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Abstract—Recently, round-trip time (RTT) measured by a fine-
timing measurement protocol has received great attention in
the area of WiFi positioning. It provides an acceptable ranging
accuracy in favorable environments when a line-of-sight (LOS)
path exists. Otherwise, a signal is detoured along with non-LOS
paths, making the resultant ranging results different from the
ground-truth, called an RTT bias, which is the main reason for
poor positioning performance. To address it, we aim at lever-
aging the user mobility trajectory detected by a smartphone’s
inertial measurement units, called pedestrian dead reckoning
(PDR). Specifically, PDR provides the geographic relation among
adjacent locations, guiding the resultant positioning estimates’
sequence not to deviate from the user trajectory. To this end, we
describe their relations as multiple geometric equations, enabling
us to render a novel positioning algorithm with acceptable accu-
racy. Depending on the mobility pattern being linear or arbitrary,
we develop different algorithms divided into two phases. First, we
can jointly estimate an RTT bias of each AP and the user’s step
length by leveraging the geometric relation mentioned above.
It enables us to construct a user’s relative trajectory defined
on the concerned AP’s local coordinate system. Second, we
align every AP’s relative trajectory into a single one, called
trajectory alignment, equivalent to transformation to the global
coordinate system. As a result, we can estimate the sequence of
the user’s absolute locations from the aligned trajectory. Various
field experiments extensively verify the proposed algorithm’s
effectiveness that the average positioning error is approximately
0.369 (m) and 1.705 (m) in LOS and NLOS environments,
respectively.

Index Terms—WiFi positioning, RTT, NLOS bias, user mobil-
ity, pedestrian dead reckoning, trajectory alignment

I. INTRODUCTION

Estimating a user’s location, called positioning, has become
vital as a clue to assimilate his behaviors and predict the
demands to realize the vision of smart cities [1], [2]. Along
with the appearance of smartphones equipping various built-in
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sensors and communication modules, positioning has become
an attractive research area due to its promising potential
capable of combining various techniques. Among them, this
work focuses on round-trip times (RTTs) from multiple WiFi
access points (APs) and a user’s mobility pattern measured by
the built-in sensors, each of which has a different view from
the positioning perspective. A WiFi RTT-based approach gives
a macroscopic view of the region where the user is likely to
be located during the movement. On the other hand, the user
movement pattern provides a microscopic view of how the
user is moving at a specific instant. As a result, combining
the two renders the relation between point estimates, forming a
geometric representation concerning the given measurements.
It enables the design of a novel algorithm to achieve accurate
positioning.

A. Prior Works

1) WiFi positioning: As the massive number of WiFi APs
have been deployed in our surroundings, WiFi positioning
has received significant attention to providing users seamless
positioning services anytime and anywhere [3]. Depending
on the means used to capture specific physical properties
of radio signals, two kinds of approaches exist in the liter-
ature: received signal strength (RSS)-based and RTT-based
approaches. The former uses a mathematical path-loss model
to translate the measured RSS to the distance to a WiFi AP.
Given the ranging results to at least 3 APs, the user’s position
is uniquely estimated using a multilateration method. RSS
has been widely used as a fundamental positioning element
due to its simple accessibility that RSS is measurable in a
commercial off-the-shelf Android smartphone [4]. However,
the randomness of a radio signal, e.g., shadowing and short-
term fading, makes it challenging to obtain reliable ranging
results, especially in indoor environments where numerous
reflectors and blockages exist. On the other hand, RTT is
a relatively reliable measurement since it exploits one basic
theory of classical physics that the speed of signal propagation
is constant at light speed c = 3·108 (m/sec). The measurement
of RTT is enabled by fine timing measurement (FTM) protocol,
which was firstly introduced in IEEE 802.11 mc [5]. After
several handshaking signals between a smartphone and the
paired AP, the timing instants of the signal receptions are
shared, enabling the computation of RTT. With several super-
resolution methods, FTM returns a precise RTT estimate at
picosecond granularity in favorable environments, i.e., a line-
of-sight (LOS) scenario [6].
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Nevertheless, complicated surroundings with numerous
reflectors and blockages make the concerned radio signal
detour differently from a LOS path, called a non-LOS
(NLOS) path. The resultant ranging results is thus biased,
as mentioned in [7], which is the main reason behind the
performance limit. Several methods have been suggested in
the literature to overcome the limitation. A primary way
is to identify whether the observed signal path is LOS or
NLOS and calibrate the bias. In [8], the likelihood of a
LOS path is derived, following the assumption that RSS is
a Gaussian random variable. The recent trend of machine
learning enables the LOS/NLOS identification without any
statistical hypothesis. For example, in [9] and [10], LOS and
NLOS paths are identified by supervised learning techniques,
e.g., support vector machine and artificial neural network
respectively, of which the performances depend on the number
of labeled data. In [11], the technique of unsupervised learning
is used to infer the bias by designing a novel cost function
underlying the fact that the spatial information, e.g., location,
distance, and velocity, is temporally correlated. However, all
machine learning-based techniques mentioned above need an
offline phase such that support vectors or neural networks
should be trained in advance concerning all possible sites,
making their usability and scalability limited.

2) Estimating User Mobility: Understanding user mobility
gives significant benefits for seamless positioning services by
enabling a user to estimate his location in global positioning
system (GPS)-restricted areas, i.e., inside buildings or tunnels.
A user’s current location can be updated from the latest
GPS signal by integrating the trajectory of user movement,
called dead reckoning (DR). The performance of DR relies on
the accuracy of estimating a user’s mobility, and DR works
efficiently for vehicular positioning since its on-board sensors,
called inertial measurement units (IMUs), can accurately mea-
sure velocity, orientation, etc [12].

Noting that modern smartphones also possess IMUs, the
concept of DR can be applied to the positioning using a
smartphone, defined as pedestrian DR (PDR) [13]. Basically,
the IMUs of a typical smartphone comprise accelerometer,
gyroscope, and magnetometer, each of which observes a user’s
mobility from a different aspect. An accelerometer can count a
user’s number of walking steps from the repetitive patterns of
up-and-down accelerations, translated into the corresponding
total moving distance by multiplying his step length. Next,
a gyroscope can recognize turning direction to right or left
sides when its measurement is suddenly changed. Last, a
magnetometer can detect a heading direction in favorable
conditions such as outdoor-like spaces [14]. Combining them
leads to constructing the user’s full trajectory.

Despite its advantages mentioned above, the effectiveness
of PDR as a standalone positioning technique is questionable
due to the following reasons. First, a user’s step length
should be known in advance as a prerequisite to translate the
number of steps into the distance. Several formulas have been
proposed in the literature to estimate it without the user’s
direct input (see, e.g., [15] and [16]), most of which are
designed based on the rule of a thumb. On the other hand,

it should reflect the user’s characteristics such as height,
weight, and speed and acceleration of walking, hindering
the generalization into a simple formula. Second, a heading
direction estimated by a magnetometer has a significant
offset, affected by a magnetic distortion due to several indoor
materials and a misalignment between the smartphone’s
heading direction and the real moving direction [17]. Third,
the concerned scenarios of PDR are mostly indoor, where a
GPS signal is hardly detected. In other words, its accuracy
cannot be guaranteed and deteriorates as time passes due
to the accumulation of estimation errors. To cope with the
above issues, it is recommended to incorporate PDR into
other positioning systems by providing additional location
information to calibrate these measurements. The recent
advancement of this area can be found in numerous surveys,
such as [18].

