∗
−Gi(l)

)
Case D, Part DII

where

x∗−Gi(l) =

∑
Gj

Gj 6=Gi
Gj∈Ql

x∗Gj (l)

|Ql| − 1
.

When (j,Gi) /∈ Gmax
i (l), tl(j,Gi)(m

∗) = 0. Therefore,

t(j,Gi)(m
∗) =

∑
l∈Rmax

(j,Gi)

tl(j,Gi)(m
∗), (28)

for (j,Gi) 6= kl1 , kl2 , · · · , klr , (cf. section III), and for
j = kls , s = 1, 2, · · · , r,

t(j,Gi)(m
∗) =

∑
l∈Rmax

(j,Gi)

tl(j,Gi)(m
∗)− S∗j+ (29)

In the following lemma, we prove that the proposed mech-
anism is always budget balanced.

Lemma 4: The proposed mechanism/game form is budget
balanced at every feasible allocation. That is, the mechanism
is budget-balanced at all allocations corresponding to NE
messages as well as to all off-equilibrium messages/strategies
that result in feasible allocations.

The next result asserts that the mechanism/game form
proposed in section III is individually rational.

Theorem 5: (INDIVIDUAL RATIONALITY): The game form
specified in section III is individually rational, i.e., at every
NE the corresponding allocation (x∗, t∗) is weakly preferred
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by all users to zero, the payoff each user receives when he
does not participate in the allocation process.

In the following theorem we show that every NE of the
game induced by the game form proposed in section III is
efficient.

Theorem 6: (NASH IMPLEMENTATION): The allocation
(f(m∗) = (x∗, t∗)) corresponding to a NE message m∗ is an
optimal solution of the centralized problem Max.0.

V. CONCLUSION

We have proposed a mechanism for rate/bandwidth alloca-
tion in multi-rate multicast service provisioning and performed
an equilibrium analysis of the mechanism. We discovered that
when the users’ utilities are concave, the mechanism possesses
the following properties: (i) It implements in Nash equilibria
the solution of the corresponding centralized rate allocation
problem. (ii) It is individually rational. (iii) It is budget-
balanced at all feasible allocations.

We don’t have an algorithm/tatonnement process for the
computation of NE of the game induced by our mechanism.
The discovery of such an algorithm is an important open
problem in decentralized resource allocation problems with
strategic users who possess private information. The main
difficulty in addressing this open problem is the following.
Consider an algorithm for our problem. At each stage of the
algorithm each user updates his strategy/message. Since the
users’ utilities are not common knowledge, after each update
a user, say user i, can report any strategy he deems to be bene-
ficial for himself; that is, user i can misreport/misrepresent his
update and the other users may not be able to check whether or
not user i is following the rules of the algorithm. Consequently,
the algorithm must provide incentives to the users/agents to
follow its rules at each one of its stages. Such a provision of
incentives must be based, in general, on all the information
available at the current stage, and must take the whole future
into account. We have not been able to discover an algorithm
with the above feature.

To the best of our knowledge, multi-rate multicast service
provisioning with strategic users provides the first instance that
is a combination of a market and a public goods problem.
Thus, the results of this paper are also a contribution to the
state of the art of mechanism design.
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APPENDIX

Proof of Theorem 1: We prove in Theorem 2 that any
NE of the game induced by the mechanism of section III (if
such an equilibrium exists) results in a feasible allocation of
Problem Max.0. Therefore, we restrict to the space

M = ×Gi∈N ×j∈GiM(j,Gi) (30)

of strategies that result in feasible allocations of problem
Max.0. Then, the users’ utilities

V(j,Gi)(x(j,Gi), t(j,Gi)) = U(j,Gi)(x(j,Gi))− t(j,Gi) (31)
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(j,Gi) ∈ Gi, Gi ∈ N (where t(j,Gi) is specified by the game
form of section III) are concave in m(j,Gi) = (x(j,Gi), π(j,Gi))
and continuous in m = (m(j,Gi), (j,Gi) ∈ Gi, Gi ∈ N ).
Furthermore, the message spaces M(j,Gi) are compact, con-
vex and nonempty. Therefore, by Gliksberg’s theorem, [26],
there exists a pure NE of the game (M, f, V(j,Gi), (j,Gi) ∈
Gi, Gi ∈ N ) induced by the game form of section III.

