
1

Distributed Kalman filtering based on consensus

strategies

Ruggero Carli, Alessandro Chiuso, Luca Schenato, Sandro Zampieri

Abstract

In this paper, we consider the problem of estimating the state of a dynamical system from distributed

noisy measurements. Each agent constructs a local estimate based on its own measurements and estimates

from its neighbors. Estimation is performed via a two stage strategy, the first being a Kalman-like

measurement update which does not require communication, and the second being an estimate fusion

using a consensus matrix. In particular we study the interaction between the consensus matrix, the

number of messages exchanged per sampling time, and the Kalman gain. We prove that optimizing

the consensus matrix for fastest convergence and using the centralized optimal gain is not necessarily

the optimal strategy if the number of exchanged messages per sampling time is small. Moreover, we

showed that although the joint optimization of the consensus matrix and the Kalman gain is in general

a non-convex problem, it is possible to compute them under some important scenarios. We also provide

some numerical examples to clarify some of the analytical results and compare them with alternative

estimation strategies.

I. INTRODUCTION

The recent technological advances in wireless communication and the decreasing in cost and

size of electronic devices, are promoting the appearance of large inexpensive interconnected

systems, each with computational and sensing capabilities. These complex systems of agents

can be used for monitoring very large scale areas with fine resolution. However, collecting

measurements from distributed wireless sensors nodes at a single location for on-line data
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processing may not be feasible due to several reasons among which long packet delay (e.g.

due to multi-hop transmission) and/or limited bandwidth of the wireless network, due e.g. to

energy consumption requirements.

This problem is apparent in wireless ad-hoc sensor networks where information needs to be

multi-hopped from one node to another using closer neighbors. Therefore there is a growing need

for in-network data processing tools and algorithms that provide high performance in terms of

on-line estimation while (i) reducing the communication load among all sensor nodes, (ii) being

very robust to sensor node failures or replacements and packet losses, and (iii) being suitable

for distributed control applications.

The literature is very rich of contributions addressing several aspects of distributed estimation

and, for obvious reasons, we shall mention only a few. Most works focus on static estimation

problems: [41] derives conditions under which one can reconstruct the global sufficient statistic

from local sufficient statistics; [20] investigates how much information two sensors (say S1

and S2) have to transmit regarding their measurements (say y1 and y2) in order for a fusion

center to be able to evaluate certain functions of the measured data y1 and y2; this latter

paper introduces the concept of communication complexity, also shedding some new light on

well-known data fusion formulas; [14], [31], [32], [40], [39] address quantization issues and

optimal estimation using quantized data; [3] studies the problem of distributed estimation from

relative measurements, with applications to localization and time-synchronization; [29] aims at

reconstructing, in a decentralized manner, a field (say the temperature in a certain area) from

local measurements (taken for instance from temperature sensors deployed in the environment).

Concerning estimation of dynamic processes we should mention the so called Sign of Innovation

(SOI) Kalman filter [33], [17]; in this approach each sensor broadcasts to all sensors in the

network the new information acquired by sensing the environment, so that each sensor solves

a “centralized” (i.e. with all information available) estimation problem; however, in order to

limit the bandwidth requirement, only the sign of the innovation process is transmitted. It

is also worth recalling the paper [19], in which the authors study a decentralized problem

of joint estimation and control; the overall system is decomposed into “local” subsystems of

fixed structure. They restrict to (suboptimal) linear estimation and control schemes in which

the estimators and controllers gains are found by solving (off-line) a constrained parameter

optimization problem, aiming at optimizing an asymptotic (infinite horizon) cost.
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This is very similar, in spirit, to the approach followed in this paper; we will focus on

distributed estimation of dynamical systems for which sensor nodes are not physically co-located

and can communicate with each other according to some underlying communication network. For

example, suppose that we want to estimate the temperature in a building that changes according

to a random walk, i.e T (t + 1) = T (t) + w(t), where w(t) is a zero mean white noise process

with covariance q, and we have N sensors that can measure temperature corrupted by some

noise, i.e. yi(t) = T (t) + ni(t), where ni(t) are zero mean white noise processes with same

covariance r. If all measurements were instantaneously available to a single location, it is well

known from the centralized Kalman filter that the optimal steady state estimator would have the

following structure:

T̂ (t + 1) = (1− `0)T̂ (t) + `0mean(y(t))

where mean(y(t)) := 1
N

∑N
i=1 yi(t), and 0 < `0 < 1 is the optimal Kalman gain that depends

on the process noise covariance q and the equivalent measurement noise variance r/N . This

expression already shows two important features of the optimal estimator. The first feature

is that the optimal state estimate T̂ (t + 1) is a weighted average between the previous state

estimate T̂ (t) and the average of the sensor measurements, thus implying that averaging reduces

uncertainty. The second is that the optimal gain needs to be tuned to optimally balance process

noise and the equivalent noise of the averaged measurements. In a distributed setting, it is not

possible to assume that all measurements are instantaneously available at a specific location,

since communication needs to be consistent with the underlying communication graph G, and

each sensor node has its own temperature estimate T̂i(t). However, if it was possible to provide

an algorithm that computes the mean of set of numbers only through local communication, then

the optimal estimate could be computed at each sensor node as follows:

T̂i(t + 1) = (1− `0)mean(T̂ (t)) + `0mean(y(t))

= mean
(
(1− `0)T̂ (t) + `0y(t)

)

Algorithms able to compute the average of a set of numbers in a distributed way are known

as average consensus algorithms. They consist in iterations like z+ = Qz, where z is the

vector whose entries are the quantities to be averaged and Q is a doubly stochastic matrix,

i.e. a matrix with properties Qij ≥ 0,
∑

j Qij = 1 and
∑

i Qij = 1. The consensus problem

has been widely studied in terms of convergence of Markov Chains [12] [38] [28], and it has
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been recently proposed as an effective approach to solve many control problems ranging from

flocking [16][21] to robot rendezvous [18][8]. Many interesting results have appeared recently

[30][15][25][10] just to name a few. However, a detailed discussion about the average consensus

problem is beyond the scope of this paper and we address the interested reader to the survey

paper [22] and references therein. Under some weak connectivity properties [6], these matrices

guarantee that limm→∞[Qmz]i = mean(z), i.e. all elements of vector Qmz converge to their

initial mean mean(z). Therefore, provided it is possible to communicate sufficiently fast within

two subsequent sensor measurements, i.e. m À 1, then intuitively we can assume that the

following distributed estimation strategy yields the optimal global state estimate:

z = (1− `0)T̂i(t) + `0yi(t) measur. & predict. stage

T̂i(t + 1) = [Qmz]i consensus stage

Olfati-Saber [27] and Spanos et al. [35] were the first to propose this two-stage strategy based

on computing first the mean of the sensor measurements via consensus algorithms, and then

to update and predict the local estimates using the centralized Kalman optimal gains. This

approach can be extended to multivariable systems where the process evolves according to

T (t+1) = AT (t)+w(t) and the state is only partially observable, i.e. yi(t) = CiT (t)+vi(t), as

shown in the static scenario by Xiao et al. [44] (A = I, w(t) = 0) and in the dynamic scenario

in [36][24]. In this context, i.e. m À 1, it natural to optimize Q for fastest convergence rate of

Qm, which corresponds to the second largest singular value of Q, for which there are already

very efficient optimization tools available [42] [43]. The assumption m À 1 is reasonable in

applications for which communication is inexpensive as compared to sensing. This is the case,

for example, in rendezvous control or coordination of mobile sensors where moving and sensing

the position is energetically more expensive than transmitting it to their neighbors. However,

there are many other important applications in which the number m of messages exchanged per

sampling time per node needs to be small, as required in static battery-powered wireless sensor

networks. Therefore the assumption that [Qmz]i ≈ mean(z) is not valid. In this context, for

example, it is not clear whether maximizing the rate of convergence of Q is the best strategy.

Moreover, also the optimal gain ` becomes a function of the matrix Q and the number of

exchanged messages m, which is unlikely to coincide with the optimal centralized Kalman gain

proposed in all the aforementioned papers [27][35][36][24][44].
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Recently, Alriksson at al. [1] and Speranzon et al. [37], considered the case m = 1, i.e. sensors

are allowed to communicate once between sampling instants. In particular, in [1], the authors

consider a general MIMO scenario where the matrix Q = Q(t) (= W in their terminology) is

selected at each time step in order to minimize the estimation error covariance of each sensor

for the next time step, with the only constraint to leave the estimate unbiased corresponding to
∑

j Qij = 1. Also the gain ` = `i(t) (= K in their terminology) is different for each sensor

and chosen at each time-step using the standard Kalman prediction and correction procedures in

order to minimize each sensor estimation error. Simulations show that this recursive algorithm

converges and provide good performance, thus providing a methodology to jointly optimize Q

and `. However the authors do not provide any proof of convergence nor any global optimality

guarantee. In fact, this distributed optimization approach greedily minimizes the error covariance

of each sensor at each time step, which might not be globally optimal. Differently, in [37] the

authors do not separate the algorithm between a consensus stage and an update and correct stage,

but they consider a single update equation

T̂ (t + 1) = KT̂ (t) + Hy(t)

where T̂ = [T̂ ∗
1 . . . T̂ ∗

N ]∗ and y = [y∗1 . . . y∗n]∗1, with the additional unbiasedness constraint
∑

j(Kij + Hij) = 1, i.e. row-sum equal to unity. Using our terminology we note that we

would have K = (1 − `)Q and H = `Q, which satisfy the constraint. Then they propose to

compute the design matrices K,H by formulating an optimization problem where at each time

step the sum of all sensor node covariance errors is minimized. Similarly to [1], this approach

seems to converge and to provide good performance, but once again without any proof of global

optimality and insight about the connectivity properties of the underlying graph.