3) Integrating WiFi Positioning and PDR: The limitations
of WiFi RTT positioning and PDR mentioned above are
complementary and can be overcome by their integration,
which is the main theme of this work. On the one hand,
the IMUs of a smartphone excluding a magnetometer work
independently of surrounding environments, playing a pivotal
role in compensating an environment-dependent RTT bias. On
the other hand, the positions estimated by WiFi positioning can
fill the missing information to complete the user’s trajectory.
Motivated by the synergy effect, a few recent works have
been studied in the literature, most of which rely on a
technique of an extended Kalman filter (EKF). EKF is a well-
known nonlinear state estimator utilizing a series of sequential
observations with measurement noises. In [19], for example,
WiFi positioning’s RTT bias, PDR’s step length, and heading
direction are jointly calibrated using EKF by inputting the raw
measurements of PDR and WiFi RTTs. A similar approach is
made in [20], where the positions estimated by PDR and the
distances converted from WiFi RTTs are used as inputs of
EKF. In [21], the PDR’s measurements are pre-calibrated by
EKF. The result is then fused with the estimated distances from
WiFi RTTs to enable 3D positioning by an unscented particle
filter, another state estimation filter. In [22], EKF is used to
detect and remove WiFi RTT measurements’ outliers. It is
shown that all approaches mentioned above can provide more
accurate positioning results than standalone techniques. On the
other hand, the convergence of EKF is not guaranteed and
sometimes diverges due to the lack of statistical knowledge
of measurement noises and the linearization of nonlinear
functions required to compute the inputs’ covariance matrices.
The resultant location estimates can be inconsistent depending
on the selection of initial settings, calling for diversifying
positioning approaches other than EKF.

B. Main Contributions

This work aims at designing a new hybrid positioning
design combining WiFi RTTs and PDR measurements without
EKF. To this end, we attempt to adopt a geometric approach
describing the relationship between multiple measurements in
mathematical form. This approach provides twofold benefits
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TABLE I
SUMMARY OF TECHNIQUES INTEGRATING WIFI & PDR

Approach Key references Ranging
calibration

Integration method Step length Heading direction estimation
EKF-based Geometry-based Given Unknown W/ magnetometer W/o magnetometer

WiFi RTT Positioning [8], [9], [23], [24] X
WiFi RSS & PDR
integration

[4] X X
[25] X X X

WiFi RTT & PDR
integration

[20], [22] X X X X
[21], [26] X X X
[19] X X X X
Proposed X X X X

from the positioning perspective. First, the relations mentioned
above are summarized as a list of equations, forming a
system of equations (SOE) whose unknowns are related to
RTT biases, a user’s step length, heading direction, etc. The
SOE can be iteratively solved using well-known optimization
techniques, guaranteeing the convergence to a local optimal,
and possible to solve it by a single matrix inversion if the
SOE is linear. Second, we can rigorously provide requirements
to guarantee the uniqueness and existence of the positioning
result, e.g., the minimum numbers of detected walking steps
and connected APs, which are equivalent to the conditions
for unique positioning. It helps design not only a practical
positioning algorithm, always returning an accurate position
but also efficient WiFi deployments in a concerned area.

There have been several works adopting a geometric ap-
proach in different systems such as cellular positioning [27],
RADAR [28], and vehicular positioning [29]. Furthermore,
during the revision of our paper, a few recent works integrating
WiFi positioning and PDR without EKF have been observed,
based on using another filter [26] and deep neural network
[25]. On the other hand, none of the works uses a geometric
approach. To the best of our knowledge, this work represents
the first attempt to design a geometry-based positioning algo-
rithm concerning the integration between FTM and PDR. We
summarize the comparison with prior works in Table I. The
main contributions are summarized below.

• Joint estimation of an RTT bias and a step length:
We aim at enhancing an RTT-based distance estimation
by offsetting the RTT bias, coupled with PDR information
like the number of walking steps, direction changes,
and step length. Noting that all information excluding
step length can be measurable by PDR, an SOE is
formed to jointly estimate two unknowns of RTT bias
and step length. In the linear mobility case, the SOE
can be transformed into a linear structure solvable by
a matrix inversion when at least 4 steps are detected.
In the arbitrary mobility case, a one-dimensional (1D)
search enables us to solve the SOE, guaranteeing its
unique solution if at least 5 steps are detected. Besides,
the positioning error due to measurement noises can be
significantly reduced by leveraging diversified positioning
results through multiple SOEs formed by different step
combinations.

• New positioning method using a trajectory alignment:
The user’s sequential positions during his movement can
be estimated by aligning multiple trajectories derived

from the estimated RTT bias of each WiFi AP and
step length. It is equivalent to find the user’s initial
heading direction, another information challenging to be
estimated using a smartphone, as aforementioned. The
minimum number of WiFi APs required to finding the
user’s position uniquely is 3 or 2 depending on the
linear or arbitrary mobility pattern, respectively. Given
the requirement of the minimum number of APs and
with measurement noises, we develop a 1D search-based
algorithm to make all trajectories aligned as closely as
possible.

• Verification by field experiments: The proposed po-
sitioning algorithms are evaluated based on field ex-
periments and found to be effective. Specifically, the
resultant average positioning error is reduced to 1.71 (m)
in unfavorable environments like an underground parking
lot, where numerous obstacles exist, such as vehicles,
walls, and pillars.

The remainder of the paper is organized as follows. Section
II introduces the system model, measurement procedures, and
the overview of the entire positioning algorithm. Section III
presents a technique jointly estimating RTT bias and step
length for a single WiFi AP. Given the enhanced ranging
results of multiple WiFi APs, the positioning algorithm finding
the user’s location is developed in Section IV. Experiment
results are presented in Section V, followed by concluding
remarks in Section VI.

II. SYSTEM MODEL

Consider the scenario comprising one user with a smart-
phone and M WiFi APs, denoted by a set M = {1, · · ·M}, as
shown in Fig. 1. The smartphone has built-in IMU sensors and
a WiFi module required to measure the user’s mobility pattern
and RTTs, respectively. The detailed measurement procedures
are firstly explained. Next, the geometric relations between the
measurements and the user’s locations are derived. Last, the
overview of the proposed approach is described.

A. Measurements

This subsection explains the measurement procedures and
the corresponding outputs required to form geometric relations
in the next subsection.

1) Mobility Pattern: Among IMU sensors in the smart-
phone, we use an accelerometer and a gyroscope to detect
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Fig. 1. The scenarios illustration with one walking user holding a smartphone
and multiple WiFi APs (M = 4). Depending on the user’s location, a different
propagation condition to each AP is determined between LOS and NLOS, but
the user does not have any prior knowledge related to it.

walking steps and turning directions, respectively1. To be
specific, the accelerometer’s up-and-down acceleration is re-
ferred to as the user’s one walking step. Consider that N
walking steps are detected, each of which the index is n ∈ N,
where N = {1, · · ·N}. The instant of detecting the n-th
step is denoted by tn. When detecting a walking step at tn,
the smartphone checks its gyroscope between tn and tn+1,
whether the user’s movement direction is changed or not.
Denote µn the change of his moving direction when the n-th
step is detected. We set µn = 0 unless the direction is changed.
Besides, denote θn the accumulate direction change by the
n-th step, namely, θn =

∑n
k=1 µk. The initial values of µ1

and θ1 are zero without loss of generality. All measurements
mentioned above are illustrated in Fig. 2(a).

2) RTT: The smartphone’s WiFi modules and all WiFi APs
support IEEE 802.11 mc or later specifications, enabling the
measurement of RTTs between them via the FTM protocol.
The FTM protocol is initiated whenever a walking step is
detected at time tn. Denote τn =

[
τ
(1)
n , · · · , τ (M)

n

]
the vector

of the measured RTTs corresponding to the n-th walking step,
where τ (m)

n represents the RTT measurement from WiFi AP
m at tn.

Noting that it takes negligible time to complete an FTM
procedure (approximately 30 ms according to [6]), it is rea-
sonable to assume that all measurements concerning the n-th
walking step are synchronized. As a result, we group them
as a set of measurement denoted by Mn = {tn, θn, τn},
∀n ∈ N. For ease of exposition, the parts described from now
on are assumed to be free from measurement errors unless
specified. However, the proposed algorithms explained in the
sequel are designed to be able to work well in the presence
of measurement errors.

(a) The accelerometer and gyroscope’s measurements

(b) The user’s trajectory

Fig. 2. The graphical example of the accelerometer and gyroscope’s mea-
surements and the corresponding mobility pattern 2. The accelerometer’s peak
point is recorded as the instant of each walking step. The direction change
can be detected from the gyroscope’s change between adjacent instants.