Proof of Theorem 2: By the construction of the mech-
anism x∗(j,Gi) ≥ 0 for all (j,Gi), Gi ∈ N . Suppose that x∗

is such that the capacity constraint is violated at some link l
and x∗Gi(l) > 0. Consider an agent (k,Gi) ∈ Gmax

i (l) whose
index in Gmax

i (l) is (j,Gmax
i (l)) and change his strategy to

x(k,Gi) = 0. Then

V(k,Gi)(m(k,Gi),m
∗
−(k,Gi)

) > V(j,Gi)(m
∗
(k,Gi)

,m∗−(k,Gi)
),

and this is in contradiction with the fact that m∗ is a NE.
Consequently, every NE results in a feasible allocation of
problem Max.0.

Proof of Lemma 3: We prove this lemma for Case D,
Part DI. In a way similar to the following we can prove the
assertion of the lemma for all other cases.
CASE D (PART DI): Consider Gi ∈ Ql, and (j,Gmax

i (l)) ∈
Gmax
i (l).

Since user (j,Gmax
i (l)) does not control Γ(j,Gi), then

∂Γ(j,Gmax
i (l))

∂π(j,Gmax
i (l))

=
∂Γ(j,Gmax

i (l))

∂xGi(l)
= 0.

Therefore, we must have

∂tl(j,Gmax
i (l))

∂π(j,Gimax(l))

∣∣∣∣
m=m∗

= −2
P ∗−Gimax(l)

|Gimax(l)|

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+

2

|Gimax(l)|
Φ̄∗Gmax

i (l)

= 0. (32)

Define ∆(j,Gimax(l)) as follows,

∆(j,Gimax(l)) := −
P ∗−Gimax(l)

|Gimax(l)|

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+

Φ̄∗Gmax
i (l)

|Gimax(l)|
. (33)

Summing over all the users in Gmax
i (l) and using (32) we

obtain∑
(j,Gmax

i )∈Gimax(l)

∆(j,Gimax(l))=−P ∗−Gimax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
+Φ̄∗Gmax

i (l) = 0. (34)

Moreover, summing over all |Ql| multicast groups and using
(32)-(34) we get∑

Gi∈Ql

∑
(j,Gmax

i (l))∈Gimax(l)

∂tl(j,Gmax
i (l))

∂π(j,Gimax(l))
=

∑
Gi∈Ql

∑
(j,Gmax

i (l))∈Gimax(l)

∆(j,Gimax(l)) = 0.(35)

Furthermore we note that∑
Gi∈Ql

PGimax(l) =
∑
Gi∈Ql

P−Gimax(l). (36)

Equations (34)-(36) along with Theorem 1 and the fact that
P ∗−Gimax(l) ≥ 0 for every Gi, Gi ∈ Ql, imply that

P ∗−Gimax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
= 0, ∀ Gi ∈ Ql. (37)

From Eqs. (34) and (37) it follows that

P ∗−Gimax(l) = P ∗Gimax(l) =: P ∗Gmax(l), ∀ Gi ∈ Ql. (38)

Consequently,

P ∗Gmax(l)

(E∗−Gimax(l) + x∗Gi(l)

γ

)
= 0. (39)

Eqs. (38) and (39) along with (14) give

∂tl(j,Gmax
i (l))

∂xGi(l)

∣∣∣∣
m=m∗

= π∗(j+1,Gimax(l)) − 2
P ∗−Gimax(l)

γ|Gimax(l)|
Φ̄∗Gmax

i (l)

= π∗(j+1,Gimax(l)). (40)

Proof of Lemma 4: Equation (28) together with (28)
and (29) imply that∑

(j,Gi)
⋃
Gi∈N

Gi
t∗(j,G)

=
∑
l∈L
∑
Gi∈Ql

∑
j∈Gi t

∗l
(j,Gi)

= 0.
Thus, the mechanism is budget balanced at allocations corre-
sponding to NE. Now, we prove that the proposed mechanism
is also budget balanced off equilibrium.