The consensus-based approach to distributed estimation is not the only approach. In fact,

recently Skizas et al. [34] proposed an iterative algorithm based on local estimates and on the

quality of the local estimates through special nodes called bridges, and they proved converge to

the centralized optimal estimator in the ideal scenario and to maintain good performance even

under quantization and non-gaussian noise measurements.

In this paper, we want to study the interaction between the consensus matrix Q, the number

of messages per sampling time m, and the gain `. With respect with the aforementioned works,

1The symbol “*” denotes the conjugate transpose.
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we consider a simpler scenario with a scalar state which can be measured by N identical and

independent sensors, a setup which still captures some of the most important features of the

problem. In fact, also in this simple setup the joint optimization of Q and ` is not convex, as

discussed in Section V. Our goal is to provide better insights about the problem of distributed

estimation using consensus matrices, rather then posing it as a black-box optimization algorithm.

Therefore, we explore some important regimes, namely fast communication m → ∞, “small”

measurement noise (r/q → 0), and “small” process noise (q/r → 0).

In particular, we show that the common practise of optimizing the spectral radius ρ(Q) of

the consensus matrix Q is the optimal strategy only under the fast communication regime. In

fact, under the “small” measurement noise (r/q → 0) regime it is more appropriate to optimize

the Frobenious norm ||Qm||F . In general, the minimizer for these two criteria do not coincide.

Moreover, we also provide some useful guidelines for choosing the local filter gain ` under

some asymptotic regimes. Finally we provide some numerical examples to clarify the proposed

analytical results and we compare them with alternative distributed estimation strategies available

in the literature.

The paper is organized as follows. In the next section, we introduce the problem formulation

and the proposed estimation approach. In Section III we study optimal design of the consensus

matrix Q for fixed Kalman gain `, and pairwise, in Section IV we study optimal design of

the Kalman gain ` for fixed consensus matrix Q. In Section V, after showing that the joint

optimization of Q and ` is not convex, we derive some asymptotic results under some specific

regimes. Section VI presents some numerical examples to illustrate the analytical results obtained

in the previous sections, and to compare the proposed algorithm with other approaches to the

same problem present in the literature. This latter section also show a preliminary attempt to

improve estimation performance by adding memory. Finally, in Section VII we summarize the

results and we suggest possible future extensions.

Mathematical Preliminaries

Before proceeding we introduce some mathematical preliminaries that will be used throughout

the paper. We indicate with 1 = [1 1 . . . 1]∗ the vector of all ones. The superscript ∗ shall

denote complex conjugate transpose. The Frobenius norm of a matrix Q is defined as ||Q||F :=
√

tr(QQ∗) =
√∑

i,j |Qij|2, where Qij is the (i, j)-th entry of the matrix Q. We say that a

May 17, 2007 DRAFT



7

matrix Q is stochastic if it has nonnegative entries and the rows sum to one, i.e. Q1 = 1. Note

that the spectrum σ(Q) of a stochastic matrix is contained in the closed unit disk.

For a stochastic matrix Q we define the essential spectral radius ρ(Q) as

ρ(Q) =





1 if dim ker(Q− I) > 1

maxλ∈σ(Q)\{1} |λ| if dim ker(Q− I) = 1 ,
(1)

A stochastic matrix is said to be primitive if there exists an integer k such that Qk has strictly

positive entries [4]. This is equivalent to requiring that ρ(Q) < 1 (see [13], Theorem 8, pag.

80).

Furthermore, we shall say that Q is doubly stochastic if both Q and Q∗ are stochastic.

II. PROBLEM FORMULATION

Consider a set V of N sensor nodes which are labeled i = 1, 2, . . . , N. These sensors can

communicate over a network modeled as a direct graph G = (V,E), where the edge (i, j) is in E

if and only if the node i can transmit its information to the node j. We assume that the graph G
is time-invariant. A physical process with state x ∈ R evolves according to the continuous-time

system

ẋ(t) = v(t) (2)

where v(t) is a continuous-time white noise2 of zero mean and intensity q ≥ 0, that is E[q(t)q(s)] =

qδts, where δhk is the Kronecker delta. The initial condition is also assumed to be a random

variable with mean x0 and variance σ.

Each sensor take measurements of the physical process according to the equation

yi(kT ) = x(kT ) + ni(kT ), k ∈ Z, (3)

where T is the sampling time. Note that yi ∈ R, ∀ i. We denote y(kT ) = [y1(kT ), . . . , yN(kT )]∗

and n(kT ) = [n1(kT ), . . . , nN(kT )]∗. Moreover the noise processes ni(kT ) ∈ R are such that

E[n(kT )] = 0, E[n(kT )n(hT )] = rIδhk. Note also that (3) can be rewritten in the following

vector form

y(kT ) = x(kT )1+ n(kT ). (4)

2We recall that what is commonly referred to as “continuous time white noise” can be thought of as the “derivative” of a

Wiener process which, unfortunately, is nowhere differentiable. More rigorously x(t) is a Wiener process.

May 17, 2007 DRAFT



8

From now on we assume, without loss of generality, that T = 1. Suppose also that, between each

pair of subsequent measurement update indexes k and k +1, each node exchanges m messages;

we assume that these transmissions take place at the following times k + δ, k +2δ, . . . , k +(m−
1)δ, k + mδ, where δ = 1

m
. Note that k + mδ = k + 1.

We shall denote with x̂i(k + hδ|k) the estimate, at note i, of the state x at time k + hδ given

measurements up to time k. In compact form we shall also denote with x̂ := [x̂1, . . . , x̂N ]∗ the

vector of estimates throughout the network; more precisely, making the dependence upon time

explicit:

x̂ (k + hδ|k) :=




x̂1 (k + hδ|k)
...

x̂N (k + hδ|k)


 .

We assume that these estimates are updated, for k ≥ 0, according to the following rule




x̂ (k|k) = (1− `(k)) x̂(k|k − 1) + `(k)y(k)

x̂ (k + hδ|k) = Q(k, h)x̂ (k + (h− 1)δ|k) , h = 1, . . . , m
(5)

where Q(k, h) is a suitable matrix compatible with the communication graph and where 0 <

`(k) < 1, ∀ k ≥ 0. From now on we shall use constant “gains” `(k) and Q(k, h), i.e. `(k) = `

and Q(k, h) = Q; furthermore, we shall also assume the the recursions (5) are initialized by

x̂(0|0) := y(0). (6)

A natural request is also that x̂i be an unbiased estimator for all i’s and for all times, i.e.

E [x̂i(k + hδ|k)] = x0, ∀i, ∀k ≥ 0, ∀h ∈ [1,m]; this leads to the condition

Q1 = 1. (7)

In fact, from the update rule (5) it follows that

x01 = E [x̂ (k + (h + 1)δ|k)] = E [Qx̂ (k + hδ|k)] = x0Q1.

For x0 6= 0, the equality x0Q1 = x01 implies (7). Furthermore, if we restrict Q to have non-

negative entries, condition (7) is equivalent to saying that Q is a stochastic matrix. Hence, from

now on, we shall assume that Q is stochastic.

Now we define the new variable x̃ (k + hδ|k) = x (k + hδ)1 − x̂ (k + hδ|k) which represents
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the estimation error. In order to analyze the structure of the recursive equations that x̃ (k + hδ|k)

satisfies, it is convenient discretize (2) in the following way

x (k + (h + 1)δ) = x (k + hδ) + w (k + hδ)

where

w (k + hδ) =

∫ k+(h+1)δ

k+hδ

v(τ)dτ.