B. Relations between the Measurements

We first explain the sequential change of the user’s location
due to user mobility. Consider a 2D global Cartesian coordi-
nate system, as illustrated in Fig. 2(b). Denote pn = [xn, yn]

T

the coordinates of the user’s location concerning to the mea-
surement set Mn. The relation between which is given as

pn+1 = pn + d
[
cos(ω + θn), sin(ω + θn)

]T
, (1)

where ω is a heading direction when the first walking step is
detected at t1. The variable d represents the user’s step length
assumed to be constant, reflecting on a typical user’s regular

1This work does not use a magnetometer due to its distortion as stated in
Sec. I-A2. Incorporating the measurement of a magnetometer with advanced
calibration techniques such as [30] and [31] is interesting, deserving further
investigation in the future.

2It is implicitly assumed that accelerometer and gyroscope’s measurements
are relatively accurate and consistent by fixing the smartphone’s location. Oth-
erwise, severe measurement errors will be introduced, resulting in inaccurate
estimations of step counting and direction changes. It is interesting to extend
the current design without the assumption by adopting the well-known pose-
detecting algorithms presented in the literature, e.g., [32] and [33], outside
the scope of current work.
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walking pattern3. Both ω and d are unknowns to be estimated.
Second, the relation of the RTT τ

(m)
n to the user’s location

pn is described as follows. The RTT τ
(m)
n can be translated

into the propagation distance by multiplying c
2 where c is

light speed. It is in general biased and larger than the direct
distance ‖ p(m)

AP − pn ‖, where p(m)
AP = [x

(m)
AP , y

(m)
AP ]T is AP

m’s coordinates and ‖ · ‖ represents the Euclidean distance.
The relation between the two is thus given as

c · τ (m)
n

2
=‖ p(m)

AP − pn ‖ +b, ∀n ∈ N, ∀m ∈M,

where b represents the AP m’s RTT bias. The bias b is a
random variable drawn from an unknown stochastic distri-
bution, since it is affected by various factors such as carrier
frequency, bandwidth, and surrounding materials [38], and it is
too complex to derive the distribution in a tractable form. The
randomness of b is one dominant reason hampering accurate
positioning. On the other hand, we regard b as a deterministic
value as stated in the following assumption, which helps
design a tractable algorithm in the sequel.

Assumption 1 (Deterministic Bias). The bias experienced
from the same WiFi AP is assumed to be constant but
unknown, denoted by b(m) for all m ∈M.

Remark 1 (Effect of Deterministic Bias). In general, RTT
bias is not deterministic but random in a real environment,
a key factor making indoor WiFi positioning challenging.
Instead of directly addressing the randomness, we use the as-
sumption of deterministic bias as a trick, allowing us to design
a geometric positioning algorithm introduced in the sequel. It
is worth highlighting that the error due to the deterministic bias
assumption can be reduced as marginal using two processes
in the proposed algorithm, namely, reference step selection
and their combination approach explained in Sec. III. Their
effect is well-explained with relevant experimental results in
Appendix A.

As a result, the above is rewritten as

‖ p(m)
AP − pn ‖ +b

(m) =
c · τ (m)

n

2
= r(m)

n , ∀n ∈ N, ∀m ∈M, (2)

where r
(m)
n represents the propagation distance directly ob-

tained from the RTT τ
(m)
n .

C. Procedure Overview

This subsection previews the entire procedure as shown
in Fig. 3. The user’s locations {pn} are estimate using the
following two-stage approach.

3It is verified from [34] and [35] that the assumption of constant step
length is valid when a user’s activity pattern is unchanged, e.g., walking,
running, and sitting. As a result, monitoring the user’s activity pattern using
well-known methods, such as [36] and [37], enables to seamlessly use the
proposed algorithm by dividing the full trajectory into several sub-trajectories
depending on the activity pattern.

Fig. 3. Overview of the proposed algorithm. The step length d(m) and RTT
bias b(m), initial relative position z(m)

1 , initial heading direction ω, and user’s
position {pn} are variables we estimate throughout the paper, specified in
(31), (32), (38), and (39), respectively.

1) Joint Bias-and-Step Length Estimation: First, the RTT
bias of each AP and the user’s step length are jointly estimated.
Let us explain the case of AP m as an example. Collect all
RTTs measured from AP m and the user’s direction changes,
denoted by τ (m) = [τ

(m)
1 , · · · , τ (m)

N ] and θ = [θ1, · · · , θN ],
respectively. Using τ (m) and θ, the AP’s deterministic bias
b(m) and the user’s step length, say d(m), can be founded by
solving SOE derived from the geometric relations of (1) and
(2). The detailed procedure is elaborated in Section III.

2) User Location Estimation: Second, the sequence of the
user’s locations {pn} are estimated using the above estima-
tions of d(m) and b(m) that provide the user’s relative locations
{z(m)

n } from AP m. All relative locations can be aligned into
single ones using a new positioning method, corresponding
to the user’s real locations {pn}. The detailed procedure is
elaborated in Section IV.

III. ENHANCING RTT-BASED RANGING VIA JOINT BIAS
& STEP LENGTH ESTIMATION

In this section, we aim at improving RTT-based ranging per-
formance by jointly estimating the RTT bias and step length.
First, a coordinate system is transformed to facilitate algorithm
designs. Next, joint bias-and-step length estimation algorithms
are developed for cases of linear and arbitrary mobilities.
Last, a new algorithm based on multiple combinations of
steps is proposed to reduce performance degradation due to
measurement noises.

A. Transformation to a Local Coordinate System

This section focuses on a pair of the user and a single WiFi
AP. For brevity, the location and the bias of the concerned
AP are denoted by pAP and b, respectively, by omitting the
AP’s index m. Then, we transform a global coordinate system
into a local coordinate one by shifting the origin into pAP
and rotating the X-axis aligned with the heading direction
ω, as shown in Fig. 4. Denote zn = [qn, un]

T the user’s
location redefined in the local coordinates. Then, (1) and (2)
are rewritten as

zn+1 =zn + d
[
cos(θn), sin(θn)

]T
=z1 + d

[∑n
j=1 cos(θj),

∑n
j=1 sin(θj)

]T
, (3)
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(a) Linear mobility

(b) Arbitrary mobility

Fig. 4. Transformation to a local coordinate system whose origin is the AP’s
location and X-axis is aligned to the initial heading direction ω.

rn = ‖zn‖+ b. (4)

Plugging (3) into (4) gives

rn =

∥∥∥∥z1 + d
[∑n−1

j=1 cos(θj),
∑n−1
j=1 sin(θj)

]T∥∥∥∥+ b, (5)

which is rewritten in terms of q1 and u1 as

(q1 + dcn)
2
+ (u1 + dsn)

2
= (rn − b)2, n ∈ N, (6)

where cn =
∑n−1
j=1 cos(θj) and sn =

∑n−1
j=1 sin(θj). Depend-

ing on the user’s mobility pattens, different algorithms are
designed, introduced in the following subsections.

B. Case 1: Linear Mobility

Consider the case when the user is moving in a straight
line without any direction change, which can be detectable by
observing {θn}, namely, θn = 0, ∀n ∈ N [see Fig. 4(a)]. It
makes cn = 1 and sn = 0 for all n, and (6) can be reduced
as

q21 + 2nq1d+ n2d2 + u21 = r2n − 2rnb+ b2, n ∈ N. (7)

Next, the nonlinear terms in (7) related to q1 and b are
eliminated by choosing two reference steps (RSs), denoted
by the subset S = {a1, a2} ⊂ N. The algorithm covering
the selection of RSs is explained in the sequel. Given S,
subtracting (7) of the reference steps a1 or a2 from that of
the n-step gives

2(n− a)q1d+ (n2 − a2)d2 = r2n − r2a − 2b(rn − ra), a ∈ S.
(8)

The first term can be called out by manipulating the above
two as

d2(a1 − a2)+b · 2
(
rn − ra1
n− a1

− rn − ra2
n− a2

)
=
r2n − r2a1
n− a1

−
r2n − r2a2
n− a2

, n ∈ N ∩ Sc, (9)

which is linear of d2 and b. As a result, we formulate a system
of linear equations with two unknowns d2 and b as

A(S)x = b(S), (E1)

where x = [d2, b]T . For matrix A(S) and vector b(S), we
have4

A(S) =


a1 − a2 2

(
r1−ra1

1−a1 −
r1−ra2

1−a2

)
...