For that matter, we first consider links l ∈ L where |Ql| > 3.
Based on Eqs. (19) and (20) we obtain for every Gi ∈ Ql,∑

(j,Gi)∈Gi(l) t
l
(j,Gi)

=

PGimax(l)xGi(l) + Φ̄2
Gmax
i (l) + ΓlGi

−2P−Gimax(l)Φ̄Gmax
i (l)

(E−Gimax(l) + xGi(l)

γ

)
. (41)

Furthermore, by little algebra, we can show that for every
l ∈ L where |Ql| > 3 the following equalities hold,

∑
Gi∈Ql

P 2
Gmax
i (l) =

∑
Gi∈Ql

[∑Gj∈Ql
Gj 6=Gi

P 2
Gmax
i (l)

|Ql| − 1

]
,

∑
Gi∈Ql

[
2PGmax

i (l)P−Gmax
i (l) + 2P−Gmax

i (l)PGmax
i (l)

xGi(l)

γ

]

=

∑∑∑
Gi,Gj ,Gk∈Ql
Gi 6=Gj 6=Gk

(
2PGmax

j (l)PGmax
k (l)(1 +

xGj (l)

γ )
)

(|Ql| − 1)(|Ql| − 2)
,



11

∑
Gi∈Ql

P−Gmax
i (l)PGmax

i (l)

E−Gmax
i (l)

γ
=∑∑∑∑

Gi,Gj ,Gk,Gr∈Ql
Gi 6=Gj 6=Gk 6=Gr

2PGmax
k (l)PGmax

j (l)EGmax
r (l)

γ(|Ql| − 1)2(|Ql| − 3)

+

∑∑∑
Gi,Gj ,Gk∈Ql
Gi 6=Gj 6=Gk

2PGmax
k (l)PGmax

j (l)EGmax
k (l)

γ(|Ql| − 1)2(|Ql| − 2)
,

∑
Gi∈Ql

P 2
−Gmax

i (l)

xGi(l)

γ
=∑∑∑

Gi,Gj ,Gk∈Ql
Gi 6=Gj 6=Gk

∑
Gr∈Ql

Gr 6=Gi,Gj ,Gk
xGj (l)PGmax

r (l)

γ(|Ql| − 1)2(|Ql| − 3)

+

∑∑∑
Gi,Gj ,Gk∈Ql
Gi 6=Gj 6=Gk

xGj (l)PGmax
k (l)

γ(|Ql| − 1)2(|Ql| − 2)
. (42)

Using Eq. (21) and (41) - (42) we obtain∑
Gi∈Ql

[Φ̄2
Gmax
i (l) − 2P−Gimax(l)Φ̄Gmax

i (l)

(E−Gimax(l) + xGi(l)

γ

)
]

+
∑
Gi∈Ql

ΓlGi = 0. (43)

Next we consider all links l ∈ L where |Ql| ≤ 3; let these
link be l1, l2, · · · , lr. Then, by using the above equality and
the specification of the tax function for the links l1, l2, · · · , lr
(cf. section III, cases B and C) we obtain∑

(j,Gi)∈
⋃
Gi∈N

Gi
t(j,Gi)

=
∑
l∈L

∑
Gi∈Ql

∑
(j,Gi)∈Gi(l)

tl(j,Gi)

=
∑

l∈L:|Ql|=2

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi)

+
∑

l∈L:|Ql|=3

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi)

+
∑

l∈L:|Ql|>3

∑
Gi∈Ql

∑
(j,Gi)∈Gimax(l)

tl(j,Gi) +

r∑
j=1

Slj

= 0. (44)

The last equality in (44) is true for the following reason.
By Eq. (43) the third sum on the right hand side of the
second equality in (44) is equal to zero. The sum of the three
remaining terms is also equal to zero because of Eqs. (10)-
(25).