Note that w is a discrete time white noise with mean zero and variance q/m, i.e. E [w (k + hδ)] =

0 and E [w2 (k + hδ)] = q
m

. By straightforward calculations, for h = 0, we get

x̃(k|k) = (1− `) x̃(k|k − 1)− ` n(k)

and, for 1 ≤ h ≤ m,

x̃ (k + hδ|k) = Qhx̃ (k|k) +

(
h−1∑
i=0

w (k + iδ)

)
1

In this paper we shall study the second order properties of the error, measured by the covariance

matrices:

P (k + hδ|k) = E [x̃ (k + hδ|k) x̃ (k + hδ|k)∗] ,

defined for 0 ≤ h ≤ m. One can show that P (k + hδ|k) satisfies, for h = 0,

P (k|k) = (1− `)2 P (k|k − 1) + `2rI (8)

and, for h = m,

P (k + 1|k) = QmP (k|k)(Qm)∗ + q11∗. (9)

Plugging (8) into (9) we obtain the recursive equation

P (k + 1|k) = (1− `)2QmP (k|k − 1) (Q∗)m + `2rQm (Q∗)m + q11∗ (10)

while, inserting (9) into (8) evaluated at the index k + 1 we get:

P (k + 1|k + 1) = (1− `)2 QmP (k|k) (Q∗)m + (1− `)2 q11∗ + `2rI. (11)

From (6) it follows that the error covariance P (0|0) satisfies P (0|0) = rI; similarly P (1|0) is

given by P (1|0) = rQm (Qm)∗ + q11∗. Iterating the update rule (10), starting from the initial

condition P (1|0), we obtain

P (k+1|k) = (1−`)2kQkmP (1|0) (Q∗)km+`2r

k−1∑
i=0

(1−`)2iQ(i+1)m (Q∗)(i+1)m+q

k−1∑
i=0

(1−`)2i11∗ ;
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similarly, iterating (11) with initial condition P (0|0), we get

P (k|k) = (1− `)2kQkmP (0|0) (Q∗)km + q

k−1∑
i=0

(1− `)2i+211∗ + `2r

k−1∑
i=0

(1− `)2iQim (Q∗)im

In this paper we shall be concerned with the asymptotic (k → ∞) behavior of the error

covariance. Hence we consider the limits

lim
k→∞

P (k + 1|k) = r`2

∞∑
i=0

(1− `)2iQ(i+1)m (Q∗)(i+1)m + q
1

1− (1− `)2
11∗

lim
k→∞

P (k|k) = q
(1− `)2

1− (1− `)2
11∗ + r`2

∞∑
i=0

(1− `)2iQim (Q∗)im

and define the cost functions3

J1(`,Q; m, r, q) = tr
{

lim
k→∞

P (k + 1|k)
}

and

J2(`,Q; m, r, q) = tr
{

lim
k→∞

P (k|k)
}

These costs lead to the formulation of the following minimization problem:

Problem 1: Given a graph G and a nonnegative integer m, find a real ` ∈ (0, 1) and a matrix

Q ∈ Q, where Q is the set of stochastic matrices compatible with the graph G, minimizing J1

or J2.

In the sequel the set Q may be further restricted while always being compatible with the

topology of the communication network.

Remark 1: In the sequel we will consider only J1. The reason will be clear in the next sections

where the minimization on J1 will permit us to retrieve, for some particular cases, the results

already known in the literature regarding Kalman filtering. For the sake of simplicity, we will

denote this cost function simply by J in place of J1. Hence

J = r`2tr

{ ∞∑
i=0

(1− `)2iQ(i+1)m (Q∗)(i+1)m

}
+ q

1

1− (1− `)2
N (12)

3In the remainder of the paper, when there is no risk of confusion, we might drop some arguments of the cost (e.g. denote

J1(`, Q) rather than J1(`, Q; m, r, q)).
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Remark 2: Let us denote with λi, i = 0, .., N−1 the eigenvalues4 of Q; since Q is stochastic,

we can set, w.l.o.g., λ0 = 1, i.e. σ(Q) = {1, λ1, λ2, . . . , λN−1}. Note that, if Q is a normal

matrix, i.e. QQ∗ = Q∗Q, then tr{Qim(Q∗)im} =
∑n−1

h=0 |λh|2im; it is hence easy to see that

formula (12) can be rewritten as follows:

J =
r`2 + qN

1− (1− `)2 + r`2

N−1∑
i=1

|λi|2m

1− (1− `)2|λi|2m
(13)

Also note that, if Q is normal and stochastic, then it is also doubly stochastic. Relevant sub-

classes of normal matrices are, for instance, Abelian Cayley matrices [2], circulant matrices and

symmetric matrices.

The previous remark suggests that the following assumption is both useful and reasonable.

Assumption 1: The set Q in problem 1 is the subset of normal stochastic matrices which are

compatible with the graph G.

Example 1: Assume that Q is the set of the circulant stochastic matrices of the form

Qk =




1− k k 0 0 · · · 0 0

0 1− k k 0 · · · 0 0
...

...
...

... · · · ...
...

k 0 0 0 · · · 0 1− k




where k ∈ [0, 1] and assume that m = 1. Let

Qopt, `opt ∈ arg min
`∈ (0,1); Q∈Q

J(Q, `; m, r, q) (14)

It is well known in the literature [11] that the eigenvalues of Q can be expressed in the

following form λh = 1 − k + kej 2π
N

h, 0 ≤ h ≤ N − 1. Notice that
∣∣∣1− k + kej 2π

N
h
∣∣∣ ≥∣∣∣1/2 + 1/2ej 2π

N
h
∣∣∣ , ∀h : 0 ≤ h ≤ N − 1. Hence it follows that

Q 1
2

= arg min
Q∈Q

J(`, Q; 1, r, q)

for all ` ∈ (0, 1), i.e. Qopt = Q 1
2
. In order to calculate the optimal gain we have to solve

arg min
`∈(0,1)

qN

1− (1− `)2 + r`2

N−1∑

h=0

|λh|2
1− (1− `)2|λh|2 (15)

4Multiple eigenvalues are counted as many times as their algebraic multiplicity.
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where λh = 1
2

+ 1
2
ej 2π

N
h. Unfortunately it is not possible to give, in general, a closed form

expression for the optimizing gain `opt, which has to be found using numerical search techniques.

However a simple expression for (15) can be obtained when the number of sensors N goes to

infinity, which allows to study the behavior of the optimal ` for large networks. To this purpose

it is convenient to define the normalized cost

J̄N : =
J

N
=

q

1− (1− `)2 +
r`2

N

N−1∑

h=0

|λh|2
1− (1− `)2|λh|2

=
q

1− (1− `)2 +
r`2

N
J̃N

where the last equation defines J̃N . Define also the function f : C→ C

f(z) =
1

2
+

1

2
z.

and note that λh = f
(
ej 2π

N
h
)

. As N →∞, J̃N converges to

lim
N→∞

J̃N = J̃∞ =
1

2π

∫ 2π

0

|f(ejφ)|
1− (1− `)2|f(ejφ)|2dφ =

1

2πj

∮

γ

z−1(2 + z + z−1)

4− (1− `)2(2 + z + z−1)
dz

where γ is the unit circle. It is straightforward to see that the poles of z−1(2+z+z−1)
4−(1−`)2(2+z+z−1)

inside

γ are z1 = 2−(1−`)2

(1−`)2
−

√(
2−(1−`)2

(1−`)2

)2

− 1, and z2 = 0; the integral can be computed explicitly

using the residue theorem yielding:

J̃∞ =
1

(1− `)2

(
1√

1− (1− `)2
− 1

)

Hence

lim
N→∞

J̄N

(
Q 1

2
, `; 1, r, q

)
=

q

1− (1− `)2
+

r`2

(1− `)2

(
1√

1− (1− `)2
− 1

)
. (16)

The value of `opt can be found by minimizing the limiting expression for J̄N in (16).

III. OPTIMAL CONSENSUS MATRIX Q FOR FIXED GAIN `

In this section we assume that the estimation gain ` is fixed, and thus consider the optimization

problem:

Qopt(`; m) = arg min
Q∈Q

J(Q, `; m). (17)
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Although the analysis of this problem is quite hard in general, a detailed study can be carried out

in some interesting situations. In particular in the following we will restrict to the three special

cases:

• the communication graph G is undirected

• the sensors can communicate arbitrarily fast within two subsequent measurements, i.e.,

m →∞
• the estimation gain ` is sufficiently large, i.e. ` → 1; this intuitively corresponds to the

situation in which the variance of the measurement noise is negligible with respect to the

variance of the process, i.e r
q
≈ 0.

Before proceeding, we observe that

min
Q∈Q

J =
r`2 + qN

1− (1− `)2 + min
Q∈Q

r`2

N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m

and hence only the second term on the right hand side play a role in the optimization. We can

therefore restrict to consider only this latter quantity which, for convenience of notation, we

denote as

S(Q, `; m) =
N−1∑
j=1

|λj|2m

1− (1− `)2|λj|2m
(18)

A. Undirected communication graph G
First of all we observe that, if the communication graph G is undirected, Q ∈ Q implies that

also Q∗ ∈ Q. For any Q ∈ Q, consider its symmetric part Qsym := (Q + Q∗)/2. Clearly, Qsym

is normal and it is compatible with G, therefore Qsym ∈ Q. The following lemma provides an

interesting comparison between J(Q, `; m) and J(Qsym, `; m) showing that the former is always

greater or at most equal to the latter.

Lemma 3.1: Let Q be any matrix in Q and let Qsym be defined as above. Then

J(Qsym, `; m) ≤ J(Q, `; m).

Proof: Let λi be any eigenvalue of Q. Then Re {λi} is an eigenvalue of Qsym, where

Re {λi} denotes the real part of λi. Clearly |Re {λi}| ≤ |λi| which implies that

|Re {λi} |2m

1− (1− `)2|Re {λi} |2m
≤ |λi|2m

1− (1− `)2|λi|2m
.