...

a1 − a2 2
(
rN−ra1

N−a1 −
rN−ra2

N−a2

)
 ∈ R(N−2)×2,

b(S) =


r21−r

2
a1

1−a1 −
r21−r

2
a2

1−a2
...

r2N−r
2
a1

N−a1 −
r2N−r

2
a2

N−a2

 ∈ R(N−2)×1. (10)

Problem E1 comprises (N − 2) equations with two unknowns
of d and b. It is thus straightforward to provide the feasibility
condition of E1 as follows.

Proposition 1 (Feasible Condition: Linear Mobility). Problem
E1 has a unique solution if the number of detected steps are
at least 4, namely, N ≥ 4.

With N ≥ 4, E1 can be solved by

x∗(S) =[(d∗(S))2, b∗(S)]T

=[A(S)TA(S)]−1A(S)T b(S). (11)

In the presence of significant measurement noise, the matrix
A(S) and the vector b(S) are corrupted, denoted by Ã(S)
and b̃(S). Then, E1 is replaced as the following minimization
problem:

x∗(S) = argmin
x
‖Ã(S)x− b̃(S)‖

= [Ã(S)T Ã(S)]−1Ã(S)T b̃(S), (12)

which has the same structure as (11).
Given the pair of d∗(S) and b∗(S), we derive the coordinates

of z1, denoted by z∗1(S) = [q∗1(S), u∗1(S)]. First, plugging
{d∗(S), b∗(S)} of (11) or (12) into (9) leads to deriving q∗1(S)
as

q∗1(S) =
∑
a∈S
∑
n∈N,n6=a

r2n−r
2
a−2b

∗(S)(rn−ra)−(n2−a2)(d∗(S))2
2(n−a)d∗(S)

2(N − 1)
.

(13)

4For ease of exposition, the matrix A and the vector b in (10) and (18)
are expressed assuming S ∩ {1, N} = ∅.
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Next, there exist two possible solutions for u∗1(S) satisfying
(7) as u∗1(S) and −u∗1(S), where

u∗1(S) =
1

N

∑
n∈N

(
r2n − 2rnb

∗(S) +
(
b∗(S)

)2
−
(
q1(S)

)2
+ 2nq1(S)d∗(S) + n2

(
d∗(S)

)2) 1
2

. (14)

It is challenging to distinguish which one is correct under the
current setting of a single WiFi AP. On the other hand, it is
possible to discriminate the correct one if multiple APs are
given, explained in the next section.

C. Case 2: Arbitrary Mobility

Consider the case when the user is randomly moving,
namely, θn 6= 0 for some n ∈ N [see Fig. 4(b)]. Letting
R =

√
q21 + u21 and γ = tan−1

(
u1

q1

)
makes (6) as

q21 + u21 + 2d(q1cn + u1sn) + d2(c2n + s2n)

(a)
=R2 + 2dR

(
n−1∑
i=1

cos(θi − γ)

)
+ d2(c2n + s2n)

=r2n − 2rnb+ b2, (15)

where (a) follows from q1 cos(θn)+u1 sin(θn) = R cos(θn−
γ). Using RSs S = {a1, a2} as in the previous case of linear
mobility, we have

2dRfn,a(γ) + d2ηn,a

=r2n − r2a − 2b(rn − ra), a ∈ S, n ∈ N ∩ Sc, (16)

where fn,a(γ) =
∑n−1
i=1 cos(θi − γ)−

∑a−1
i=1 cos(θa − γ) and

ηn,a = (c2n+ s
2
n)− (c2a+ s

2
a). The nonlinear term 2dRfn,a(γ)

is canceled out by manipulating the above two as

d2 [fn,a2(γ)ηn,a1 − fn,a1(γ)ηn,a2 ]︸ ︷︷ ︸
=αn(S,γ)

+ b · 2 [fn,a2(γ)(rn − ra1)− fn,a1(γ)(rn − ra2)]︸ ︷︷ ︸
=βn(S,γ)

= fn,a2(γ)(r
2
n − r2a1)− fn,a1(γ)(r

2
n − r2a2)︸ ︷︷ ︸

=ζn(S,γ)

, n ∈ N ∩ Sc.

(17)

We formulate another system of linear equations with two
unknowns x = [d2, b]T as

A(S, γ)x = b(S, γ), (E2)

where

A(S, γ) =

α1(S, γ) β1(S, γ)
...

...
αN (S, γ) βn(S, γ)

 ∈ R(N−2)×2,

b(S, γ) =

ζ1(S, γ)...
ζn(S, γ)

 ∈ R(N−2)×1. (18)

Given S, E2 has (N-2) equations with three unknowns of d,
b, and γ, providing the following feasible condition.

Proposition 2 (Feasible Condition: Arbitrary Mobility). Un-
less fa1,a2(γ) = 0, Problem E2 has a unique solution if the
number of detected steps are at least 5, namely, N ≥ 5.

Proof: See Appendix B. �

Remark 2 (Underdetermined System). Define γ̂ the angle sat-
isfying fa1,a2(γ̂) = 0. The rank of A(S, γ̂) is 1, making E2 an
underdetermined system that has infinite number of solutions.
Using the condition fa1,a2(γ) = 0, it is straightforward to
identify whether the concerned γ is γ̂.

With N ≥ 5 and fa1,a2(γ) 6= 0, the solution for E2 has a
similar form to the linear mobility counterpart as

x(S, γ) = [(d(S, γ))2, b(S, γ)]T

= [A(S, γ)TA(S, γ)]−1A(S, γ)T b(S, γ), (19)

which is valid only when γ is correctly picked. Otherwise,
x(S, γ) of (19) does not satisfy E2, i.e., A(S, γ)x(S, γ) 6=
b(S, γ). Prompted by the fact, a correct γ∗(S) can be easily
found by a simple 1D search over [0, π) satisfying the follow-
ing criteria:

γ∗(S) = {γ|e1(S, γ) = 0, γ ∈ [0, π)}, (20)

where

e1(S, γ) = ‖A(S, γ)x(S, γ)− b(S, γ)‖. (21)

Remark 3 (Ambiguity of γ). Noting the period of tan−1(x)
being π, two possible solutions of γ∗(S) exist in [0, π) and
[π, 2π), say γ∗1(S) and γ∗2(S), where γ∗1 (S) + π = γ∗2(S).
Despite the ambiguity, the resultant solutions of d and b are not
changed regardless of γ∗1 (S) or γ∗2 (S), namely, d(S, γ∗1 (S)) =
d(S, γ∗2(S)) and b(S, γ∗1(S)) = b(S, γ∗2 (S)). As a result, we
focus on finding γ∗1(S) in the range of [0, π), and it is
considered as γ∗(S).

When the measurement are corrupted, the noisy versions of
the matrixA(S, γ) and the vector b(S, γ) are given, denoted by
Ã(S, γ) and b̃(S, γ), making it difficult to use the discriminant
of (20) directly. Instead, we develop the following two-stage
approach.

1) Finding x: Given γ, we formulate the following mini-
mization problem as

x(S, γ) = argmin
x
‖Ã(S, γ)x− b̃(S, γ)‖

= [Ã(S, γ)T Ã(S, γ)]−1Ã(S, γ)T b̃(S, γ), (22)

which follows an equivalent structure of (19).
2) Finding γ: We use a 1D search based on the following

criteria:

γ∗(S) = arg min
γ∈P(S)

[w1 · e1(S, γ) + w2 · e2(S, γ)] , (23)

where P(S) is a range of feasible γ defined as all calibrated
distances {rn − b(S, γ)} and estimated step length d(S, γ)
being positive, namely,

P =

{
γ

∣∣∣∣min
n∈N

[rn − b(S, γ)] > 0, d(S, γ) > 0, γ ∈ [0, π)

}
.

(24)
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Two error functions are considered whose weighed
factors {w1, w2} satisfy w1 + w2 = 1. The first
function e1(S, γ) is specified in (21). For the
second one e2(S, γ), denote the matrix R(S, γ) =
[R1,a1(S, γ), · · · , RN,a1(S, γ);R1,a2(S, γ), · · · , RN,a2(S, γ)] ∈
R2×(N−1), where Rn,a(S, γ) is the estimated R obtained by
plugging d(S, γ) and b(S, γ) into the n-th equation of (16) as

Rn,a(S, γ) =
r2n − r2a − 2(rn − ra) · b(S, γ)− (d(S, γ))2ηn,a

2fn,a(γ) · d(S, γ)
, a ∈ S. (25)

Given R(S, γ), the error function e2(S, γ) is defined as

e2(S, γ) = std(R(S, γ)), (26)

where std(·) represents the standard deviation of all elements
therein.

