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Abstract—Estimating the travel time of a path is an essential
topic for intelligent transportation systems. It serves as the
foundation for real-world applications, such as traffic monitoring,
route planning, and taxi dispatching. However, building a model
for such a data-driven task requires a large amount of users’
travel information, which directly relates to their privacy and
thus is less likely to be shared. The non-Independent and
Identically Distributed (non-IID) trajectory data across data
owners also make a predictive model extremely challenging to
be personalized if we directly apply federated learning. Finally,
previous work on travel time estimation does not consider the
real-time traffic state of roads, which we argue can significantly
influence the prediction. To address the above challenges, we in-
troduce GOF-TTE for the mobile user group, Generative Online
Federated Learning Framework for Travel Time Estimation,
which I) utilizes the federated learning approach, allowing private
data to be kept on client devices while training, and designs the
global model as an online generative model shared by all clients
to infer the real-time road traffic state. II) apart from sharing a
base model at the server, adapts a fine-tuned personalized model
for every client to study their personal driving habits, making up
for the residual error made by localized global model prediction.
We also employ a simple privacy attack to our framework
and implement the differential privacy mechanism to further
guarantee privacy safety. Finally, we conduct experiments on
two real-world public taxi datasets of DiDi Chengdu and Xi’an.
The experimental results demonstrate the effectiveness of our
proposed framework.

Index Terms—Ubiquitous; Urban Computing, Federated

Learning, Travel Time Estimation

I. INTRODUCTION

With the popularization of mobile devices and the maturity
of real-time positioning technology, the trajectories of people
and vehicles are frequently recorded, resulting in a large
amount of position-based data which mainly comes from
mobile phones [1], public bicycles [2], public transportation
cards [3] and taxis [4]. These data is taken from snippets
of everyday life, reflecting both individual behavior and city
dynamics. Recently the emerging idea of utilizing these data
to promote the construction of smart city draws considerable
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attention, among which the modeling of travel time estimation
(TTE) serves as a key building block. TTE is the fundamental
problem in traffic monitoring, route planning, navigation and
taxi dispatching. Having an accurate prediction of the travel
time for a given path not only provides convenience to the
individual in travel scheduling, but also helps the traffic control
center in alleviating road congestion.

However, although the problem has been widely studied in
the past, ranging from Bayesian inference [5], Markov chains
[6], to deep learning models [7, 8], they require the travel
data from all users which, may contain sensitive identifiable
information such as driving habits and locations, to be col-
lected and then trained a model in a centralized way. These
conventional methods are faced with severe privacy challenges
with the increasing awareness of data security, since one must
take the risk of privacy leakage when sharing his own travel
information to public organizations.

Fortunately, recent progress in federated learning [9] has
shed light on such privacy issues. The fundamental idea of
federated learning is to keep user’s data locally instead of
sharing while collaboratively training a global model by ex-
changing only training parameters (i.e., model weights). More
specifically, the centralized learning mechanism aggregates all
clients’ data to the cloud sever and trains a centralized model
before different clients download it. On the contrary, Fig. 2
(a) reveals the federated learning policy, which is proposed
to train a local model with local data independently at each
client/device, and then sends their model weights to the server
where the updates from different clients are integrated into the
global model. The global model later in turn sent its weights
to update all local model for each device/client. Ideally, the
global model obtained from federated learning has similar or
better results than the model obtained from centralized data
training on a central server [10].

Learning from non-IID data is one of the major challenges
of federated learning, particularly in the case of TTE, since
the travel styles and active areas vary from person to person,
resulting in a highly non-IID dataset for each individual user.
While the centralized learning procedure shuffles and mixes
the entire dataset to draw batches that hold almost the same
data distribution, federated learning suffers when local data
is non-IID [11]. Therefore, the global model trained through
federated learning might not perform well for each client in
the presence of statistical data heterogeneity (i.e., the non-
IID data from different clients). We adapt the idea from [12,
13] to train an extra personalized model for each client to
study his/her personal driving habit (i.e., encodes it as latent
representation). The personalized model is trained towards the
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Fig. 1. The application of global traffic state in real life. The traffic state is
shown in different colors where 1) red - very congested 2) yellow - congested
3) orange - slow, and 4) green - unblocked. A comprehensive perception of
the global traffic state helps a lot when planning a route or estimating travel
time.

residual error between ground truth and the prediction from
the global model. With the cooperation of both a global and
personalized model, the final result can be more “personal”
and thus more accurate.

Moreover, as mentioned by [14], travel time relies heavily
on two parts: 1) the statically spatial features of the city road
graph (e.g. number of traffic lights, number of lanes, and
speed limit), and 2) the dynamically changing real-time traffic
condition (i.e., the traffic conditions at different time slots
are temporally-variant due to many random variables such
as the daily activities of people, road works, and accidents).
Li et al., [14] proposed to generate a dynamic grid-based
global traffic state by combining these heterogeneous factors
(both spatial and temporal) together to improve the prediction
accuracy. Nevertheless, we argue that it has two important
drawbacks: 1) the grid-based traffic state suffers from its
coarse-grained characteristics, lacking the modeling for the
state of roads, where the travel really happens. 2) its real-
time traffic state is calculated manually using time slots and
sub-trajectories rather than using machine learning models to
generate, so it is less likely to contain the hidden and high-
level traffic information such as traffic accidents. Instead of
introducing another new module, we directly design our global
federated learning model to be an online generative model that
generates the real-time road-based traffic state tensor, inferring
the estimated current travel time for each road segment and
road intersection. We believe that the real-time traffic state can
provide us with more timely traffic information that can have
a significant improvement in our prediction. Specifically, we
design a spatio-temporal cross product to produce the traffic
state by fusing the spatial representations (both road segments
and intersections) and the temporal embedding representations.

Additionally, in the application, the global traffic state
addresses even more importance in the field of the intelligent
transportation system. It contributes to traffic control, route
planning, vehicle scheduling, and other tasks, and plays an
important role in alleviating traffic congestion and ensuring
public transportation safety. Recently, many companies, such
as DiDi [15, 16], Baidu [17, 18] and Amap [19, 20], have ap-
plied various deep learning methods to traffic state prediction,
including studying global traffic states from myriad trajectories

[14]. Thereby, our generative design in federated learning sat-
isfies the interests of both the service provider and individuals,
allowing the former to monitor the global traffic state without
invading the personal privacy of city residents and providing
the latter with convenience. Fig. 1 shows one famous case
from the view of both the government and individuals. For
the government, the traffic state improves service efficiency,
such as ride-sharing services, taxi scheduling, and TTE. For
people, the traffic state announces the urban communication
efficiency in real-time, which provides tips for the personal
daily trip plan.