Therefore, from (18), it follows that S(Qsym, `; m) ≤ S(Q, `; m); hence also J(Qsym, `; m) ≤
J(Q, `; m) holds true.
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Remark 3: It is important to note that normality plays a fundamental role in the previous

lemma which cannot be generalized to stochastic matrices Q. In fact, it is easy to find a non-

normal Q for which the symmetric part Qsym gives a larger cost index.

An immediate consequence of Lemma 3.1 is that, when the communication graph is undirected,

the minimum of the cost function J is reached by symmetric matrices. Thus, if Qsym is the

subset of Q containing the symmetric matrices, i.e. Qsym = {Q ∈ Q : Q = Q∗}, solving (17)

is equivalent to solve

arg min
Q∈Qsym

J(Q, `; m). (19)

The following result provides a powerful characterization of (19) which has important implica-

tions when it comes to performing optimization.

Theorem 3.1: Let Qsym be as above. Then the cost function J(Q, `; m) defined on Qsym is a

convex function.

Proof: Consider the function f : B ⊆ Rn → R defined as

f(x) =
n∑

i=1

x2m
i

1− αx2m
i

,

where m ∈ N, 0 < α < 1, x = [x1, x2, . . . , xn]T and where B = {x ∈ Rn : |xi| ≤ 1}. It is easy

to verify that the function f is convex and symmetric, i.e. it is invariant to any permutation of

the vector entries xi. Hence, it follows from the theory of convex spectral functions that also J

is a convex function [5].

Theorem 3.1 states that (19) is a convex problem thus implying that the solution of (19) can

be performed efficiently by suitable numerical algorithms. In fact, Xiao et al. [43] adopted this

strategy to optimize similar performance costs over symmetric stochastic matrices.

B. Fast communication (m →∞)

It is well known in the literature (see [8], [26]) that the speed of convergence of consensus

algorithms is governed by the essential spectral radius of the consensus matrix.

Indeed, the essential spectral radius plays also an important role in distributed estimation pro-

vided communication is “sufficiently fast”. In fact the following theorem shows that optimizing

the essential spectral radius improves the performance provided that the number of message

exchanges is larger than a specified bound. However, when comparing the performance of two
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consensus matrices Q1 and Q2, this bound is a function of ρ(Q1) and ρ(Q2) as explained in the

following theorem.

Theorem 3.2: Let Q1 and Q2 be two matrices such that ρ(Q1) > ρ(Q2). Then there exists m̄

(depending only on ρ(Q1)− ρ(Q2)) such that

J(Q1, `; m) > J(Q2, `; m), ∀m > m̄.

Proof: Let ρ1 = ρ(Q1), ρ2 = ρ(Q2) and ε = ρ(Q1)− ρ(Q2) = ρ1 − ρ2. Observe that

S(Q1, `; m) ≥ ρ2m
1

1− (1− `)2ρ2m
1

>
(ρ2 + ε)2m

1− (1− `)2ρ2m
2

and that

S(Q2, `; m) ≤ N
ρ2m

2

1− (1− `)2ρ2m
2

.

Hence, if (ρ2 + ε)2m > Nρ2m
2 , we have that S(Q1, `; m) > S(Q2, `; m). Straightforward cal-

culations show that this last condition is satisfied if and only if m > log N

2 log
“
1+ ε

ρ2

” . Note that

log N
2 log(1+ε)

≥ log N

2 log
“
1+ ε

ρ2

” . Therefore by letting m̄ =
⌈

log N
2 log(1+ε)

⌉
the statement of the theorem

follows. Note that m̄ depends only on ε.

C. Large gain (` → 1)

In this section we shall instead consider the number of message exchanges m as fixed and

assume the gain ` is “large”; this, as we shall also see in Section V-B, is what happens when

the measurement noise is small as compared to process noise, a situation frequently encountered

in practice. It is remarkable that in this case the Frobenius norm is instead the “right” way to

compare consensus matrices. This is made precise by the following theorem.

Theorem 3.3: Let Q1, Q2 be two matrices such that ‖Qm
1 ‖F > ‖Qm

2 ‖F . Then there exists ¯̀

(depending only on ‖Qm
1 ‖F − ‖Qm

2 ‖F ) such that

J(Q1, `; m) > J(Q2, `; m), ∀ ` > ¯̀. (20)

Proof: Let f(`,m) = S(Q1, `; m)− S(Q2, `; m) and ε = ‖Qm
1 ‖F − ‖Qm

2 ‖F . We have that

f(`,m) can be written in the following way

f(`,m) =
∞∑
i=0

(
‖Q(i+1)m

1 ‖2
F − ‖Q(i+1)m

2 ‖2
F

)
(1− `)2i =

∞∑
i=0

αi(1− `)2i
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where αi = ‖Q(i+1)m
1 ‖2

F − ‖Q(i+1)m
2 ‖2

F . It is straightforward to see that α0 > ε2 and that, for

i ≥ 1, αi ≥ −(N − 1)ρ2m(i+1), where ρ = ρ(Q2). Hence, it follows that

f(`,m) > ε2 − (N − 1)
∞∑
i=1

ρ2m(i+1)(1− `)2i

> ε2 − (1− `)2(N − 1)

1− (1− `)2

Clearly, if the last term is positive, then also f(`, m) > 0,∀m. This condition is satisfied if and

only if

` ≥ 1−
√

ε2

N − 1 + ε2
= ¯̀.

Therefore, S(Q1, `; m)− S(Q2, `; m) > 0, ∀ ` > ¯̀ and consequently J(Q1, `; m) > J(Q2, `; m),

thus proving the claim of the theorem.

Remark 4: At first sight, Theorem 3.2 and Theorem 3.3 seem in contradiction. However, this

can be explained by observing that ‖Qm‖2
F = 1+αρ2m(Q)+o(ρ2m(Q)), where α is the algebraic

multiplicity5 of the second largest eigenvalue. Therefore, for large m, minimizing the Frobenius

norm of Qm or the essential spectral radius of Q is almost equivalent.

IV. OPTIMAL GAIN ` FOR FIXED CONSENSUS MATRIX Q

In this section we assume that the consensus matrix Q is fixed. Hence the problem we want

to solve is the following

arg min
`∈(0,1)

J(Q, `; m) (21)

The previous optimization problem is convex in `. This fact can be easily checked by observing

that the cost functional J can be written as sum of functions of the form:

g(`) =
x`2

1− x(1− `)2
, h(`) =

x

1− x(1− `)2
, x ∈ [0, 1]

which are convex in ` ∈ (0, 1). Consider now a generic matrix Q ∈ Q and let

`opt(Q; m) = arg min
`∈ (0,1)

J(Q, `; m).

Convexity of J allows easy computations of `opt(Q; m). In the remaining of this section we shall

see that the sequence {`opt(Q; m)}∞m=0 is monotonically non-decreasing in m. Moreover, it is

5We assume here Q primitive, i.e. ρ(Q) < 1.
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bounded below and above by `opt
d and `opt

c , which are the optimal gains minimizing J respectively

when Q = I and when Q = 1
N
11∗, namely

`opt
d = arg min

`∈(0,1)

J(I, `; m), `opt
c = arg min

`∈(0,1)

J

(
1

N
11∗, `; m

)

Note that Q = I and Q = 1
N
11∗ represent the two extreme cases in modeling the flow of

information between the sensors. Indeed, Q = I corresponds to the situation in which the

sensors do not communicate; in such a case there are N Kalman filters running separately (the

subscript “d” in `opt
d means decentralized, i.e. no communication). In the other case, instead,

we have that the underlying communication graph is complete and this means that each sensor

has full knowledge about the estimates of all the other sensors (the subscript “c” in `opt
c means

centralized, i.e. full communication). The following proposition characterizes precisely `opt
d and

`opt
c .

Proposition 4.1: Let `opt
d and `opt

c be as above. Then

`opt
d =

−q +
√

q2 + 4qr

2r
, `opt

c =
−q +

√
q2 + 4qr̄

2r̄

where r̄ = r
N

.

Proof: The proof follows from standard results known in Kalman filtering.

The following theorem shows also that `opt
d and `opt

c play the role of, respectively, lower and

upper bounds for `opt(Q; m). Indeed, a stronger result can be obtained, which characterizes the

sequence {`opt(Q; m)}∞m=0.

Theorem 4.1: Let Q ∈ Q. Let `opt(Q; m) be defined as above. Then the following chain of

inequalities holds true

`opt
d = `opt(Q; 0) ≤ `opt(Q; 1) ≤ . . . ≤ `opt(Q; m) ≤ `opt(Q; m + 1) ≤ . . . ≤ `opt(Q;∞) ≤ `opt

c .

The achieved (optimal) cost satisfies the reversed chain of inequalities:

J
(
Q, `opt

d ; 0
) ≥ J

(
Q, `opt(Q; 1); 1

) ≥ . . . ≥ J
(
Q, `opt(Q; m); m

) ≥

≥ J
(
Q, `opt(Q; m + 1); m + 1

) ≥ . . . ≥ J
(
Q, `opt

c ;∞)

Moreover `opt(Q;∞) = `opt
c if and only if Q is primitive [4].

Proof: Note that the equality `opt(Q; 0) = `opt
d follows directly from the fact that Q0 = I .