Remark 4 (Error Functions). Given S, the first error function
e1(S, γ) represents the error of E2 itself by focusing its explicit
solution x = [d2, b]T . On the other hand, the second error
function e2(S, γ) captures the error on a latent variable R that
is eliminated in E2 due to the linearization process of (16)
and (17). Selecting the weight factors {w1, w2} is discussed
in Section V.

In both cases with and without measurement noises, a pair
of the optimal solution d∗(S) and b∗(S) can be obtained from
the solution x∗(S) = x(S, γ∗(S)). Given {d∗(S), b∗(S)}, we
derive the coordinates of z1, say z∗1(S) = [q∗1(S), u∗1(S)]T as
follows. First, linear equations with q1 and u1 are derived from
(16) as

q1(cn − ca) + u1(sn − sa)

=
r2n − r2a − 2b∗(S) · (rn − ra)− (d∗(S))2ηn,a

2d∗(S)︸ ︷︷ ︸
=gn,a(S)

, a ∈ S, n 6= a,

(27)

leading to formulating a system of linear equations as

H(S)z1 = g(S), (E3)

where H(S) =
[
Ha1 ;Ha2

]
∈ R2(N−1)×2 and g(S) =[

ga1(S); ga2(S)
]
∈ R2(N−1)×1 with

Ha =

 c1 − ca s1 − sa
...

...
cN − ca sN − sa

 ∈ R(N−1)×2,

ga(S) =

g1,a(S)...
gN,a(S)

 ∈ R(N−1)×1, a ∈ S. (28)

Given the feasible condition of E2 stated in Proposition 2, E3
has a unique solution obtained by a single matrix inversion as

z∗1(S) =[q∗1(S), u∗1(S)]T

=argmin
z1

‖H(S)z1 − g(S)‖

=
[
H(S)TH(S)

]−1
H(S)Tg(S). (29)

D. Using Multiple Combinations of Reference Steps

This subsection deals with the remaining issue of selecting
RSs S, helping mitigate the positioning error due to significant
measurement noises. To this end, multiple combinations of
RSs are utilized to achieve more accurate positioning than a
single RS-based scheme, based on a common statistical belief
that more observations make the estimate less deviated from a
ground-truth. The detailed procedure is explained as follows.

1) Selecting Candidate RSs: First, several steps are picked
as RS’s candidates, denote by C, based on the initial prop-
agation distance estimates {rn} defined in (2). In general,
smaller rn means that AP n is located in proximity whose
RSS is likely to be high. It is thus reasonable to consider the
resultant ranging result is relatively accurate. Motivated by this
intuition, the set C contains a step’s index, say n, if rn is in
the top C smallest, namely,

C = {n ∈ N|rn ≤ rk, n ∈ C, k ∈ Cc, |C| = C}, (30)

where C is the cardinality constraint of C, whose effect is
verified by field experiments in Section V.

2) Estimating the Bias and Step Length: Two indices of
C are picked as S. It is possible to make up to L =

(
C
2

)
combinations of S. Denote S` the `-th set of RSs, ` ∈
{1, · · · , L}. Given S`, compute d∗(S`) and b∗(S`) by follow-
ing the procedures in Sec. III-B and Sec. III-C, depending on
the cases of linear and arbitrary mobilities, respectively. Given
all individual estimates {d∗(S`)} and {b∗(S`)} representative
estimates, denoted by d∗ and b∗ respectively, are computed
using their medians, namely,

d∗ = median(d∗(S`)), b∗ = median(b∗(S`)). (31)

3) Estimating the relative coordinates of z1: Given d∗ and
b∗, compute {z∗1(S`)} for all possible sets of RSs using (13)
and (14) for the case of linear mobility, or (29) for the case
of arbitrary mobility. Given all individual estimates {z∗1(S`)},
representative estimate, denoted by z∗1 is computed using their
medians, namely,

z∗1 = median(z∗1(S`)). (32)

Remark 5 (Mean vs. Median). While a mean-based estima-
tion has been widely used as a de facto standard approach,
it is prone to a few outliers severely deviated from a ground-
truth value. On the other hand, a median-based estimation can
ignore these outliers. Thus, it is more suitable to design a
positioning algorithm based on the median, which is simple
yet robust from measurement noises, such as [39] and [40].

IV. POSITIONING VIA TRAJECTORY ALIGNMENT

In this section, we aim at positioning the user’s locations
by aligning multiple trajectories based on the measurements
of different APs, called trajectory alignment (TA). First, the
user’s relative trajectory defined on the local coordinate system
of each AP is derived based on the estimations in the preceding
section. Next, a basic principle of TA is mathematically
explained assuming the case without measurement noise. Last,
a practical algorithm is designed able to work in the case with
measurement noise.
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A. Relative Trajectory Derivation

This section derives the sequence of the user’s locations,
denoted by Z = {z∗n} = {[q∗n, u∗n]}, corresponding to
the user’s relative trajectory defined on the local coordinate
system. From the preceding estimations of the initial location
z∗1 = [q∗1 , u

∗
1] in (32), it is possible to derive the following lo-

cations using (3) and the step length estimation d∗. Depending
on the case of linear or arbitrary mobilities, we have different
results explained below.

1) Linear mobility: Recalling that there exist two candi-
dates of u∗1 [see (14)], two possible local trajectories are thus
made, say Z+ and Z−, given as

Z+ = {[q∗n, u∗n] |q∗n = q∗1 + (n− 1)d, u∗n = +u∗1, ∀n ∈ N} ,
Z− = {[q∗n, u∗n] |q∗n = q∗1 + (n− 1)d, u∗n = −u∗1, ∀n ∈ N} ,

(33)

where q∗1 and u∗1 are specified in (13) and (14), respectively.
Either Z+ or Z− is the real trajectory Z , differentiated by the
positioning algorithm introduced in the sequel.

2) Arbitrary mobility: Contrary to the linear mobility coun-
terpart, no ambiguity of the initial location exists. The resultant
local trajectory Z is given as

Z = {[q∗n, u∗n] |q∗n = q∗1 + dcn, u∗n = u∗1 + dsn, ∀n ∈ N} ,
(34)

where the coefficient cn and sn are specified in (6).

B. Trajectory Alignment

This subsection introduces the concept of TA and explains
its feasible conditions. Consider the user’s relative trajectory
estimated by the RTT measurements from AP m, say Z(m) =

{z(m)∗
n }. It is converted into a global coordinate system when

the initial direction ω is given, namely,

p(m)
n (ω) = p

(m)
AP +

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
z(m)∗
n , (35)

where p(m)
AP is AP m’s location assumed to be known in

advance. Noting that the user’s location is unique regardless
of which AP is used for positioning, the following condition
should be met if ω is correctly selected, denoted by ω∗:

pn = p(1)n (ω∗) = p(2)n (ω∗) = · · · = p(M)
n (ω∗), ∀n ∈ N,

(36)

which is said that all trajectories are perfectly aligned. The
aligned trajectory after TA is equivalent to the trajectory de-
fined on the global coordinate system, denoted by P = {pn},
if it exists uniquely. The following proposition gives different
feasible conditions of TA for linear and arbitrary mobilities.

Proposition 3 (Feasible Condition of Trajectory Alignment).
There exists a unique ω∗ satisfying the condition of (36) if the
number of APs M not on a straight line is at least 3 for linear
mobility or the number of APs M is at least 2 for arbitrary
mobility.

Proof: See Appendix C. �

Fig. 5 and 6 respectively represent the graphical examples
of TA for linear and arbitrary mobilities, showing that one

(a) Local Trajectories

(b) Global Trajectories

Fig. 5. The graphical example of TA in the case of linear mobility. Solid and
dotted lines represent two possible trajectories, which are symmetric to each
other. The real trajectories are merged into one in global coordinate, but the
others are not.

more AP is required to identify whether Z(m) is Z(m)
+ or

Z(m)
− . The comparison between the two from the perspective

of entire procedure is discussed in the following remarks.