Summing all mentioned work together, we name our frame-
work as GOF-TTE, Generative Online Federated Learning
Framework for Travel Time Estimation. The overall structure
is shown in Fig. 2 (b) and the detailed global and personalized
model design is shown in Fig. 5. The contribution of this paper
can be summarized as follows:

e To the best of our knowledge, we are the first to design an
online generative federated learning system to estimate
the travel time. The online system can provide a more
accurate estimation because of its real-time perception
of the global traffic state. The traffic state generated via
federated learning captures high-level traffic information
that companies can collect without privacy leakage.

e Considering non-1ID caused by personal driving habits
and the inconsistency with data among clients, we pro-
pose a personalized federated learning strategy, which
reserves a fine-tuned personalized model in the client’s
device and shares a global model among clients.

e A practical privacy attack has been given in the travel
time estimation task, and the differential privacy technol-
ogy has been applied when the clients upload his weights
to servers.

The remainder of our paper is summarized as follows:
Sec. II introduces several basic conceptions (e.g., road Net-
work, route, differential privacy) for our proposed GOF-TTE.
Sec. III provides our proposed federated framework and data
preprocessing. Sec. IV describes our model design and the
privacy-preserving technique in detail. Sec. V conducts exten-
sive experiments to evaluate our proposed framework. Sec. VI
systematically discusses the related work in TTE algorithms,
federated learning architecture, and privacy-preserving meth-
ods. Sec. VIII finally summaries the conclusion and discusses
the future works.

II. PRELIMINARIES

In this section, we will briefly introduce the definition of
urban road network, route, travel time estimation problem and
differential privacy technology.

Definition 2.1 Road Network. A road network is a directed
graph G = (V, &, my, me), where V denotes the set of nodes
(i.e. road intersections) and £ C V x V is the set of directed
edges/links (i.e. road segments). 7 serves as a feature function
that can be applied to both v € V and e € £. 7,(v) denotes
the features of v, such as its speed limits and whether it has a
traffic light. 7.(e) denotes the features of e, for example, its
road types, road length and the number of road lanes.
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Definition 2.2 Route. A route 7; : ¢1 —> v1 —> €9 — - -+ —>
Vjr;|—1 — €|r,;| 18 an alternating sequence with links and nodes.

Definition 2.3 Travel Time Estimation (TTE). Given a
route r;, the task of travel time estimation is to infer the overall
traveling time ¢ necessary for the route in the city.

Definition 2.4 (Differential Privacy [21]) A randomized
mechanism M : D — R with domain D and range R satisfies
(e, 6)-differential privacy if for any two adjacent inputs d,d’ €
D and any subset of outputs .S C R, there holds

Pr[M(d) € S] <e*Pr[M(d") € S] + 6,

where Pr denotes the probability space that is over the coin
flips of the mechanism M. Intuitively, differential privacy-
based noise is added to the query results so that an attacker
cannot tell whether a particular text is in D. In addition, we
say that M is e-differentially private if 6 = 0.

III. FRAMEWORK DESIGN
A. Framework Overview

Under the background of the contradiction between the data
island phenomenon and data fusion demand, federated learning
has been proposed to train the model without sharing data
but only exchanging training parameters in the middle stage.
Ideally, the shared model obtained from federated learning
has similar or better results than the model got from cen-
tralized data training on a central server. We here compare
the differences between the classical federated system and our
proposed framework. The direct deployment of a federated
TTE framework (Fig. 2 (a)) for map providers (such as Amap
and Google) will lead to several challenges listed as follows:

1. In travel time estimation, due to different driving habits
and preferences of each driver, the privacy data among
drivers has the non-IID characteristics, so the local tra-
jectory data distribution for each user can vary with the
user’s locations and preferences.

2. As we mentioned, the global traffic state plays an impor-
tant role for both the problem of estimating travel time
[22, 14] and the companies interests. How to learn the
traffic road state from the individual remains a challenge.

3. The direct upload and aggregation of the localized global
model parameters may also leak the individual private
information in the TTE task.

Our architecture (Fig. 2 (b)) can ensure that all partici-
pants will not disclose personal information to the server,
and the server is only responsible for the secure aggregation
of local models’ parameters, and sends the results to all
clients, ensuring that the large family can share a joint trained
model. Repeating this process until the loss function converges
completes the training of the entire joint model. As shown in
Fig. 2 (b), the detailed descriptions of this system are listed
as follows:

1. Each client first trains the localized global model with
local data, and then trains the personalized model towards
residual error.

2. The clients upload their localized global model’s param-
eters with differential privacy to server.

3. The server performs security aggregation.

4. The companies/organizations obtained the current global
traffic state from the global model.

5. The server sends the results of the aggregation back to
the clients.

6. Participants update their localized global models and
repeat Step 1.

B. Data Preprocessing

1) Taxi Trajectories.: We use two public taxi trajectory
datasets from the DiDi Express platform. Xi’an dataset was
generated by about 18,000 online car hails in October 2016 in
Xi’an, China. Moreover, the Chengdu dataset comprises 9 737
557 trajectories of 14864 taxis in August 2014 in Chengdu,
China. The GPS points of both datasets have been mapped to
roads via a map-matching tool FMM [23] and the time interval
of sampling GPS points is 2-4s, ensuring that the vehicle
trajectories can correspond to the actual road information.

2) Map Gridding: We employ standard quantization to
divide the urban map into multiple uniform sub-regions to
understand the driver’s preferences. Formally, we divide the
geographical space of the city into multiple areas that do not
intersect.