We prove now that `opt(Q; m) ≤ `opt(Q; m + 1). We start by calculating the partial derivative

∂J(Q, `; m)

∂`
(`) = 2

{
N−1∑
i=1

r`|λi|2m − r`(1− `)|λi|4m

[1− (1− `)2|λi|2m]2
− Nq(1− `)− r`2

[1− (1− `)2]2

}
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Consider now the function p : [0,∞) → R defined as

p(m) =
x2m − (1− `)x4m

(1− (1− `)2x2m)2 ,

where x is a real in [0, 1]. The first derivative of p is given by

∂p

∂m
(m) = 2x2m 1− (1− `2)x2m

[1− (1− `)2x2m]3
log x.

It is easy to check that ∂p
∂m

(m) < 0. This implies that

∂J(Q, `; m)

∂`
−∂J(Q, `; m + 1)

∂`
=

= 2r`

{
N−1∑
i=0

|λi|2m − (1− `)|λi|4m

[1− (1− `)2|λi|2m]2
− |λi|2(m+1) − (1− `)|λi|4(m+1)

[1− (1− `)2|λi|2(m+1)]
2

}
≥ 0,

∀ 0 < ` < 1 and 0 ≤ x ≤ 1. Since we already know that J(Q, `; m) is convex for all nonnegative

m inside the interval (0, 1) it follows that `opt(Q; m + 1) > `opt(Q; m).

In order to show that `opt(Q; m) ≤ `opt
c , we remark that the matrix 1

N
11∗ has an eigenvalue

equal to 1 and N − 1 eigenvalues equal to 0. This implies that

∂J(Q, `; m)

∂`
− ∂J

(
1
N
11∗, `; m + 1

)

∂`
= 2r`

N−1∑
i=1

|λi|2m − (1− `)|λi|4m

[1− (1− `)2|λi|2m]2
> 0

where the last inequality follows from the fact that x− αx2 > 0, ∀x ∈ (0, 1) and ∀α ∈ (0, 1).

Therefore `opt(Q; m) ≤ `opt
c .

We prove now `opt(Q; m) = `opt
c if and only if Q is primitive. Standard results in Markov chains

(see [4]) ensure that if Q is a primitive doubly stochastic matrix then limk→∞ Qk = 1
N
11∗.

Conversely, suppose that Q ∈ Q is not primitive, then there exists λi, 1 ≤ i ≤ N − 1 such that

|λi| = 1 implying that

∂J(Q, `; m)

∂`
− ∂J

(
1
N
11∗, `; m + 1

)

∂`
≥ 2r`2

[1− (1− `)2]2
> 0.

From this last inequality `opt(Q;∞) < `opt
c follows. It remains now only to verify the chain of

inequalities on the cost functional. To this purpose note that the function g : [0, 1] → R defined

as

g(x) =
x

1− αx
, α ∈ (0, 1)

is a monotonically increasing function of x. Therefore, since xm+1 ≤ xm for 0 ≤ x ≤ 1 and

using the definition of J in (13), we have that

J(Q, `, m + 1) ≤ J(Q, `, m), ∀ ` ∈ (0, 1).
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Therefore

J(Q, `opt(Q; m + 1),m + 1) ≤ J(Q, `opt(Q; m + 1),m) ≤ J(Q, `opt(Q; m),m).

This concludes the proof.

V. JOINT OPTIMIZATION OF Q AND `: SPECIAL CASES

We have shown in the previous two sections that the cost functional J is a convex function,

both in Q ∈ Qsym for ` fixed and in ` ∈ (0, 1) for Q fixed. Unfortunately, as simple examples

demonstrate, J is not a convex function jointly in ` and Q ∈ Qsym. Therefore, the joint

minimization of J

(Qopt(m, r, q), `opt(m, r, q)) ∈ arg min
`∈ (0,1); Q∈Qsym

J(Q, `; m, r, q) (22)

results to be quite hard in general. Nevertheless, an analytical characterization is possible when

restricting to some “asymptotic cases” on the values of m, r and q. In particular we will consider

the following situations:

• the sensors can communicate arbitrarily fast within two subsequent measurements, i.e.,

m →∞
• r

q
≈ 0, i.e. the variance of the measurement noise is negligible with respect to the variance

of the process

• q
r
≈ 0, i.e. the variance of the process is negligible with respect to the variance of the

measurement noise

First note that Qopt(m, r, q) and `opt(m, r, q) are indeed only functions of m and r/q. In the

sequel, without risk of confusion, we shall omit arguments which are kept fixed.

A. Fast communication (m →∞)

The results of this section parallel those of section III-B. Indeed it will be shown that when

m → ∞, optimizing Q for “fast convergence”, i.e. minimizing the essential spectral radius is

the “right” thing to do. Moreover, as expected, the optimal gain converges to the centralized

gain `opt
c .

Theorem 5.1: Let Qopt(m), `opt(m) be a solution of (22). Then

lim
m→∞

ρ(Qopt(m)) = min
Q∈Q

ρ(Q).
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and

lim
m→∞

`opt(m) = `opt
c .

Moreover, if arg minQ∈Q ρ(Q) is a singleton, then also

lim
m→∞

Qopt(m) = arg min
Q∈Q

ρ(Q).

Proof: We start by introducing the following quantity that will be useful throughout the

proof: given any Q ∈ Q we define

Jopt(Q,m)
4
= J(Q, `opt(Q,m); m) (23)

where `opt(Q,m) ∈ arg min `J(Q, `; m). Note that Qopt(m) ∈ arg min QJopt(Q,m).

Consider now a sequence {ρ(Qopt(m))}∞m=0. Let Q̄ be any matrix minimizing the essential

spectral radius inside Q. We shall now prove that

lim
m→∞

ρ
(
Qopt(m)

)
= ρ(Q̄) (24)

For notational convenience, we denote along the proof ρ (Qopt(m)) by ρm and ρ(Q̄) by ρ̄.

Assume by contradiction that limm→∞ ρm 6= ρ̄. This means that there exists ε > 0 and a

sequence of integers m1 < m2 < m3 < . . ., such that ρmi
≥ ρ̄ + ε, ∀ i ∈ N and consequently

that inf {ρmi
} ≥ ρ̄ + ε. This implies, by Lemma 7.1 (see the Appendix), that there exist m̄ε,

depending only on ε, such that Jopt(Qopt(mi),m) > Jopt(Q̄,m), ∀ i ∈ N and ∀m > m̄ε.

Therefore, if ī is such that mī > m̄ε, we get

Jopt(Qopt(mi), mi) > Jopt(Q̄,mi), ∀ i ≥ ī,

contradicting the fact that Qopt(mi) ∈ arg min QJopt(Q,mi) and thus proving (24).

Consider now any sequence of integers m̃1 < m̃2 < m̃3 < m̃4 . . . such that limi→∞ Qopt(m̃i) = Q̃

where Q̃ is a suitable matrix insideQ. It follows, by the continuity of ρ that limi→∞ ρ(Qopt(m̃i)) =

ρ(Q̃). Clearly ρ(Q̃) = ρ̄. Suppose now that arg min Q∈Qρ(Q) is a singleton and call Q̄ the unique

element in this set. It follows that Q̃ = Q̄, thus implying, for the compactness of Q, that

lim
m→∞

Qopt(m) = arg min
Q∈Q

ρ(Q).

Consider now a sequence {`opt(m)}∞m=0 and let ρ̃ be such that ρ̄ < ρ̃ < 1. Let us introduce a

matrix Q̃ such that σ(Q̃) = {1, ρ̃, . . . , ρ̃}, that is Q̃ has N − 1 eigenvalues equal to ρ̃. It follows

that

J
(
Q̃, `; m

)
=

r`2 + qN

1− (1− `)2 + (N − 1)
r`2ρ̃2m

1− (1− `)2ρ̃2m
,
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and, by recalling the expression of ∂J(Q,`;m)
∂`

, that

∂J
(
Q̃, `; m

)

∂`
= 2

{
r`(N − 1)

ρ̃2m
m − (1− `)ρ̃4m

m

[1− (1− `)2ρ̃2m
m ]

− Nq(1− `)− r`2

[1− (1− `)2]2

}

Let now ε be any real such that 0 < ε < ρ̃ − ρ̄. We have just proved that there exists a

positive integer m̄ε such that ∀m > m̄ε we have that ρm < ρ̃ − ε. Consider now the function

f : [0, 1] → R defined as

f(x) =
x2m − αx4m

(1− α2x2m)2 ,

where m ∈ N and where α ∈ (0, 1). By straightforward calculations we have that

∂f(x)

∂`
=

2mx2m (1 + α2x2m − 2αx2m)

x (1− α2x2m)3 .

It is possible to show that ∂f(x)
∂`

> 0, ∀ x ∈ (0, 1]. Since, by the definition of essential spectral

radius, we have that all the eigenvalues of Qopt(m) different from 1, are, in absolute value,

smaller than ρm and therefore of ρ̃, it follows that

∂J (Q(m), `; m)

∂`
≤

∂J
(
Q̃, `; m

)

∂`
, ∀ ` ∈ (0, 1). (25)

Let now ˜̀opt(m) = arg min `∈(0,1)J
(
Q̃, `; m

)
. From Theorem 4.1 we have that limm→∞ ˜̀opt(m) =

`opt
c . On the other hand, by the convexity of J on ` and by (25) it follows that ˜̀opt(m) ≤

`opt(m), ∀m > m̄ε. Therefore limm→∞ `opt(m) = `opt
c .