Remark 6 (Linear vs. Arbitrary Mobilities). The different fea-
sible conditions for linear mobility and arbitrary mobility stem
from the difference of location dimension embedded therein.
Linear mobility is interpreted as 1D location information in a
2D space, bringing about the ambiguity issue illustrated in Fig.
5. On the other hand, arbitrary mobility provides 2D location
information, facilitating TA without ambiguity. This difference
yields the positioning accuracy gap between the two, verified
in Sec. V-A.

C. Algorithm Design

In an ideal case without a measurement noise, it is possible
to find ω∗ making all trajectories aligned perfectly, equiva-
lent to satisfying the condition (36). In contrast, it may be
challenging to do in practical cases with measurement noises,
since several APs rather deteriorates the positioning accuracy
if their estimation errors of bias and step length are severe. It is
overcome by excluding these APs in advance and minimizing
a new error function defined for TA. The detailed algorithm
is explained below.
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(a) Local Trajectories

(b) Global Trajectories

Fig. 6. The graphical example of TA in the case of arbitrary mobility, showing
that trajectories in local coordinates represented by multiple curves have a
unique angle ω∗, making them aligned perfectly.

1) Feasible AP Selection: First, we aim at excluding APs
unlikely to contribute to accurate positioning5. To this end,
we define the set of feasible APs F, whose element’s bias and
step length estimations, say b(m)∗ and d(m)∗ specified in (31)
satisfy the following condition:

F =

{
m

∣∣∣∣min
n∈N

[
r(m)
n − b(m)∗

]
> 0, d(m)∗ > 0,

z
(m)∗
1 ∈ R, m ∈M

}
, (37)

where the first and second conditions mean that the distance
estimation after deducing the bias and the step length estima-
tion should be positive, and the third condition means that the
coordinates of estimated position are real numbers. The APs
not in F are excluded and the relative trajectories {Z(m)∗}m∈F
are used for the next step.

2) The Optimal Heading Direction Derivation: Depending
on the mobility pattern being arbitrary or linear, different
methods are used to find the optimal heading direction as
follows.

a) Arbitrary mobility: Given F, we aim at aligning all
trajectories as closely as possible. Specifically, we define an
error function e3(ω) as the sum of the Euclidean distance
between two relative trajectories in F, given as

e3(ω) =
∑
i,j∈F

N∑
n=1

‖p(i)n (ω)− p(j)n (ω)‖.

5Our feasible AP selection is based on the assumption that RTT from all
APs are measurable during walking. In the coexistence of dynamic and hotspot
APs, it is required to filter them out for a reliable positioning result, like the
fingerprint filtering method in [41].

(a) Site A

(b) Site B

(c) Site C

Fig. 7. Floor plans of field experiments. The locations of APs are repre-
sented as blue triangles. The user moves along each red line. The detailed
explanations of each site and experiment setup are summarized in Table II.

By a 1D search, it is possible to find ω∗ to minimize the error
function e3(ω), namely,

ω∗ = arg min
ω∈[0,2π)

e3(ω). (38)

b) Linear mobility: Recall that there exists the ambiguity
of relative trajectories in the case of linear mobility, say
{Z(m)

+ ,Z(m)
− }m∈F specified in (33). To remove this ambiguity,

we utilize the relation between relative trajectories of different
APs, as stated in the following proposition.

Proposition 4 (The Relation Between Relative Trajectories).
The distance between relative positions of two APs is always
equal to the distance between the two APs, namely,

‖z(m1)∗
n − z(m2)∗

n ‖
=‖p(m1)

AP − p(m2)
AP ‖, ∀n ∈ N, ∀m1,m2 ∈M.
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Proof: See Appendix D. �

Select one reference AP whose index is denoted by r. De-
pending on Z(r)

+ or Z(r)
+ , there exist two possible sequences

of relative trajectories, denoted by Y(r)
+ and Y(r)

− , initialized
as {Z(r)

+ } and {Z(r)
− }, respectively. For example, given Z(r)

+ ,
either C1 or C2 holds, given as

ψ1 = ‖p(r)AP − p
(m)
AP ‖ − ‖z

(r)∗
n − z(m)∗

n ‖ = 0,

∀n ∈ N, z(r)∗n ∈ Z(r)
+ , z(m)∗

n ∈ Z(m)
+ , (C1)

ψ2 = ‖p(r)AP − p
(m)
AP ‖ − ‖z

(r)∗
n − z(m)∗

n ‖ = 0,

∀n ∈ N, z(r)∗n ∈ Z(r)
− , z(m)∗

n ∈ Z(m)
+ . (C2)

When C1 holds (i.e., ψ1 = 0), Z(m)
+ and Z(m)

− are added
in Y(r)

+ and Y(r)
− , respectively. When C2 holds (i.e., ψ2 =

0), reversely, Z(m)
− and Z(m)

+ are added in Y(r)
+ and Y(r)

− ,
respectively. The addition process is continued until |Y(r)

+ | =
|Y(r)
− | = F. In the presence of measurement noises, neither

C1 nor C2 can be satisfied. Instead, we relax C1 and C2 as
ψ1 > ψ2 and ψ1 ≤ ψ2, respectively.

Given Y(r)
+ and Y(r)

− , relative trajectories are
rotated using (35), denoted by p

(m)
n

(
w;Y(r)

+

)
and

p
(m)
n

(
w;Y(r)

−
)
, respectively. We define e

(r)
3

(
ω
)

=

min
{
e
(r)
3

(
ω;Y(r)

+

)
, e

(r)
3

(
ω;Y(r)

−
)}

, where

e
(r)
3

(
ω;Y(r)

)
=
∑
i,j∈F

N∑
n=1

∥∥∥p(i)n (ω;Y(r)
)
− p(j)n

(
ω;Y(r)

)∥∥∥,
Y(r) ∈ {Y(r)

+ ,Y(r)
− }.

By a 1D search, it is possible to find the reference AP r∗ and
the corresponding ω∗ to minimize the error function as

{r∗, ω∗} = arg min
r∈F,ω∈[0,2π)

{
e
(r)
3

(
ω
)}
.

3) Determining the estimated trajectory: Last, the esti-
mated trajectory, say P = {pn}, is derived by averaging
{p(m)

n (ω∗)}|F|m=1 as

p∗n =
1

|F|
∑
m∈F

p(m)
n (ω∗), ∀n ∈ N. (39)

V. FIELD EXPERIMENTS

This section aims at verifying the proposed positioning
algorithms using several field experiments at two different
indoor sites, each of which has different environments from
the positioning perspective, as shown in Fig. 7. The first
experimental site, called site A, is a plaza located inside the
Engineering building at Yonsei University, Seoul, Korea. Site
A is an open space like outdoor environments where several
LOS paths exist. On the other hand, the second experimental
site, called site B, is a parking lot located under Building 11 in
Korea Railroad Research Institute, Uiwang, Korea. Compared
with site A, most signal propagations are followed by NLOS
paths due to the presence of many obstacles such as parked
vehicles, walls, and pillars. The detailed experiment setups are
summarized in Table II, unless specified.

(a) Sample trajectory
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(b) Quantization of heading change

Fig. 8. The graphical example of heading direction changes measured by a
gyroscope. (a) Sample trajectory with four paths (b) the corresponding heading
direction changes with and without quantization.

We use the algorithm in [16] to obtain the heading direction
changes {θn} (see Fig. 8 as an example). As shown in Fig. 8,
we consider θn ∈ {0, π

2 , π, 3π
2 }, assuming that the user’s

moving direction only has finite choices depending on the
surrounding arrangement (i.e., road, wall and et al.). Its effect
is discussed in the sequel.

Three benchmarks are considered. The first one is based
on raw RTT measurements without bias compensation for
a conventional multilateration method, such as linear least
square-reference selection (LLS-RS) [42]. For the second one,
compensated RTT measurements are utilized for a multilat-
eration method, but TA is not applied. The third one is an
EKF-based algorithm in [20], which is operated based on δ2

and σ2 representing the scaling factors of estimated positions
from PDR and WiFi, respectively. We manually optimize these
parameters and set them as δ2 = 0.8 and σ2 = 0.2. For a fair
comparison, the RTT bias of each AP is compensated using
our algorithm. We use the Euclidean distance of estimated
positioning to ground-truth locations to represent a positioning
error, i.e., ‖p∗n − pn‖.