Proof of Theorem 5: We need to show that

V(j,Gi)(m
∗) =

U(j,Gi)(x(j,Gi))−
∑

l∈R(j,Gi)

tl(j,Gi)


m=m∗

≥ 0,

for every (j,Gi), Gi ∈ N . By the property of NE, it follows
that

V(j,Gi) (m∗) ≥ V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
. (45)

Consequently, it is sufficient to find a m(j,Gi) ∈ Mi so that
V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
≥ 0. Set x(j,Gi) equal to 0. We

separately examine different cases, as follows.

• If x∗Gi(l) > 0 then, tl(j,Gi)|(m∗−(j,Gi)
,m(j,Gi)

) = 0 because
j /∈ Gimax(l).

• If x∗Gi(l) = 0, then in accordance to the possible cases
we define,

πl(j,Gi) :=



π∗l(j,Gi)
, for Case B, Part BI;

P ∗Gmax(l), for Case B, Part BII;
π∗l(j,Gi)

, for Case C, Part CI;
P ∗Gmax(l), for Case C, Part CII;
$∗DI(l), for Case D, Part DI;
$∗DII(l), for Case D, Part DII.

(46)

where, $∗DI(l) :=

1

|Gmax
i (l)|

[
P ∗Gmax(l) −

∑
j∈Gmax

i
j 6=i

π∗j,Gmax
i

+
E∗−Gimax(l)

γ

+

√√√√√[P ∗Gmax(l)

E∗−Gimax(l)

γ

]2

+

P ∗Gmax(l)

∑
Gj ,Gj∈Ql
Gj 6=Gi

x∗Gj (l)

|Ql| − 1

]
,

and

$∗DII(l) := P ∗Gmax(l)

[
1 +
E∗−Gimax(l)

γ

]

+

√√√√√[P ∗Gmax(l)

E∗−Gimax(l)

γ

]2

+

P ∗Gmax(l)

∑
Gj ,Gj∈Ql
Gj 6=Gi

x∗Gj (l)

|Ql| − 1
.

We can7 show that tl(j,Gi) for every l ∈ R(j,Gi) is equal to
zero at
m(j,Gi) = (0, πl1(j,Gi), · · · , π

l|R(j,Gi)
|

(j,Gi)
) when πlk(j,Gi), 1 ≤ k ≤

|R(j,Gi)| is defined by (46).

In the other hand, by m(j,Gi) where its arguments are
defined in the above, we obtain
V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
=

U(j,Gi)(0)−
∑

l∈R(j,Gi)

tl(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
= U(j,Gi)(0) = 0, (47)

when (j,Gi) 6= kl1 , kl2 , · · · , klr .
When (j,Gi) = klq , q = 1, 2, · · · , r,
V(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
=

U(j,Gi)(0) −
∑

l∈R(j,Gi)

tl(j,Gi)

(
m∗−(j,Gi)

,m(j,Gi)

)
− S∗lq

= −S∗lq ≥ 0 (48)

7Since γ is sufficiently large then it is guaranteed that $DI and $DII

are positive.



12

Combining (45), (47) and (48) we obtain

V(j,Gi)(x
∗
(j,Gi)

, t∗) ≥ V(j,Gi)(x, t)

∣∣∣∣
m=(m(j,Gi)

,m∗−(j,Gi)
)

≥ 0

Proof of Theorem 6: Let m∗ be an arbitrary NE of
the game (M, f, V ) induced by the proposed game form.
Consider problem Max.1, since the functions U(j,Gi), j ∈
Gi, Gi ∈ N , are concave and differentiable and the constraints
are linear, Slater’s condition ( [25]) is satisfied, the duality gap
is equal to zero, and Karush Kuhn Tucker (KKT) conditions
are necessary and sufficient to guarantee the optimality of
any allocation x that satisfies them. Let λl be the Lagrange
multiplier corresponding to the capacity constraint for link l
and νi be the Lagrange multiplier corresponding to the demand
constraint. The Lagrangian for problem Max.1 is
L(x, λ, ν) =∑

Gi∈N

∑
(j,Gi)∈Gi

U(j,Gi)(x(j,Gi))