B. Small measurement noise (r/q → 0)

In this subsection we treat the case in which the variance of the measurement noise is negligible

with respect of the variance of the process, that is r/q → 0. This parallels the case analyzed

in Section III-C. Also here, as in Section III-C, it is the Frobenius norm of Q which plays a

crucial role.

Indeed, while in Section III-C the gain was assumed to be large, here ` is shown to converge

to 1 as r/q goes to zero.

Theorem 5.2: Let Qopt(r/q), `opt(r/q) be a solution of (22) and let

Q̄ ∈ arg min
Q∈Q

‖Qm‖F .
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Then

lim
r/q→0

‖(Qopt(r/q))m‖F = ‖Q̄m‖F .

Moreover

`opt(r/q) = 1− ‖Q̄‖2
F

N

r

q
+ o (r/q) .

In addition if arg minQ∈Q ‖Qm‖F is a singleton also

lim
r/q→0

Qopt(r/q) = Q̄.

holds.

Proof: We start by introducing the following quantity that will be useful throughout the

proof: given any Q ∈ Q we define

Jopt(Q; r/q)
4
= J(Q, `opt(Q, r/q); r, q) (26)

where `opt(Q, r/q) ∈ arg min `J(Q, `; m, r, q). Note that Qopt(r/q) ∈ arg min QJopt(Q, r/q).

We shall now prove that

lim
r/q→0

‖(Qopt(r/q))m‖F = ‖Q̄m‖F . (27)

Assume by contradiction that limr/q→0 ‖ (Qopt(r/q))
m ‖F 6= ‖Q̄m‖F . This means that there exists

ε > 0 and a sequence r1

q1
> r2

q2
> r3

q3
> . . ., such that ‖ (Qopt(ri/qi))

m ‖F ≥ ‖Q̄m‖F + ε, ∀i ∈ N
and consequently that inf {‖ (Qopt(ri/qi))

m ‖F} ≥ ‖Q̄m‖F + ε.

This implies, by Lemma 7.2 (see the Appendix), that there exists δε, depending only on ε, such

that

Jopt(Qopt(ri/qi), r/q) > Jopt(Q̄, r/q),

for each pair r, q such that r
q

< δε and ∀ i ∈ N. Therefore, if ī is such that rī

qī
< δε, we get

Jopt(Qopt(ri/qi), ri/qi) > Jopt(Q̄, ri/qi), ∀ i ≥ ī,

contradicting the fact that Qopt(ri/qi) ∈ arg min QJopt(Q, ri/qi) and thus proving (27).

Consider now any sequence ri1

qi1
>

ri2

qi2
>

ri3

qi3
> . . . , such that limh→∞ Qopt(rih/qih) = Q̃ where Q̃

is a suitable matrix inside Q. It follows that limh→∞ ‖ (Qopt(rih/qih))
m ‖F = ‖(Q̃)m‖F Clearly

‖(Q̃)m‖F = ‖Q̄m‖F . Suppose now that arg min Q∈Q‖Qm‖F is a singleton and call Q̄ the unique

element in this set. It follows that Q̃ = Q̄, thus implying, for the compactness of Q, that

lim
r/q→0

Qopt(r/q) = Q̄ = arg min
Q∈Q

‖Qm‖F
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Consider now `opt(r/q). Preliminarily we observe that limr/q→0 `opt
d = 1. Since by Theorem

4.1 we have that `opt(Q, r/q) ≥ `opt
d , it follows that also limr/q→0 `opt(Q, r/q) = 1 and

limr/q→0 `opt(r/q) = 1. Using the Implicit Function Theorem it follows that `opt(Q, r/q) is

differentiable around r/q = 0, i.e.

`opt(Q, r/q) = 1 + α(Q)
r

q
+ o

(
r

q

)

where the coefficient α(Q) is given by

α(Q) = −
[(

∂2J

∂`2

)−1
∂2J

∂`∂r/q

]

|`=1,Q,r/q=0

= −‖Q
m‖2

F

N

Since `opt(r/q) = `opt(Qopt(r/q), r/q) then

`opt(r/q) = 1 + α(Qopt(r/q))r/q + o(r/q).

Using the fact that

lim
r/q→0

‖Qopt(r/q)‖F = ‖Q̄‖F

then

`opt(r/q) = 1 + α(Q̄)r/q + o(r/q),

concluding the proof.

Remark 5: It is interesting to observe that the communication graph G determines the coef-

ficient of the first order expansion of ` in r/q. Note that, in the extreme cases Qopt = I (no

communication, decentralized estimation) and Qopt = 11∗
N

(communication graph fully connected,

centralized estimation) one recovers, respectively, `opt
d = 1− r

q
+ o( r

q
) and `opt

c = 1− 1
N

r
q
+ o( r

q
),

which can also be easily obtained from the standard expressions of `opt
d and `opt

c .

C. High measurement noise (q/r → 0)

Similarly to the previous section, we now consider the other limiting case for q/r ≈ 0. The

following result holds.

Theorem 5.3: Let Qopt(q/r), `opt(q/r) be defined as above and denote with p(Q) the number

of eigenvalues of Q on the unit circle. Then

lim
q/r→0

p(Qopt(q/r)) = min
Q∈Q

p(Q) =: popt.
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Moreover

`opt(q/r) =

√
N

popt

√
q

r
+ o

(√
q/r

)
.

Proof: We start by observing that limq/r→0 `opt
d = 0 and limq/r→0 `opt

c = 0. More precisely

it is possible to see `opt
d =

√
q
r

+ o
(

q
r

)
and `opt

c =
√

N
√

q
r

+ o
(

q
r

)
. Define

`opt(Q, q/r) , arg min
`∈(0,1)

J(Q, `; r, q).

From the previous observation and from Theorem 4.1 it follows that

lim
q/r→0

`opt(Q, q/r) = 0. (28)

Assume now by contradiction that limq/r→0 p (Qopt(q/r)) 6= popt. This means that there exists a

sequence q1

r1
> q2

r2
> q3

r3
> . . . , such that p (Qopt(q/r)) ≥ popt + 1, ∀ i ∈ N and consequently

that inf {p (Qopt(qi/ri))} ≥ popt + 1. Let us rewrite J in the following way

J(Q, `; r, q) =
qN + r`2p(Q)

1− (1− `)2
+ r`2

∑

i:|λi|6=1

|λi|2m

1− (1− `)2|λi|2m

=
qN + r`2p(Q)

1− (1− `)2
+

r`2

1− (1− `)2
f(`)

where f(`) = (1− (1− `)2)
∑

i:|λi|6=1
|λi|2m

1−(1−`)2|λi|2m . Note that lim`→0 f(`) = 0. Hence

J(Q, `; r, q) =
qN + r`2p(Q)

1− (1− `)2
+ o

(
r`2

1− (1− `)2

)
(29)

Let now Q̄ be such that p(Q̄) = popt. From (29) it follows that

J(Q, `; r, q)− J(Q̄, `; r, q) = (p(Q)− popt)
r`2

1− (1− `)2
+ o

(
r`2

1− (1− `)2

)

Equation (28) implies that also limi→∞`opt(Q, qi/ri) = 0 so that for i large enough

J(Qopt(qi/ri), `
opt(qi/ri); ri, qi) > J(Q̄, `opt(qi/ri); ri, qi)

contradicting the fact that Qopt(qi/ri) ∈ arg min Q∈Q J(Q, `opt(qi/ri); ri, qi).

Consider now `opt(q/r). Let us first compute the partial derivative

∂J(Qopt(q/r), `; r, q)

∂`
=

r
(
2p(Qopt(q/r))`2 − 2γ2N + 2γ2N` + 2`2f(`) + 2`3ḟ(`)− `4ḟ(`)

)

(1− (1− `)2)
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where γ =
√

q
r
. Let now F (γ, `) = 2p(Qopt(q/r))`2−2γ2N +2γ2Nl+2`2f(`)+2`3ḟ(`)−`4ḟ(`)

and consider the equation F (γ, `) = 0. We adopt an argument similar to the proof of the Implicit

Function Theorem. By applying the Taylor’s Theorem around (0, 0) we get

F (γ, `) = −4Nγ2 + 4p(Qopt(q/r))`2 + o
(‖γ2‖+ ‖`2‖) .

and equating this expression to 0 we obtain that

`opt(Qopt(q/r), q/r) = γ

√
N

p(Qopt(q/r))
+ o(γ)

=

√
N

p(Qopt(q/r))

√
q

r
+ o

(√
q

r

)

Therefore, using an argument similar to the one adopted in the proof of Theorem 5.2, it

follows that

`opt(r/q) =

√
N

popt

√
q

r
+ o

(√
q

r

)
,

which concludes the proof.