A. Positioning Accuracy

We verify the performance of the algorithm for the cases of
linear and arbitrary mobilities. The key performance metrics
are summarized in Table III.

1) Linear Mobility: First, we consider the cases of linear
mobility. Figure 9 illustrates a graphical example of the esti-
mated trajectories of the proposed one and three benchmarks,
while Figure 10 shows cumulative distributional functions
(CDFs) of the resultant positioning errors. Several key obser-
vations are made. First, the gain of the RTT bias compensation
in Sec. III is verified by comparing two benchmarks, showing
significant performance improvements for both Sites A and
B. Second, TA explained in Sec. IV makes all estimated
points tailored to the trajectories detected by PDR, leading to
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Fig. 9. The comparison between estimated and ground-truth trajectories: linear mobility cases.
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Fig. 10. The CDFs of positioning error for proposed algorithm and three benchmarks: linear mobility cases.

additional performance enhancement. As a result, the resultant
positioning errors of approximately 90% are located within 2
(m) and 4 (m), and the average errors are 1.359 (m) and 1.915
(m) for Sites A and B respectively. The other performance
metrics are summarized in Table III.

2) Arbitrary Mobility: Second, we consider the cases of
arbitrary mobility. we illustrate a graphical example of the es-
timated trajectories in Figure 11 and cumulative distributional
functions (CDFs) of the resultant positioning errors in Figure
12, showing similar tendencies to the linear mobility coun-
terpart. Besides, it is shown that the algorithm for arbitrary
mobility provides a more accurate positioning result than that
for linear mobility such that the resultant positioning errors of
90% are approximately located within 0.5 (m), 2.5 (m), and
1.5 (m), and the average errors are 0.369 (m), 1.705 (m), and
0.978 (m) for Sites A, B, and C, respectively.

It is noteworthy that the algorithm proposed for arbitrary
mobility provides a more accurate positioning result than the
linear mobility counterpart (see Table III). As recalled in
Remark 6, arbitrary mobility embeds 2D location information,
while linear mobility embeds 1D information. The difference
results in a significant accuracy difference between the two.

3) Comparison with EKF-based Algorithm: As shown in
Figs. 9 to 12 and Table III, we confirm that our proposed
algorithm outperforms the EKF-based one for both linear and
arbitrary mobility scenarios. The EKF-based algorithm updates
the current position based on the previously estimated ones,
resulting in accumulating errors on positioning decisions that
have been already made. On the other hand, the proposed
one can correct such errors by utilizing the full trajectory
information.

B. Effect of Weighed Factors w1 and w2

Recall a pair of w1 and w2 weighting the error functions e1
of (21) and e2 of (26), respectively. As stated in Remark 4,
the error function e1 focuses on minimizing the error on step
length d and the RTT bias b, while e2 aims at minimizing the
error on the initial position z∗1. Fig. 13 represents the effect
of weight factors on the average positioning error, showing
that {w1, w2} = {0, 1} provides the most accurate positioning
result. It is because the errors on d and b can be compensated
by the method of multiple combination of RSs introduced in
Sec. III-D. Therefore, if a sufficient number of RSs is selected,
it is optimal to focus on the minimization of e2.
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Fig. 11. The comparison between estimated and ground-truth trajectories: arbitrary mobility cases.
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Fig. 12. The CDFs of positioning error for proposed algorithm and three benchmarks: arbitrary mobility cases.
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C. Effect of Multiple Combinations of RSs

Fig. 14 shows the average positioning error as a function
of the number of candidate RSs C, showing that the error is
reduced from 4.702 (m) to 1.705 (m), when the number of RSs
C increases from 2 to 18. On the other hand, C larger than 18
rather deteriorates a positioning result since a larger portion
of RSs is likely to be severely corrupted by the measurement
error. Through various simulation studies, the positioning error
can be minimized in average sense by selecting the number
of RSs C as 0.25N , where N is the number of walking steps
(e.g., C

N = 18
70 ≈ 0.257 in the experiment setting of Fig. 14) .
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Fig. 14. The positioning performance according to the combination number
in Site B. C = 18 has the best performance.

D. Effect of Heading Direction Error

Recall that heading direction changes {θn} are quantized
into four levels as θn ∈ {0, π

2 , π, 3π
2 }, by exploiting the

prior information of surrounding arrangement. It enables us
to obtain the precise trajectory estimation, as shown in Fig.
9 and 11. On the other hand, Fig. 15 plots the estimated
trajectory without quantization, showing that the degradation
of the positioning accuracy is marginal such that the average
positioning error increases from 0.369 (m) to 0.494 (m) at Site
A, 1.705 (m) to 1.958 (m) at Site B. At Site C, the positioning
accuracy is slightly improved from 0.978 (m) to 0.873 (m).
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TABLE II
EXPERIMENT DETAILS

Site A Site B Site C

Address Yonsei University, Korea Railroad Research Yonsei University
Seoul, Korea Institute, Uiwang, Korea Seoul, Korea

Type of site Indoor, plaza Underground, parking lot Indoor, conference hall

Chip Intel Dual Band Qualcomm IPQ 4018 Qualcomm IPQ 4018
Wireless AC 8260

Bandwidth 80 MHz 40 MHz 40MHz

Carrier 5.24 GHz 5.18 GHz 5.18 GHz

Number of WiFi APs 6 10 10

Heights of APs 1.8 m 2.0 m 2.0m

Heights of mobile 1.8 m 1.1 m 1.1m

Smartphone Google Pixel 2XL Google Pixel 2XL Google Pixel 2XL

Version Android 9 Android 9 Android 9

Weight factors {w1, w2} {0,1} {0,1} {0,1}

Number of candidate RSs C Linear: 2 Linear: 5 Arbitrary: 12Arbitrary: 3 Arbitrary: 18

With the gyroscope error being unbiased, each error can be
canceled out while moving. As a result, the entire trajectory
is generally well-maintained with acceptable error, verifying
the proposed algorithm to be robust against such error.

TABLE III
SEVERAL PERFORMANCE METRICS OF EACH ALGORITHM.

Site Mobility Number Algorithm Positioning Error (m)
type of steps min max mean med std

A Linear 11
w/ TA 0.705 2.459 1.359 1.269 0.570
w/ EKF 3.063 7.468 5.211 5.128 1.081
w/o TA 1.696 13.292 4.762 2.808 3.569
Raw RTT 3.95 6.874 6.064 6.365 0.835

B Linear 28
w/ TA 0.124 4.157 1.915 1.842 1.307
w/ EKF 0.703 15.196 4.496 2.612 4.249
w/o TA 0.286 14.270 3.182 2.031 3.281
Raw RTT 2.797 18.960 5.692 5.692 3.664

A Arbitrary 11
w/ TA 0.231 0.588 0.369 0.365 0.108
w/ EKF 1.290 2.422 1.956 2.071 0.358
w/o TA 1.187 3.454 2.099 1.986 0.716
Raw RTT 4.660 6.945 5.992 5.910 0.783

B Arbitrary 70
w/ TA 0.121 3.245 1.705 1.504 0.865
w/ EKF 1.947 15.115 5.243 3.773 3.510
w/o TA 0.976 21.092 5.963 4.015 4.866
Raw RTT 0.218 15.727 5.525 4.653 3.555

C Arbitrary 70
w/ TA 0.046 1.715 0.978 1.014 0.407
w/ EKF 1.064 7.406 4.199 4.064 1.397
w/o TA 0.857 14.439 4.743 3.095 3.072
Raw RTT 1.064 7.406 4.199 4.064 1.397

VI. CONCLUDING REMARK

This work has presented a novel positioning algorithm to
estimate a user’s location by integrating RTT and PDR mea-
surements. Geometric relations between the two are formu-
lated as mathematical form, enabling us to design a tractable
and scalable positioning algorithm as well as provide the
feasible conditions of the number of steps and WiFi APs for
a unique positioning. The superiority of the proposed method
has been well verified by field experiments that the positioning
accuracy can be significantly improved than the conventional
multilateration techniques.