3) Road Network Feature Extraction: This paper uses two
road networks: Chengdu Road Network and Xi’an Road
Network. Both of them are extracted from OpenStreetMap.
Xi’an road network contains 4780 edges (i.e., road segments)
and 3832 nodes (i.e., road intersections), and the Chengdu
road network contains 8221 edges and 5182 nodes. To take
care of the privacy-preserving concerns and to generate an
unbiased traffic state, we here extract the urban road network
features from OpenStreetMap (OSM)', which is a free, open-
source, and editable map service jointly created by the public
network. Furthermore, we extract the road segments features
from highway tag, which are listed as follows:

e Road types: freeway, trunk, primary, secondary, etc.;

e special types : whether it is bridge, tunnel, footway, etc.;

e Otherwise features: speed limits, length of road, width of

road , number of lanes, etc. ;

and intersections from node tag, such as

e Tags of node: e.g. speed camera, traffic signals, crossing
signs, turn circle and bus stop;
e Junction types: e.g. X-juction, T-junction and 5-way junc-
tion:
e Otherwise features: e.g. unique ID and GPS coordinates;
4) Drivers’ Profile Feature Extraction: Most existing liter-
ature tries to understand and analyze driving behavior [24, 25].
However, intuitively, driving behavior is also an essential
factor in the problem of TTE. For example, novice drivers are
unfamiliar with the urban road network and driving skills. So
their expected travel time tends to be longer than experienced
drivers. Based on this assumption, we extracted the following
drivers’ profile features.
cq,1&cq,2 : Break start & end time. Each taxi driver could
take a break during work. The driver’s preference for break
and end time can speculate about his/her usual working time.

Uhttps://www.openstreetmap.org/
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Fig. 2. Workflow comparison between the directed federated learning system and our proposed framework. ”C”, ”T” and ”U” in figure denote the cloud

server, transfer environment, and mobile devices (clients) respectively.
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Fig. 3. The sample cases of tags of intersection (node) in OSM.

As a matter of experience, the longer you work, the slower
you drive. The distributions of both two features are shown
in Fig. 4(a) and Fig. 4(b), respectively. Here, the x-axis is the
average break start & end time for each day.

ca,3&cq,4 : Frequently visited regions and roads. Different
regions and road segments have different road conditions.
Therefore, we can speculate on the driver’s preference and
threshold for congestion. For example, if a driver always visits
the downtown region at the morning peak, we guess he/she
does not avoid the congestion.

cq,5 : Average driving distance. Taxi drivers can have
his/her preference for the distances of served trips. Some
drivers could prefer to choose the orders for long trips because
each trip can earn much more. Other drivers could intend
to choose short trips due to the relaxation and convenience.
Fig. 4(c) presents the drivers’ average driving distance for each
order. From this point, we can know whether one driver prefers
the long-distance order or not. Generally, the longer you drive,
the slower you go.

ca,6 : Number of trips served. Each driver has his/her strat-

egy for looking for passengers. Fig. 4(d) provides the drivers’
number of orders for each day. This is an indicator to distin-
guish the novice and experienced drivers. In general, the travel
time for experienced drivers is shorter.

From the Fig. 4, we can find that taxi drivers obviously have
different driving habits, which could influence their estimation
performance.

=+ Average Value 02 ' Average Value

Density
°

0 2 4 6 8 10 12 14 16 18 20 22 24
Break start time (hour)

0 2 4 6 8 10 12 14 16 18 20 22 24
Break end time (hour)

0.0 0.0

(a) Average break start time. (b) Average break end time.

==« Average Value 0.10 =« Average Value

Density

Density

0.05

- - 0.00
9 10 11 12 0 5 10 15 20 25 30 35
Number of severd trips

2 3 4 5 6 7 8
Distance (km)

(c) Average driving trip distance. (d) Number of served trips.

Fig. 4. Drivers’ profile feature analysis.

IV. METHODOLOGY

The detailed base and personalized model design is shown
in Fig. 5. The base model is shown at the top of the figure,
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Fig. 5. The model design of our federated learning framework that can be divided into two parts: a base model and a personalized model. Here, TE: temporal

embedding; FCNs: fully connected networks.

which generates the online global traffic state for the cloud
servers and infers the non-personalized travel time for each
client.

In the subsequent sections, we will introduce our proposed
base model, personalized model, privacy-preserving mecha-
nism, and online training procedure.

A. Base Model

In this study, the base model mainly provide the functions
of two parts: 1) Localized global model: this is the well-
trained version of base model after the local training for
each client, which could also provide non-personalized TTE
for each client; 2) Global model: the global model is the
aggregated model after each round of communication, which
aims to generate online global traffic state for cloud server,
including both road segment-wise and intersection-wise road
network.

1) Road Attributes Embedding Layer: To accurately es-
timate the travel time, the spatial feature of the city road
network is very important. To get there, we embed both the
features of roads segments and road intersections into the
model through an embedding layer. Fig. 5 shows an overview
of this procedure. The input of the layer is a dual road graph,
where link-wise graph and node-wise graph characterize the
dependencies of road segments and intersections respectively.

2) Spatio-temporal Generative GCN Module: In this sub-
section, we will introduce our spatio-temporal generative
module, which contains the spatial GCNs layer and a spatio-
temporal cross-product layer. The former aims to capture the
spatial dependencies of the road network and the latter aims
to generate the global state comprised of road segments and
intersections, respectively.

Spatial GCNs Layer. Recently, a bunch of works on Graph
Convolutional Network (GCN) [26] have been proposed to
capture the complex relations in the road network [27]. In this
study, we employ the GCN into our framework to process
the public features from road network. Formally, given a
graph signal h(® € R¥N*4" where N denotes the number
of samples (links/nodes) and d¥) is the features size in [*"
layer, a typical formulation of graph convolutional layer with

C-hop is
) wo, (1)

In our case, the () stands for the hidden state of (links/nodes)
from the output of the Road Attributes Embedding Layer.
Spatio-Temporal Cross Product Layer. In fact, the global
traffic state varies from time to time (e.g., the changes in
non-rushing and rush hour). Meanwhile, the online system
requires a time-variant feature representations to update the
current traffic state. To solve this problem, we model the
temporal dynamically correlations to combine with the static
spatial representations. More specifically, we encode the day-
of-week and time-of-day of each time step t;, into R7 and R*
using one hot encoding, and concatenate them with the embed-
ding of HolidayID (holiday or not). With the aforementioned
background of TTE in federated learning, we here consider
the task of base model is to recover the real traffic state,
which can be formulated as the tensor completion problem, in
which the two modal components (both spatial and temporal
aspects) have been widely modeled and analyzed [28, 29].
Since the urban road traffic state has a typical spatio-temporal
distribution characteristics [27], which can be divided into two
levels of intersections and road segments in spatial aspect,
and into time-of-day, day-of-week and HolidayID in temporal