Remark 6: Also in this case the constant in the first order expansion of the optimal gain as

a function of q/r depends on the communication graph; the extreme cases are, respectively,

`opt
c (q/r) =

√
N

√
q/r + o(

√
q/r) and `opt

d (q/r) =
√

q/r + o(
√

q/r). In fact, if sensors

cannot communicate, then necessarily Qopt = I , therefore `opt(q/r) = `opt
d (q/r), while if the

communication graph is fully connected, then Qopt = 1
N
11∗, therefore `opt(q/r) = `opt

c (q/r).

The previous theorem shows also that for q << r the optimizing Q, while being consistent

with the communication graph, has to minimize the number of unitary eigenvalues.

VI. ILLUSTRATIVE EXAMPLES

In this section we provide some examples illustrating the approach proposed in this paper. In

particular in Example 2 we solve analytically the minimization problem formulated in Section

III. In Example 3 and in Example 4 we provide a numerical comparison between the approach

presented here and the method proposed in [1]. In Example 5, inspired by [23], we propose a

new scheme for updating the estimates which seems to be very promising in order to improve

the performance. In particular we allow the sensors to keep in memory also the previously

received estimates, and not only the current one, and to use them to build an updated estimate.

More precisely the estimate x̂(t + (h + 1)δ) will be a suitable weighted combination of the
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current estimate x̂(t + hδ) and of the previous estimate x̂(t + (h− 1)δ). It has been shown by

Muthukrihnan et al. [23] in the context of load balancing, and by Cao et al.[7] in the context

of gossip algorithms, that the use of memory permits to speed up convergence and to improve

performance. We show here, by means of simulative results, that for the set of matrices considered

in Example 2 and 3 the presence of one level of memory permits to reach better performance

in terms of the cost function J .
Example 2: Assume that Q is the set of the circulant stochastic matrices of the form

Qk =




1− 2k k 0 0 · · · 0 k

k 1− 2k k 0 · · · 0 0

0 k 1− 2k k · · · 0 0
...

...
...

... · · · ...
...

k 0 0 0 · · · k 1− 2k




(30)

where k is a real in
[
0, 1

2

]
and assume that m = 1. We want to solve the minimization problem

considered in Section III, i.e.

Qopt = arg min
Q∈Q

J = arg min
Q∈Q

N−1∑
i=1

|λi|2m

1− (1− `)2|λi|2m
. (31)

Unfortunately, even if Q exhibits a particular structure, it is not possible to give, in general, a

closed form expression for the optimizing matrix Qopt, which has to be found using numerical

search techniques.

However, similarly to Example 1, a more detailed study of (31) can be provided when the number

of sensors N goes to infinity. To this purpose it is convenient to consider the normalized cost:

J̄N :=
1

N

N−1∑
i=0

|λi|2
1− (1− `)2|λi|2

and the function f : C→ C

f(z) = 1− 2k + kz + kz−1.

The eigenvalues of Qk can be expressed as λh = 1−2k +kej 2π
N

h +ke−j 2π
N

h (see e.g. [11]). Note

that λh = f
(
ej 2π

N
h
)

. As the number of agents grows, the normalized cost JN converges to:

lim
N→∞

JN = J̄∞ =
1

2π

∫ 2π

0

|f(ejφ)|2
1− (1− `)2|f(ejφ)|2dφ =

1

2πj

∮

γ

z−1f 2(z)

1− (1− `)2f 2(z)
dz
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where γ is the unit circle. It is straightforward to see that the poles of z−1f2(z)
1−(1−`)2f2(z)

inside γ are

z1 =
`+2(1−`)k−

√
`2+4`(1−`)k

2(1−`)k
, z2 =

`−2−2(1−`)k+
√

(2−`)2+4(1−`)(2−`)k

2(1−`)k
and z3 = 0; the integral can

be computed explicitly using the residue theorem yielding:

J̄∞ = − 1

(1− `)2
+

1

2(1− `)2

(
1√

`2 + 4`(1− `)k
− 1√

(2− `)2 − 4(1− `)(2− `)k

)

By equating the first derivative of J̄∞ to zero, we get that Qopt tends to the matrix Qkopt for

N →∞, where kopt =
2−2`+ 3

√
(2−`)`2− 3

√
`(2−`)2

4(1−`)
.

Example 3: In [1] the authors analyze a general MIMO scenario where the gain ` = `(t) (K

in their terminology) and the consensus matrix Q = Q(t) are time varying matrices which are

chosen recursively at each time step. In order to compare the results in [1] with our approach

we assume that the averaging matrix W in [1] corresponds to performing m consensus iterations

using the matrix Q, i.e. W = Qm. In [1] the gain ` is chosen to minimize the estimation error

covariance of the local estimators (i.e. in a decentralized fashion) and it is different for each

sensor. Moreover the consensus matrix Q is chosen so that the estimation error covariance of

the local estimators is minimized after consensus (weighted averaging in [1])6.
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J
1
(Q

1
opt,l

1
opt)

J
1
r
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55.5

56

56.5

57

57.5

J 2

J
2
(Q

2
opt,l

2
opt)

J
2
r

m

Fig. 1. Comparison between J1(Q
opt
1 (m), `opt

1 (m), m),and Jr
1 (m) (left). Comparison between J2(Q

opt
2 (m), `opt

2 (m), m), and

Jr
2 (m) (right).

In the simulation reported in this example, we assume that N = 100, q = 1 and r = 1.

Moreover we assume that Q is the same set of circulant matrices defined in the previous example.

6Technically, the approach proposed in [1] was applied only for the case m = 1.
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We consider the minimization of both J1 and J2, with J1, J2 defined as in the Section II.

We use the following notational conventions: Qopt
1 (m), `opt

1 (m) and Qopt
2 (m), `opt

2 (m) are the

optimal consensus matrices and the optimal gains respectively for J1 and J2 obtained by solving

numerically the problem formulated at the end of Section II, given by:
(
Qopt

1 (m), `opt
1 (m)

) ∈ arg min `∈(0,1), Q∈Q J1(Q, `; m, r, q)
(
Qopt

2 (m), `opt
2 (m)

) ∈ arg min `∈(0,1), Q∈Q J2(Q, `; m, r, q)

As mentioned earlier, in [1] the optimal gain and the optimal consensus matrix are found

recursively at each time step t. The fact that the consensus matrix is of the form (30) implies

that the gain is the same for all the sensors: we denote it by `r(t,m). Moreover Qr(t, m)

represents the optimal consensus matrix (the superscript ”r” means recursively). The asymptotic

values (in t) of `r(t,m) and Qr(t, m) are denoted respectively by `r(m) and Qr(m), i.e.

limt→∞ `r(t,m) = `r(m) and limt→∞ Qr(t,m) = Qr(m). Similarly, we indicate by Jr
1 (m)

and Jr
2 (m) the asymptotic cost values7 to which J1 and J2 converge using the method proposed

in [1]. Finally, since the set Q is parameterized by k, we shall identify a matrix Qk with the

corresponding value of the parameter k. Hence, we use kopt
1 (m), kopt

2 (m) and kr(m) in lieu of

Qopt
1 (m), Qopt

2 (m) and Qr(m). Simulations for m ranging in the interval [1, 15] are shown in

Figures 1 and 2.

From left panel of Figure 2 we can see that the iterative (local) optimization proposed in

[1] converges to values of the parameters `r(m) which are different from the optimal values

obtained minimizing the asymptotic cost proposed in this paper. Indeed, the recursive approach

seems to give a worse performance than the approach proposed in this paper both in terms of

the performance costs J1 and J2, as shown in Figure1. Moreover, for large m, the gain `opt
1 (m)

converges to the optimal centralized gain `opt
c , as shown in Section IV.

Note also from right panel of Figure 2 that the optimal consensus parameter k of the matrix

Qk for small m is close to the value that minimizes the Frobenius norm ||Q||F , while for large

m it converges to the value that minimizes the spectral radius ρ(Q), as shown in Section III.

Example 4: In this simulation we consider a strongly connected random geometric graph

generated by choosing N points at random in the unit square, and then placing an edge between

each pair of points at distance less than 0.3. We assume that N = 30, q = 1 and r = 1. It is

7There is no proof of convergence in [1]; however this is observed experimentally.
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Fig. 2. Optimal gains (left) and consensus matrices (right) as a function of number of exchanged messages m. Optimal

consensus matrices Q are parameterized by k. In the right panel we also report the values k(ρopt), which minimizes the spectral

radius ρ(Q) and k(||Q||opt
F which minimizes the Frobenius norm ||Q||F .

worth noticing that in this case differently from the previous one, the gains, calculated by the

method proposed in [1] recursively at each instant time t , are in general different for each sensor.

Hence we report here only the comparison between the cost functions. We run simulations for

m ranging in the interval [1, 10]. The results obtained are depicted in Figure 3. The notation is

the same used previously. Note that `opt
1 (m), Qopt

1 (m) and `opt
2 (m), Qopt

2 (m) yield again values
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2 (m), m) and Jr
1 (m) (left). Comparison between

J2(Q
opt
2 (m), `opt

2 (m), m), J2(Q
opt
1 (m), `opt

1 (m), m) and Jr
2 (m) (right).

of J1 and J2 which are better respectively than Jr
1 and Jr

2 .
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Remark 7: It is worth remarking that the optimization strategy proposed in [1] gives worse

performance in terms of the asymptotic values for both costs J1 and J2 in both the previous

examples. This is somewhat to be expected since the former approach recursively optimize the

cost at the next time step, not the steady state cost. This recursive strategy gives the optimal

steady state performance only for the centralized scenario, i.e. when the communication graph is

fully connected, as well known from any standard textbook on optimal estimation and Kalman

filtering [9]. When the graph is not fully connected, this strategy is not guaranteed to converge

to the optimal value, as indeed shown in the previous numerical examples.