The current work can be extended in several directions.
First, our algorithm can help simultaneous localization and
mapping (SLAM) by identifying whether a blockage exists
from the concerned AP from the corresponding RTT bias.
Second, our algorithm can be applied to the area of vehicle and
drone positioning [43] that has not been actively explored yet.
Last, it is interesting to integrate such a sensing system into a
wireless communication system using several techniques, e.g.,
compressive sensing [44] and over-the-air computation [45], a
key direction in B5G/6G communications.

APPENDIX

A. Verifying Effect of Deterministic Bias Assumption

This subsection aim at verifying that our algorithm can
reduce the error due to the deterministic bias in Assumption
1 as marginal using RS selection and multiple combinations
of RSs.
• Reference Step Selection: Recall that when making the

systems of linear equations in E1 and E2, two RSs play a
pivotal role in the linearization process (see Sec. III-B and
Sec. III-C). In other words, with the RSs whose biases
violate Assumption 1, their effects propagate throughout
the entire equations, causing severe errors on the resulting
solution. It is thus required to select RSs with biases being
relatively constant. Fig. 16 plots the variations of RTT
and bias during the full-trajectory in Site B, showing that
the biases within a specific range are relatively constant
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when the corresponding RTTs are small. As a result, we
select two RSs whose RTTs are smaller. Compared with
selecting RSs randomly, selecting two RSs having the
smallest RTT can reduce the average error on step length
estimation up to 0.231 (m).

• Multiple Combinations of Reference Steps: Fig. 18(a)
represents the estimated step length from two RSs sorted
by RTT measurements; A smaller index represents that
the sum of the selected RSs’ RTTs is smaller. It is
observed that smaller RTT does not always provide a
higher estimation accuracy. To cope with this issue,
several candidate RSs are selected instead of a single pair
(See Sec. III-D). Fig. 17 shows that the standard deviation
of candidate RSs’ RTTs is significantly smaller than that
of all RTTs, validating the deterministic bias assumption
in Assumption 1. It leads to providing a reliable step-
length estimation for all APs as shown in Fig. 18(b).

B. Proof of Proposition 2

Noting that E2 has (N − 2) equations, it is an overdeter-
mined system when N ≥ 5 if the rank of the matrixA(S, γ) in
(18) is 3. Then, there always exists γ∗ satisfying e1(S, γ∗) = 0
since E2 is formulated from a geometric representation of
multiple unknowns.

Consider a special case of γ = γ̂ where fa1,a2(γ̂) = 0. At
this case, fn,a2(γ̂) = fn,a1(γ̂) because if a1 < a2, fn,a2(γ̂) =∑n−1
i=1 cos(θi−γ̂)−

(∑a1−1
i=1 cos(θi−γ̂)+

∑a2−1
i=a1

cos(θi−γ̂)
)

and fa1,a2(γ̂) =
∑a2−1
i=a1

cos(θi − γ̂) by definition. From this,
the matrix components αn(S, γ̂) and βn(S, γ̂) can be changed
as

αn(S, γ̂) = fn,a2(γ̂)ηn,a1 − fn,a1(γ̂)ηn,a2
= fn,a1(γ̂)(ηn,a1 − ηn,a2)
= fn,a1(γ̂)ηa2,a1 , (40)

βn(S, γ̂) = 2
(
fn,a2(γ̂)(rn − ra1)− fn,a1(γ̂)(rn − ra2)

)
= 2
(
fn,a1(γ̂)(ra2 − ra1)

)
. (41)

Above (40) and (41) have common terms fn,a1(γ̂), the matrix
A(S, γ̂) which defined as (18) becomes

A(S, γ̂) =
[
ηa2,a1 2(ra2 − ra1)

]
. (42)

Therefore, the rank of A(S, γ̂) is 1, it is underdetermined
system. This finishes the proof.

C. Proof of Proposition 3

We provide separated proofs for arbitrary and linear mobil-
ities.

1) Arbitrary mobility: Consider the case with APs 1 and
2. Using (35), a pair of relative locations at n = 1, say z(1)∗1

and z(2)∗1 , are given as

z
(1)∗
1 = Θ(−ω)

(
p
(1)
1 (ω)− p(1)AP

)
, (43)

z
(2)∗
1 = Θ(−ω)

(
p
(2)
1 (ω)− p(2)AP

)
, (44)

where Θ(ω) =

[
cos(ω) − sin(ω)
sin(ω) cos(ω)

]
is a rotation matrix. Their

relation is derived by subtracting the above two as

z
(1)∗
1 − z(2)∗1 = Θ(−ω)

{(
p
(1)
1 (ω)− p(2)1 (ω)

)
−
(
p
(1)
AP − p

(2)
AP

)}
.

(45)

Noting that p(1)1 (ω) = p
(2)
1 (ω) if ω = ω∗, the above is reduced

as

z
(1)∗
1 − z(2)∗1 = Θ(−ω∗)(p(2)AP − p

(1)
AP ), (46)

where ω∗ is unique since the rotation matrix is not ambigu-
ous between [0, 2π). Next, the relation between two relative
locations at n = 2, say z(1)∗2 and z(2)∗2 , is given as

z
(1)∗
2 − z(2)∗2 =

(
z
(1)
1 + d

[
cos(θ1), sin(θ1)

]T )
(47)

−
(
z
(2)
1 + d

[
cos(θ1), sin(θ1)

]T )
= z

(1)∗
1 − z(2)∗1 . (48)

The above is straightforwardly extended into other relative
locations at n ∈ N. In other words, two relative trajectories
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(a)

(b)

Fig. 19. The black solid line and dotted lines represent the real trajectory
and fake trajectories, respectively. In this case, ω(1,2)∗

2 = ω
(1,3)∗
2 = ω∗ is

the real one.

Z(1) = {z(1)∗n } and Z(2) = {z(2)∗n }, are perfectly aligned
when ω = ω∗. We complete the proof.

2) Linear Mobility: Consider the case with APs 1, 2, and 3.
Recall that there are two relative trajectories for each AP, say
{Z(m)

+ ,Z(m)
− }3m=1. Following the same step in the arbitrary

mobility counterpart, two possible global coordinates are made
for APs 1 and 2, denoted by Z(1,2)

1 and Z(1,2)
2 , which are

symmetric concerning the line between the locations of APs
1 and 2 (See Fig. 19). Specifically, the corresponding heading
directions, denoted by ω

(1,2)∗
1 and ω

(1,2)∗
2 , has the following

geometric relation as

ω
(1,2)∗
1 + ω

(1,2)∗
2 = 2∠

(
p
(1)
AP − p

(2)
AP

)
, (49)

where ∠(x) returns the angle of the vector x. Between the
two, one is real whereas the other is fake. Similarly, the
resultant heading directions for APs 1 and 3, denoted by

ω
(1,3)∗
1 and ω(1,3)∗

2 , gives

ω
(1,3)∗
1 + ω

(1,3)∗
2 = 2∠

(
p
(1)
AP − p

(3)
AP

)
. (50)

Using the above two equations, it is easy to identify which
ones are real. For example, assume ω(1,2)∗

2 and ω(1,3)∗
2 are real,

namely, ω∗ = ω
(1,2)∗
2 = ω

(1,3)∗
2 . Unless ∠

(
p
(1)
AP − p

(2)
AP

)
=

∠
(
p
(1)
AP − p

(3)
AP

)
, it is obvious to identify ω

(1,2)∗
1 and ω

(1,3)∗
1

are fake since they are different. Note that if all APs exist on
a straight line, it cannot be distingished between real and fake
ones because symmetry is maintained, completing the proof.

D. Proof of Proposition 4

It can easily be verify by the fact z(1)∗1 − z(2)∗1 =

Θ(−ω∗)(p(2)AP − p
(1)
AP ) as in (46). By putting norm on both

sides,

‖z(1)∗1 − z(2)∗1 ‖ = ‖p(2)AP − p
(1)
AP ‖. (51)

Also, z(1)∗2 −z(2)∗2 = z
(1)∗
1 −z(2)∗1 as proved in (47). The above

manners are extended into other APs position at m1,m2 ∈M
and other relative positions at n ∈ N. This finishes the proof.
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