C
> o0 Len®

GCNg(hO; wW g0y = & (
c=0



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

aspect. The structured time-space data of traffic state can be
organized into the form of multidimensional tensor, which
lays a foundation for the application of tensor theory in data
completion [30]. In addition, a temporal attention mechanism
is also employed to capture the relations of adjacent time steps.
Let one day be into K time steps by the time interval. Then
the model reconstructs the road traffic state by employing
the Ist order CP decomposition between the hidden state
hU+1) generated by the GCNs and the temporal embedding
T € RE*Z, where T is the size of temporal embedding
vector. Thus, we can obtain the output of spatio-temporal cross
product layer:

Y, = (hg“)Wﬂe + bue) @ att(T)

Tu
—_ (hgl+1)mte +blte) ® i;(p( t ) (2)
Ztk exp (7;19)
vo= (how,, +b, ) o 20wl )
Ztk exp (7;1‘-,)

where W, W, € R*"*7 p, e RIEl and b,, € RV are
the parameters in the fully connected layer to reconstruct the
output of spatial GCNs layer. Based on the spatio-temporal
cross product of spatial feature vectors h(l“)WH + b, (for
both nodes and links) and the temporal attention-based vector
att(7), Y € RI€l and Y+ € RV are the outputs of the
base model and denoted as the current traffic state of links
and nodes at the t; time step, respectively.

3) Localized Global Model Prediction: Since we have ob-
tained the estimation time of road segments and intersections
from Eq. (3), next we will introduce how to generate the
non-personalized travel time-based prediction for each client.
With the aforementioned definition of the route in Sec. II, a
route 7 in this study is an alternating sequence of links and
nodes, which occurs at the time step t;. Therefore, we have
the localized global output of this route:

I7|

g=> Yi4 Z v )
e;er vjET
After local training of the base model based on the trajectory
data of each client, we can acquire the localized global model
and then upload this trained model to cloud server, which is
used to conduct federated model aggregation.

4) Online Global Traffic State Generation: When the cloud
server collects weights of the trained localized global model
from each user/client, we here aim to generate an online
global traffic state based on the aggregated global model.
Fig. 6 shows a schematic of our aggregation process for
the online global traffic state, which provides an extensible
and flexible method to infer the online average travel time
for each road segment and road intersection from the road
network. Technically, we divide the time of day into five
parts: 1) Midnight hours (0:00-7:00); 2) Morning rush hours
(7:00-9:00); 3) Non-rush hours (9:00-17:00); 4) Evening rush
hours (17:00-19:00), 5) Evening hours (19:00-24:00). This
design could avoid the online aggregation process’s high
computation and communication cost based on the relatively

stable traffic state in the non-rush hours. In our case, let A be
a parameter indicating the online aggregation frequency, we
set the time interval A=0.5 hour during 7:00-9:00 (frequently
changing traffic state in the morning peak), A=2 hours during
9:00-17:00 (stable traffic state), A=0.5 hour during 17:00-
19:00 (evening peaks), A=2 hours during 19:00-23:00 (stable
traffic state) and A=4 hours during 23:00-7:00 (sleeping time).
Our online learning process for global traffic state can be
viewed as a repetitive prediction process, as shown in Fig. 6.
For example, selected users take part in the training based on
their trajectories during 07:00-07:30 and upload their trained
localized models to the server. When clients send a TTE query
for their trajectories during 07:30-08:00, the cloud server will
directly provide each client’s global traffic state of the last
time step for non-personalized estimation through Eq. (4).
In addition, our proposed online aggregation also avoids the
missing value problem due to the observation uncertainty or
limited reports from crowdsourcing systems. Formally, the
task of online global traffic state generation can be described
as inferring the citywide travel time for each road segment
and intersection by acquiring the fusion result Y, € RI€! and
Y, € RVl from the aggregate global model. Relying on the
spatio-temporal feature representation of the global model, the
server can acquire the complete road condition, which accords
with the structure of the road network.

B. Personalized Model

Due to the various driving habits of people, the trajectory
data collected by different mobile users are very likely to be
unevenly distributed. Therefore, many common optimization
algorithms with the assumption of IID data are not suitable
for our distributed traffic prediction for the mobile user group.
If we directly use the localized global model to predict travel
time for clients, there will be bias which reduces prediction
accuracy [11]. In this work, we introduce a personalized model
for each client to study their personal driving habits. We here
use the drivers’ profile features described in Sec. III-B. For
these dense features, for example, fi 5, fq,6, and sparse fea-
tures, for example, fq 1,f4,2, we apply a linear transformation
and embedding technique, respectively. After embedding the
profile features, we concatenate the above hidden states and
employ a fully connected layer to produce the personal travel
time bias as

bias = WO XD + o (5)

where Xq(f) is the hidden state of personal features in I*" layer.
Wél) and bgf ) are the parameters of the fully connected layer
in [*" layer. We consider the final output to be the cooperation
between the localized global model and the personalized
model. The former produces the non-personalized prediction
and the latter makes up for the residual error between the
ground truth and the former’s output.

C. Privacy-preserving Mechanism

1) Privacy Attack: In distributed machine learning, both the
centralized worker-server architecture and the decentralized
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Fig. 6. Online traffic state aggregation process of our proposed system.

all-Reduce architecture involve the sharing of local gradients.
In the former, worker gradients are visible on the server, while
in the latter, neighbor gradients are shared. Recently, a bunch
of work [31, 32, 33] has raised people’s awareness about the
security of gradients. In our case, since the proposed model
architecture is composed of a base model and a personalized
model, an intuitive privacy attack approach is to compare the
differences between the base model’s parameters delivered
from server at ¢ — 1 round and current parameters uploaded
by client device at ¢t round (Fig. 7), which is based on the
assumption that the difference between localized global model
parameters and the global model parameters is approximately
equal to the differences between gradients [31]. Fig. 8 repre-
sents two cases of privacy attack by using difference attack.
We show the top 500 road segments with the largest change
in the link embedding layer between the global model and
the localized global model. Through the figure, we can see
that the privacy attack achieves 52.60% and 83.50% overlap
respectively with the ground truth.

2) Model Privacy-preserving with Differential Privacy:
Differential privacy [34] defined in Sec. II can solve two
defects of traditional privacy protection methods. First, the
differential privacy-based protection method assumes that the
attacker can obtain information about all records except the tar-
get record, and the sum of this information can be understood
as the maximum background knowledge that the attacker can
master. Under this maximum background knowledge assump-
tion, differential privacy-based protection does not need to take
into account any possible background knowledge possessed
by the attacker, because this background knowledge is un-
likely to provide more information than maximum background
knowledge. Second, based on a solid mathematical foundation,
differential privacy technology has a strict definition of privacy
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Fig. 7. Schematic of privacy attack in base model.

protection and provides a quantitative evaluation method,
which makes the privacy protection level with different pa-
rameter settings comparable. In the final, there is no doubt
that the privacy protection method could influence the model
performance, and we need to achieve a good balance between
the privacy protection and model prediction performance.