Example 5: Inspired by the work of Muthukrihnan et al. [23], in this example we propose

the following scheme of updating the estimate x̂(k + hδ|k) which adds a memory buffer,

x̂(k + (h + 1)δ|k) = Qx̂(k + hδ|k) if h = 0,

and

x̂(k + (h + 1)δ|k) = νQx̂(k + hδ|k) + (1− ν)x̂(k + (h− 1)δ|k) if h = 1, . . . ,m−1 (32)

where ν is a weighting parameter. It has been proved in [23], that, when we are dealing with a

consensus algorithm, if ν /∈ [0, 2] then (32) does not yield the convergence. Let x̃ (k + hδ|k) =

x(k +hδ)1− x̂(k +hδ|k) denote again the estimation error and let us introduce, for 1 ≤ h ≤ m,

the following quantities

z(k + hδ|k) =


 x̃(k + hδ|k)

x̃(k + (h− 1)δ|k)




and

P (k + hδ|k) = E [z(k + hδ|k)z∗(k + hδ|k)] =


 P11(k + hδ|k) P12(k + hδ|k)

P21(k + hδ|k) P22(k + hδ|k)


 .

where

P11(k + hδ|k) = E[x̃ (k + hδ|k) x̃∗ (k + hδ|k)]

P12(k + hδ|k) = E[x̃ (k + hδ|k) x̃∗ (k + (h− 1)δ|k)]

P21(k + hδ|k) = E[x̃ (k + (h− 1)δ|k) x̃∗ (k + hδ|k)]

P22(k + hδ|k) = E[x̃ (k + (h− 1)δ|k) x̃∗ (k + (h− 1)δ|k)]
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Section III undirected graph m →∞ ` → 1

Fixed `
Qopt ∈ symmetric

Section III−A

Qopt ∈ arg min
Q∈Q

ρ(Q)

Section III− B

Qopt ∈ arg min
Q∈Q

‖Qm‖F

Section III− C

Section IV m = 0 0 < m < ∞ m → +∞
Q primitive

Fixed Q
`opt(Q, 0) = `opt

d

Theorem 4.1

`opt
d < `opt(Q, m) ≤ `opt(Q, m + 1) < `opt

c

Theorem 4.1

`opt(Q,∞) = `opt
c

Theorem 4.1

Section V m →∞ r/q → 0 r/q →∞

Optimal

` and Q

Qopt ∈ arg min
Q∈Q

ρ(Q)

`opt → `opt
c

Section V −A

Qopt ∈ arg min
Q∈Q

‖Qm‖F ,

`opt = 1− ‖Q̄m‖2F
N

r
q

+ o
“

r
q

”

Section V − B

Qopt ∈ arg min
Q∈Q

p(Q),

`opt =
q

N
popt

p
q
r

+ o
`p

q
r

´

Section V − C

TABLE I

SUMMARY OF THE RESULTS

Note that P12(k + hδ|k) = P ∗
21(k + hδ|k). It is possible to see that the above quantities satisfy

the following recursive equations

P11 (k + (h + 1)δ) = ν2QP11 (k + hδ) Q∗ + ν(1− ν) [QP12 (k + hδ) + P21 (k + hδ) Q∗] +

+ 2ν(1− ν)
q

m
11∗ +

q

m
11∗ + (1− ν)2P22 (k + hδ) + (1− ν)2 q

m
11∗

P12 (k + (h + 1)δ) = νQP11 (k + hδ) + (1− ν)P21 (k + hδ) + (1− ν)
q

m
11∗

P22(k + (h + 1)δ|k) = P11 (k + hδ)

In our simulation we assume that N = 50, m = 5, q = 1, r = 1 and that Q = Q 1
3

where Q 1
3

is

as the matrix introduced in Example 2. Moreover ` = `opt where

`opt = arg min
`∈ (0,1)

J
(
Q 1

3
, `; 5, 1, 1

)
≈ 0.879.

Clearly, if ν = 1, then limk→+∞ tr (P11(k + 1|k)) = J
(
Q 1

3
, `opt; 5, 1, 1

)
, which is the cost

function introduced in Eqn. (13) for which no memory is added. In Figure 4 we depict the

behavior of limk→+∞ tr (P11(k + 1|k)) for ν ranging in [0, 2]. It is remarkable to note that the

minimum is reached when ν ≈ 1.44, meaning that the presence of memory can improve the

performance.
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Fig. 4. Steady state error tr (P11(k+1|k)) of distributed optimal estimation with memory as a function of weighting parameter

ν. Figure also indicates optimal cost in the absence of memory which corresponds to ν = 1.

VII. CONCLUSIONS

In this paper we have studied a prototypical problem of distributed estimation for Sensor

Networks; the state of a scalar linear system is estimated via a two stage procedure which

consists in (i) a standard (and decentralized) Kalman-like update and (ii) information propagation

using consensus strategies. To this purpose two design parameters, i.e. the Kalman gain ` and

the consensus matrix Q have to be designed. This choice is made by optimizing the steady state

prediction (or estimation) error. We have discussed, under specific circumstances, the behavior

of the “optimal” parameters. This is summarized in table of Figure VI.

Although these results have been obtained for simple scenarios where the state is scalar and

all sensors are equal, they provide useful guidelines for choosing the local filter gain ` and the

consensus matrix Q also for more general scenarios. In particular, we showed that the common

practise of finding algorithms that minimize the spectral radius for the consensus matrix Q is

not necessarily the optimal strategy in the context of optimal estimation of time-varying signals.

In fact, we showed that depending on some specific regimes, it is more convenient to optimize

the Frobenius norm ||Qm||F or the sum of the unitary eigenvalues p(Q). Moreover, as discussed
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in Section V, we showed that the joint optimization of Q and ` is not convex even in our simple

setup. We also compared our approach with the recursive optimization proposed by Alriksson

et al. [1], showing also that their strategy based on minimization of the estimation error at the

next time step, fails to minimize the steady state cost (see Figures 1 and 3).

Many research avenues still deserve to be explored. The most promising one is the use of

memory to improve performance. As shown in Example 5 in the previous section, memory

can considerably improve estimation performance. However, the impact of memory length on

performance and optimization algorithms for the weighting parameters are still open problems.

Another important aspect is the extension of the results in this paper to the multivariable case

where the gains for the sensors can be different. Finally, it is fundamental to find provably

optimal strategies to simultaneously optimize the consensus matrix Q and the update gains `,

since the steady state cost function is non-convex in these parameters.

APPENDIX

Lemma 7.1: Let Q and Q̄ such that ρ(Q) ≥ ρ(Q̄) + ε where ε > 0. Then the cost function

defined in (23) satisfies

Jopt(Q,m) > Jopt(Q̄,m), ∀m > m̄ε,

where m̄ε depends only on ε.

Proof: From Theorem 3.2 it follows that there exists m̄ε depending only on ε such that

Jopt(Q,m) > J(Q̄, `opt(Q,m); m), ∀m > m̄ε.

Clearly

J(Q̄, `opt(Q,m); m) ≥ J(Q̄, `opt(Q̄,m); m)

where, by definition J(Q̄, `opt(Q̄,m); m)
4
= Jopt(Q̄, m).

Lemma 7.2: Let ε > 0. Let Q1 and Q2 be such that ‖Qm
1 ‖F ≥ ‖Qm

2 ‖F + ε. Then there exists

δε depending only on ε such that if r
q

< δε, the cost function defined in (26) satisfies

Jopt (Q1, r/q) > Jopt (Q2, r/q) .

Proof: From Theorem 3.3 it follows that there exists `ε depending only on ε such that

J(Q1, `; r, q) > J(Q2, `; r, q), ∀ ` > ¯̀
ε.
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Hence if `opt
Q1

> ¯̀
ε we have that

Jopt (Q1, r/q) > J
(
Q2, `

opt(Q1, r/q); r, q
)
.

Clearly

J
(
Q2, `

opt(Q1, r/q); r, q
) ≥ J

(
Q2, `

opt(Q2, r/q); r, q
)
,

where by definition J(Q2, `
opt(Q2, r/q); r, q)

4
= Jopt(Q2, r/q).

Now we recall that if r
q
→ 0 then `opt

d → 1. This implies that ∀η > 0 there exists δη > 0 such that

if r
q

< δη then `opt
d > 1−η. Let now η = 1− ¯̀

ε e let us denote δε the corresponding δη. Therefore,

if r
q

< δε then `opt
d > ¯̀

ε. Since `opt(Q1, r/q) ≥ `opt
d we have that also `opt(Q1, r/q) > ¯̀

ε. This

concludes the proof.
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