−
∑
l∈L

∑
e(l)∈E(l)

λe(l)

 ∑
Gi∈Ql

x(j,Gi)I{(j,Gi) ∈ Gi(l)} − cl


+
∑
Gi∈N

∑
(j,Gi)∈Gi

ν(j,Gi)x(j,Gi) (49)

and the KKT conditions are:

∂L(x∗, λ∗, ν∗)

∂x(j,Gi)
=
∂U(j,Gi)(x

∗
(j,Gi)

)

∂x(j,Gi)
+ ν∗(j,Gi)

−
∑

l∈R(j,Gi)

∑
e(l,(j,Gi))∈E(l,(j,Gi))

λ∗e(l,(j,Gi)) = 0 (50)

λ∗e(l)

 ∑
Gi∈Ql

x∗(j,Gi)I{(j,Gi) ∈ Gi(l)} − cl

 = 0,∀ l (51)

ν∗(j,Gi)x
∗
(j,Gi)

= 0 ∀Gi ∈ N and j ∈ Gi. (52)

Now, define ∀ l ∈ L, Gi ∈ Ql, j ∈ Gimax(l)

λ∗l(j,Gi) :=
∑

emax(l,(j,Gi))∈Emax(l,(j,Gi))

λ∗e(l,(j,Gi)), (53)

where, Emax(l) is a subset of equations, emax(l) of (5),
such that every element x(k,Gs) ∈ emax(l) is equal to
xGs(l), and accordingly, we can define Emax(l, (j,Gi)) and
emax(l, (j,Gi)).
Furthermore, (51) implies the following, ∀ l ∈ L and Gi ∈
Ql, j ∈ Gi(l),

if x(j,Gi) < xGi(l) then λ∗e(l,(j,Gj)) = 0. (54)

Since m∗ is a NE then for every user (j,Gi), Gi ∈ N , j ∈ Gi,
there exists at least a link in R(j,Gi) such that x(j,Gi) =
xGi(l). Now, by using (53) and (54) we can reformulate
the KKT constraints as follows, suppose that at link l ∈
R(j,Gi), x(j,Gi) = xGi(l), then

∂L(x∗, λ∗, ν∗)

∂x∗Gi(l)
=
∂U(j,Gi)(x

∗
Gi

(l))

∂xGi(l)

−
∑

l∈Rmax
(j,Gi)

λ∗l(j,Gi) + ν∗(j,Gi) = 0 (55)

λ∗l

 ∑
Gi∈Ql

x∗Gi(l)− cl

 = 0, ∀ l ∈ L (56)

ν∗(j,Gi)x
∗
Gi(l) = 0 ∀Gi ∈ N and j ∈ Gi. (57)

where λ∗l :=
∑
j∈Gimax(l) λ

∗l
(j,Gi)

for every Gi ∈ Ql. Because
of the characteristics of problem Max.1, KKT conditions are
necessary and sufficient for any optimal solution of Max.1.
Therefore, to show that any arbitrary NE m∗ of the specified
game, induced from the game form presented in section III, is
correspondent to an optimal solution, it is enough to find ν∗i ,
λl∗, and λ∗l(j,Gi), for every Gi ∈ N , j ∈ Gi, l ∈ L, appropri-
ately, such that Eqs. (55), (56) and (57) are satisfied. If we set
ν∗(j,Gi), Gi ∈ N , j ∈ Gi, equal to zero, then (57) is satisfied. In
addition, if we set λl∗ = P ∗Gmax(l), l ∈ L and λ∗l(j,Gi) equal to
(28), then the correctness of (56) and (57) will be implied from
(27) and (28), respectively. Furthermore, by the construction of
the game form

∑
Gi∈N

∑
j∈Gi

∑
l∈R(j,Gi)

t∗l(j,Gi) is equal to
zero. Consequently, the NE m∗ results in an optimal solution
of problem Max.0. Since the NE m∗ was arbitrary chosen,
every NE m∗ of the game induced by the game form proposed
in section III results in an optimal solution of problem Max.0.