More specifically, we aim to evaluate the privacy risk based
on differential privacy and to analyze the trade-off between
model performance and security guarantee. In this work, we
construct the noisy data with a differential privacy-based
Laplace mechanism, and add them into the weight of the
local globalized model when each client uploads their trained
models onto a cloud server. The Laplace mechanism preserves
(e, 0)-differential privacy, which perturbs each coordinate with
noise drawn from the Laplace distribution.
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Fig. 8. The comparisons between the ground-truth road segments and the
privacy attack result for two driver cases from Xi’an datasets.

D. Model Training Procedure

Step by step training in personalized federated learning is
a common strategy [35, 36], which means that it defines the
training priorities between the localized global model and the
personalized model. In our case, inspired by the federated
learning with personalized layers [37], we first train the base
model to learn the non-personalized traffic state for each client
m, and MSE is chosen as the loss function for TTE. Then the
objective function can be defined as

Lo, => llyi — 5l 6)

where n,,, y and y denotes the number of trajectory for client
m, the ground truth and estimated value respectively. 6}, are
all trainable parameters in the base model. In this study, the
stochastic gradient descent (SGD) algorithm as the default
optimizer for both base and personalized models, and the
FedAvg [9] is set as federated learning strategy. However,
another gordian knot is that there is an unequal amount of data
between users, since each driver receives different taxi orders
and travels different distances every day (Fig. 4). We here
utilize a simple method mentioned in [9] that the global model
F'+1 is equal to the weighted-average sum of all clients:
Fitl Z%:l R fI . where f} is the local model, « is
the learning rate, M is the amount of selected clients and
each client owns n,, samples at ¢t round, and n is the total
number of samples for all selected clients at ¢ round. After
that, we freeze the localized global model and train the fine-
tuned personalized model to learn each client/user’s personal

driving habits, which is to fit the residual error in Eq. (6) as

Lo, =Y llyi — Gl (7)
m 2
= || = 5 — bias| ®)
[

where 6, are all trainable parameters in the personalized
model, and § =y — bias is the final output of our proposed
model (as is shown in Fig. 5). In the final, to protect the client’s
privacy risk of model weights, we construct the noise based
on differential privacy and add them into trained localized
global model for each client before uploading them to the
cloud server. Then the cloud server can acquire an aggregate
global model and conduct the next round of federated learning.
Here, our federated training procedure at time step ¢ can be
shown in the Algorithm 1. It is noted that we do not design
complicated structure for the personalized model to avoid the
potential overfitting on limited personal trajectory data.

Algorithm 1: Model Training procedure

1 Global parameters: [ is the global model at ¢
round; « is the base model learning rate; M is the
amount of selected clients.

2 Local parameters: f,, is the localized global model
for client m; p,, is the personalized model for client
m, epoch is the number of local epoch; D,, is the
personal privacy trajectory data on local device; € is
the parameter of differential privacy.

3 Server:

4 initialize F°

s for each round t € {1,2,...} do

6 I; < random set of M client’s;

7 for each client m € I; in parallel do

8 | fm « ClientUpdate(F"~!, epoch, );
9 end

10 Fi er\r/le i fl,

11 end

12 Client Update:

1B for i € {1,2,...,epoch} do

14 fm%fm_av'CGb(f;Dm)
obtained from Eq. (6)

15 end

16 frm E fon
privacy e

17 return f,,

18 Fine-tune personalized model p,, based on ,Cgp for
each client m before inference.

1 v£0b (fa Pm)

// construct noise with differential

V. EXPERIMENTS
A. Baselines

In terms of travel time estimation models, we compare our
proposed methods with baseline models including DeepTTE,
WDR, MURAT, DeepGTT, T-GCN, and ConSTGAT in differ-
ent training strategies (e.g. Fed-Avg and centralized training).
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OVERALL PERFORMANCE COMPARISON UNDER TWO PUBLIC DATASETS. HERE, ”+PERSONALIZED” DENOTES THE TRAINING PROCEDURE OF LOCALIZED
GLOBAL MODEL AND PERSONALIZED MODEL DESCRIBED IN SEC.IV-D

TABLE I

Training Strategy Models Chengdu Xi'an
sec sec 0 sec sec 0
T-GCN 201.28 297.59 12.09 225.89 361.91 14.50
Centralization ConSTGAT 199.62 295.53 11.78 187.57 295.33 12.03
DeepTTE 194.47 293.15 12.36 167.85 266.26 11.28
WDR 231.22 355.76 15.88 207.52 304.63 14.46
MURAT 267.83 394.29 17.78 225.39 353.16 14.37
DeepGTT 251.71 369.26 18.12 247.83 367.25 15.09
TGCN 28145 393.61 17.25 305.68 457.92 1934
Fed-Avg ConSTGAT 279.14 390.87 16.82 253.82 373.67 16.04
DeepTTE 271.93 387.73 17.64 227.14 336.89 15.04
WDR 353.29 469.52 24.56 291.96 404.72 19.29
MURAT 369.17 458.16 24.39 311.85 427.68 21.24
Fed Avg 285.53 703.36 1821 23837 368.16 1557
Fed-PA ) 291.98 411.46 18.27 234.26 356.84 15.69
Fed-Ensemble Localized Global Model 7,3 393.94 17.28 229.37 331.41 14.93
+Personalized (ours) 237.46 360.38 17.11 209.32 311.59 14.28
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Fig. 9. The effects of the number of selected clients and the local training epoch.

e DeepTTE [8] is an end-to-end deep learning framework,
which infers the trajectory travel time of both the entire
path and each local path simultaneously.

e WDR [38] predicts the travel time along a given route
at a specific departure time, and then jointly trains wide
linear models, and recurrent neural networks together to
take full advantage of all three kinds of models.

e MURAT ([39] is a multi-task representation learning
method by utilizing the underlying road network and the
spatio-temporal prior knowledge.

e DeepGTT [14] learns the travel time distribution through
the deep generative model, which takes the real-time
traffic condition into consideration.

e T-GCN [40] is a temporal graphical model that combines
the GCN and GRU to simultaneously characterize the
spatio-temporal dependencies.

e ConSTGAT [17] adopts a graph attention mechanism to
explore the joint relations of spatio-temporal information.

All baseline models but DeepGTT (due to structural reason)
are implemented in both centralized training and federated
learning strategies. For centralized training, data is shared
by different users, and the model trained with shared data
succeeds in capturing the universal mobility patterns and
achieves better modelling performance. However, privacy is-
sues are completely ignored. And in federated learning, the
model is directly trained and executed in personal devices
with only local private data. Without sharing users’ private

data, this training strategy protects the personal privacy but
fails to provide competitive performance. In this paper, we
also apply three federated learning strategies to our proposed
system. Among them, Fed-PA and Fed-Ensemble are recent
personalized federated learning strategies for urban computing.

e Fed-Avg [9] In Federated Averaging, a subset of the total
devices are selected and trained locally for E number of
epochs at each round, and then the updates of resulting
local model are averaged.

e Fed-PA [41] Feng et al. proposed a personal adaptor to be
fine-tuned in the local device for better personal pattern
modelling. In our experiment, the time embedding layer
is filtered by a trainable same-size vector with sigmoid
function using the multiply operation.

o Fed-Ensemble [42] Yu et al. proposed an ensemble
clustering-based scheme for traffic flow prediction by
grouping organizations/users into clusters before applying
the Fed-Avg algorithm. In our experiment, we use the
average locations of every user’s trajectories to cluster
users and then implement federated averaging in the cor-
responding clusters to get the global model set. Finally,
the global model is generated by the ensemble learning
scheme.

B. Metrics

We evaluate the performance of travel time estimation with
RMSE (Root Mean Square Error), MAE (Mean Absolute
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Error), and MAPE (Mean Absolute Percentage Error).
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where n, y and y denotes the number of trajectory samples,
the ground truth and estimated value respectively.

C. Experimental Setup

The experiments are implemented with PyTorch 1.6.0 and
Python 3.6 and the models are trained with a RTX2080 GPU
on Ubuntu 16.04 OS platform. We trained the models using
SGD optimizer with an initial learning rate of 0.001 on both
Chengdu and Xi’an datasets, and early stopping is applied to
avoid overfitting. For the hyper-parameters of federated train-
ing, we set clients=1000, local epoch=2 in several federated
learning strategies, except for our proposed training strategy
Base + Personalized. This is because the local training of
our prediction model is a two-step training process. Here, we
implement local epoch=2 to train the localized global model
and local epoch=1 to fine-tuned personalized model.

D. Experimental Results

This section presents the performance comparison with
baseline models under different training strategies, including
centralized training and several federated learning strategies.
Then we analyze the effect of hyper-parameters in the training
procedure of our proposed travel time estimation system.
Especially, we also conducted a real-world case study in Xi’an,
which visualizes the learned global state of our proposed
system on the road network.

1) Overall Performance: We compare our proposed meth-
ods with different estimation models and training strategy
combinations under two real-world datasets. These can be di-
vided into privacy-preserving models under federated training
and privacy-leakage models under centralized training. Table I
shows the performance of travel time estimation. From these
results, we first find that centralized training usually achieves
better performance than federated training regarding the same
prediction model. On the other hand, the best performances
are both achieved by privacy-leakage DeepTTE. Furthermore,
we can conclude that our proposed method is superior to other
privacy-preserving models. First, our global model combined
with the personalized model achieves the best performance
among privacy-preserving models with an improvement of
12.67% and 7.85% under two datasets, even though it still
has competitive performance compared with the best privacy-
leakage models. Second, our federated training procedure
also performs better than other federated learning strategies,
such as Fed-PA and Fed-Ensemble. Besides, only the global
model with Fed-Avg has achieved near the performance of

DeepTTE with Fed-Avg. This means that the trained traffic
states of local drivers have extreme reliability. In summary,
our proposed methods achieve promising performance while
protecting personal privacy in federated training.

2) Simulation Performance Under Different Scenarios: The
simulation experiments have been conducted to verify the
correctness and usefulness of our online TTE framework. The
corresponding result comparisons are shown in Table II. To
be clear, we here present the model performance in non-rush
hours (0:00-7:00, 9:00-17:00, and 19:00-24:00) and rush hours
(7:00-9:00 and 17:00-19:00), respectively. As we have heard,
since traffic state tends to be congested during the rush hours,
it is a challenge to accurately estimate travel time. We take an
example for Chengdu datasets, our proposed framework that
integrates with the personalized model, still improves at least
15%, 16%, and 8% in RMSE, MAE, and MAPE. In terms of
non-rush hours, our model obtains at least 18%, 6%, and 15%
improvement in these three metrics. We can conclude that our
model significantly outperforms overall federated strategy and
TTE baselines, demonstrating that the generalization of our
proposed framework can better adapt to different scenarios.

3) The Effects of Hyper-parameters on Federated Learning:
In the experiment, we first analyze the effects of the number
of selected clients. In each training round of the proposed
system, we only choose a fraction of clients to participate in
the current optimization procedure. Fig. 9 (a) and Fig. 9 (b)
present the effects of the number of selected clients on the
final performance on two datasets. Generally, we can observe
that the final performance is improved continuously, with
the number of clients increasing from 400 to 1000 for both
datasets. This indicates that the generated global traffic states
need large amounts of users’ trajectories to train. We also study
the effects of the local training epoch of the localized global
model on the system performance in Fig. 9(c) and Fig. 9(d).
We find that local epoch=2 and local epoch=1 are the optimal
settings for Xi’an and Chengdu datasets, respectively. This is
because Xi’an’s road network is simpler than Chengdu, and
the training process for the Xi’an dataset needs fewer iterations
than Chengdu.

4) Case Study: Our proposed system can not only conduct
path travel time estimation for personal trips, but also learn
the global traffic state of the links and nodes.

Unblocked

I - L (a) 9:00 AM, Monday
ll:ll crossing (ﬂ) traffic signal = bus stop

Congested

?J

3.

.
G”— i 0

0o o:g: 8;
: (b) 22:00 PM, Monday

Fig. 10. The time-consuming ratio for some nodes in the Xi’an road network.
Here, we select three types of nodes including “crossing”, traffic signal” and
“bus stop”.
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TABLE II
OVERALL SIMULATION PERFORMANCE COMPARISON OF OUR PROPOSED METHOD AND BASELINE STRATEGIES FOR TRAVEL TIME ESTIMATION (ON
CHENGDU AND XI1’AN DATASET) UNDER TWO SCENARIOS, INCLUDING BOTH NON-RUSH AND RUSH HOURS.

Non-Rush Hours

Data Training Strategy Models

Rush Hours

MAE (sec) RMSE (sec) MAPE (%) ‘ MAE (sec) RMSE (sec) MAPE (%)

Fed-Avg 314.20 405.26 18.93 347.15 488.16 20.78
"?D Fed-PA . 323.39 413.33 19.24 364.77 507.82 21.04
= Localized Global Model
é:")’ Fed-Ensemble 307.27 403.65 18.91 321.32 463.59 19.23
+Personalized (ours) 256.92 384.18 16.17 291.46 410.33 18.75
Fed-Avg 262.275 369.851 16.20 289.782 445.517 17.78
£ Fed-PA . 269.947 377.217 16.47 304.492 463.461 18.00
- Localized Global Model
X< Fed-Ensemble 256.489 368.381 16.18 268.219 423.091 16.46
+Personalized (ours) 214.455 350.611 13.85 243.290 374.479 16.01
— — l“
e e 4—-", B S
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(a) Computed speed by entire trajectory

data on Xi’an dataset (Ground Truth) clients=600

(b) Global traffic state trained by

(c) Global traffic state trained by
clients=1000

Fig. 11. The aggregated global traffic state in Xi’an. Here we use four kinds of colors to represent the different road states, which can be defined as: 1) red
- very congested, 2) orange - congested, 3) yellow - slow, 4) green - unblocked.

On the one hand, we first provide the aggregated global
traffic state for different nodes, which are depicted in Fig. 10.
On the other hand, we select three types of nodes in a
road network and use the time-consuming ratio to represent
congestion status. The time-consuming ratio is calculated by
dividing the corresponding mean value of learned travel time
distributions by the maximum mean value among all nodes
(note that we have filtered out the top 1% most enormous node
travel time). From Fig. 10, we can find that nodes with the
“traffic signal” type are more time-consuming than the other
two types of nodes, and most nodes in the morning peak are
easy to become congested. These show that our node travel
time estimation is reasonable in both spatial and temporal
aspects.

On the other hand, we depict the aggregated global states
of links and compare them with the ground truth computed by
the original taxi trajectories. Especially, we compare the aggre-
gated road conditions with two different numbers of selected
clients (clients=600 and clients=1000). We mark it with the
unblocked state for the road segments without taxi trajectories.
Since the speed limit varies from road to road, primarily
defined by road type or road length, we use four colors to

represent the different road states (very congested, congested,
slow, and unblocked). We divide the limiting-velocity for each
road type equally. For example, the rate-limiting of the primary
road is 60kph, so the interval between very congested is
[0,15), congested is [15,30), slow is [30,45), unblocked is
[45,60). The compared result is shown in Fig. 11. Comparing
the aggregated road condition and ground truth, the generated
traffic states under the selected client’s two settings are similar
to the ground truth. Most road segments have the same road
states. Furthermore, we find that the more clients participate
in the federated aggregation process, the more accurate the
global traffic state will be.

E. Privacy Risk Analysis

As the introduction about analyzing the privacy risk of
uploading the base model in Sec. IV-C, we conduct the
privacy risk analysis for our proposed framework, and show
the effectiveness of the protection on local devices. Here, we
have two objectives of privacy analysis. One is to validate our
local data protection method based on our differential privacy
mechanism; the other is to evaluate the effects of differential
privacy on the prediction accuracy of travel time.
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Fig. 13. The privacy attack result with different differential privacy parameter
€.

1) Privacy-preserving Performance: To evaluate the ef-
fectiveness of our privacy protection method, we define the
privacy risk = ] metrics to measure the privacy-
preserving performance with different parameter settings of
¢ for differential privacy, where (2, is the set of personal real
travelled road segments and Q, is the set of road segments
revealed by privacy attack.

In this study, we measure the privacy-preserving perfor-
mance from two aspects: a qualitative and quantitative anal-
ysis. As shown in Fig. 12, we compare the effectiveness
of attack risk with different setting of differential privacy
parameter €, which is the same case with Fig. 8. We can
observe that the attack risk can be reduced significantly by
utilizing differential privacy mechanisms. Furthermore, we can
also see that from left to right, the noise intensifies, and the risk
(overlap) declines dramatically. As Fig. 12 shows, it is difficult
to attack mobile users’ location privacy when the € reduces to
10. Moreover, when ¢ is lower than 10, the privacy attack
would have unobservable effects, which ensures the user’s
privacy.. In addition, we conduct the quantitative analysis of
privacy risk, and Fig. 13 represents the average risk of overall
clients/users in federated training procedure for both datasets,
respectively. As Fig. 13 shows, we can also know that the
clients are exposed to high risk when the strength of noise is
small. Especially, the trend of privacy risk for Xi’an, which is
shown in Fig. 13 (a), validates our conclusions.

2) The Effects of Differential Privacy on Prediction Per-
formance: To efficiently protect location-based privacy on
the local devices, we expect to utilize differential privacy

The effectiveness of attack risk with changing differential privacy parameter €.

mechanism in the ubiquitous computing system. However,
greater noise always leads to the limited performance of the
estimation task. Thus, how to balance the privacy protection
and better performance becomes an important topic in ubig-
uitous computing. Table III presents the effects of differential
privacy parameter € on the travel time estimation performance
under both two datasets. We further present the relative drops
of estimation accuracy based on the performance without
differential privacy (¢ = oo). We can observe that in terms
of MAE, the performance in Chengdu and Xi’an gradually
decreases when ¢ reduces from 100 to 10. In Chengdu dataset,
the model performance is relatively sensitive when ¢ reduces
from 100 to (1,0.1,0.01), compared with the Xi’an dataset. We
suppose this may rely on the different road network structure
between two cities. To investigate that, we here also depict
the attack risk with changing differential privacy parameter
¢ in Fig. 12. We can find that the performance of Chengdu
datasets that has relatively complex road network structure has
low attack risk as Fig. 13 (b). For Xi’an dataset, the varying ¢
has relatively small influence on prediction performance when
€ reduces from 100 to 1, although it has higher attack risk.
In summary, our method can achieve better trade-off between
the model performance and privacy risk of difference attack,
and these ensure the availability of our proposed privacy-
preserving mechanism.

TABLE III
MAE COMPARISON OF OUR METHOD WITH CHANGING DIFFERENTIAL
PRIVACY PARAMETER €.

Dataset\e | 001 0.1 1 10 100 00
Chengdu | 367.51 35324 33822 297.90 253.15 237.46
Drops (%) | 5477 4876 4243 2545 66l 0
Xian | 29147 28438 25554 233.05 21367 209.32
Drops (%) | 3925 3586 2208 1138  2.09 0

VI. RELATED WORK
A. Travel Time Estimation

Existing approaches of travel time estimation can be clas-
sified into four groups: road segment based, path based, deep
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learning based and graph neural network based methods.

Road Segment Based and Path Based Methods. The
road segment based methods use the speed data sampled from
loop detectors to infer each individual road segment’s travel
time independently [43] but ignore the correlations between
the road segments, such as the factors of traffic lights, and
left/right turns. Path based approaches have been proposed to
resolve those issues, which can roughly be divided into two
types: 1) nearest neighbor search [44, 45], which estimates the
travel time by averaging the historical trajectories’ travel time.
2) trajectory regression methods [7], which predicts the travel
time of road segments via public features, for instance, road
types, road lanes, road length, etc.

Deep Learning Based Methods. With the development
of deep learning in these years, various studies have been
designed to enhance the performance of travel time estimation.
For instance, DeepTTE [8] presents an end-to-end framework
that predicts the travel time of the whole path directly by
using geo-convolution on the GPS sequences to capture spatial
features. Li et al. [14] designs a deep generative model to learn
the travel time distribution for each road segment using grid-
based traffic conditions and basic road network features. Wang
et al. [38] models the problem of travel time estimation as a
spatio-temporal regression problem by a Wide-Deep-Recurrent
learning model [46], and this work considers various features
including spatial information (the characteristics of route, such
as the road segment and traffic light information), temporal
information (such as a month and a day, the holiday indicator),
traffic information (such as estimated road condition) and
personalized information (such as driver profile).

Graph Neural Network Based Methods. Very recently, the
advances of graph neural network have promoted a myriad
of work in travel time estimation problem. For example,
ConSTGAT [17] employs a graph attention mechanism onto
the spatial-temporal features by integrating traffic and con-
textual information, in which the input feature includes the
road segment-based information, historical road condition and
departure time of each trajectory. Deepist [47] enhances the
power of convolutional neural network to capture moving
behaviors embedded in paths by introducing the image of
urban in grid level. GraphTTE [48] designs a Multi-layer
Spatio-temporal Graph frame, which consists of static and
dynamic networks. In particular, the dynamic networks imple-
ment the GCN and gate recurrent unit to model the historical
traffic characteristics, and the static network employs GCN to
model the basic road attributes. Especially, Hong et al. [49]
transforms the road network into a multi-relational network
and introduce a vehicle-trajectories based network to jointly
consider the traffic behavior pattern (traffic speed, volume).

However, those graph-based approaches ignore the complex
relations between road segments and intersections from road
network. Meanwhile, their methods need to model the real
traffic dynamics, which is difficult to acquire due to the
power and communication limitations of mobile devices. In
this paper, we model the adjacencies in both node-wise graph
and link-wise graph simultaneously. And the online traffic state
can be obtained via our aggregated global model.

B. Privacy Protection Methods

We here discuss the related work from two directions: 1)
user data protection mechanism, and 2) federated Learning.

User Data Protection Mechanisms. a series of techniques
aiming to protect the user trajectories have been proposed,
which can be classified with two categories [50]: 1) real-
time continuous location-based services, and 2) publication
of historical trajectories. The former intends to protect the
scenario, for example, asking the Apps to give the traffic
conditions that are 1 km around me. Multiple techniques
have been proposed including spatial cloaking [51], mix zones
[52] and path confusion [53]. The latter schemes to protect
the trajectories, and its related works include clustering-based
[54], generalization-based [55], suppression-based [56], and
grid-based [57] approaches.

Federated Learning. It is a mechanism to coordinate the
joint training model of multiple participants, which is emerg-
ing in the era of big data and the development of artificial
intelligence technology [10]. Meanwhile, communication cost
and communication efficiency have become one of the key
bottlenecks of federated learning. A bunch of work has been
proposed to analyze how to reduce the communication cost
of federated learning [9, 58]. Further, federated learning does
not exchange data directly and has a higher privacy guar-
antee than traditional centralized machine learning training,
but federated learning itself does not provide comprehensive
and sufficient privacy protection. Recently, researchers have
applied differential privacy operation [21] on the whole model
in the aggregation stage of federated learning [59].

Personalized Federated Learning. Personalized federated
learning [60] differs from traditional federated learning in that
it does not require all participants to end up using the same
model, but allows each participant to fine-tune the model based
on their own data to generate their own unique personalized
model. Models often perform better on local test sets after
personalized tweaks. A bunch of work has been proposed from
meta-learning [61], multi-task learning [62], hypernetwork
[63], knowledge distillation [64] to personalized model [65].
For example, the goal of meta-learning [61] is to train highly
adaptive models that can be trained to solve new tasks in a
small number of samples.And in multitasking learning [62],
models among the clients learn together by taking advantage
of commonalities and differences between tasks.

In this paper, our proposed federated learning system can be
viewed as a case of base model + personalized model, which
estimates the travel time by fusing the outputs of both localized
global and personalized model. Moreover, our aggregated
global model can generate real-time road condition, which
plays an important role of the intelligent transportation system,
compared with single fusion of the previous personalized
model strategies.

VII. CONCLUSION

In allusion to the TTE problem, this paper proposes an
online personalized federated learning framework to fill the
gap between personal privacy and model performance by
dynamically updating the global traffic state. Specifically, we
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estimate the travel time through the training strategy of the
base model + personalized model, where the base model
serves to produce the unbiased global traffic state for all
clients, and the latter is only trained locally to act on fitting
the personalized driving habits through the profile features.
We evaluate the effectiveness of our proposed framework from
three aspects: 1) overall performance compared with state-of-
the-art in travel time estimation models and federated learning
strategies; 2) a case study depicting the global state from links
and nodes, respectively, to show the aggregation performance
of our system. 3) privacy risk analysis from both quantitative
and qualitative views, respectively, to prove the effectiveness
of our privacy-preserving mechanism.

In the future, we will further test the performance with
more federated learning strategies, such as clustering the
personal driving features together, since the drivers’ habits
have multiple similarities. Meanwhile, we will also reduce
the communication cost since the online algorithm frequently
needs to upload and download model weight between clients
and the cloud server.
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