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Abstract

This paper is concerned with predicting the occurrence of Periventricular Leukomalacia (PVL)

using vital and blood gas data which are collected over a period of twelve hours after neonatal

cardiac surgery. A data mining approach has been employed to generate a set of rules for

classification of subjects as healthy or PVL affected. In view of the fact that blood gas and vital

data have different sampling rates, in this study we have divided the data into two categories: (i)

high resolution (vital), and (ii) low resolution (blood gas), and designed a separate classifier based

on each data category. The developed algorithm is composed of several stages; first, a feature pool

has been extracted from each data category and the extracted features have been ranked based on

the data reliability and their mutual information content with the output. An optimal feature subset

with the highest discriminative capability has been formed using simultaneous maximization of

the class separability measure and mutual information of a set. Two separate decision trees (DT)

have been developed for the classification purpose and more importantly to discover hidden

relationships that exist among the data to help us better understand PVL pathophysiology. The DT

result shows that high amplitude twenty minute variations and low sample entropy in the vital data

and the defined out of range index as well as maximum rate of change in blood gas data are

important factors for PVL prediction. Low sample entropy represents lack of variability in
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hemodynamic measurement, and constant blood pressure with small fluctuations is an important

indicator of PVL occurrence. Finally, using the different time frames of data collection, we show

that the first six hours of data contain sufficient information for PVL occurrence prediction.

Index Terms

Data mining; Periventricular Leukomalacia; decision tree; classification; feature extraction;
feature ranking; mutual information

I. Introduction

Newborns with congenital heart disease are at high risk for different types of brain injury

[1]–[3]. According to [4] patients with congenital heart disease (CHD) have increased rates

of neurodevelopmental impairments. A study by Miller et al. [5] showed that pre-term

newborns with CHD have widespread brain abnormalities before they undergo cardiac

surgery.

Periventricular leukomalacia (PVL) is a particular type of brain injury that affects mostly

premature infants. The condition occurs when immature cells in the white matter are

exposed to low oxygen levels and low blood flow. The injury occurs most frequently in an

arterial watershed zone that exists at the border of the lateral ventricles of the brain. The

injury results in scarring, or gliosis, in the white matter and disruption of neuronal networks

[6]. When severe, affected individuals exhibit motor control problems (cerebral palsy) or

other developmental delays or epilepsy later in life [7], [8].

In order to identify and quantify PVL after neonatal heart surgery, PVL was defined as

punctate periventricular white matter lesions associated with T1 hyperintensity, with or

without restriction of water diffusion on diffusion-weighted imaging [9]. Furthermore, PVL

lesions were manually segmented using ITK-SNAP Q8. User-guided 3-dimensional active

contour segmentation of anatomic structures significantly improved efficiency and reliability

[10]. PVL volumes were expressed in mm3.

Research has shown a high incidence of PVL both before and after cardiac surgery in full-

term neonates with CHD [11]–[13]. Current observations suggest that hypoplastic left heart

syndrome (HLHS) and transposition of great arteries (TGA) are two CHDs which have high

correlation with occurrence of the PVL. Licht et al. [14] showed that, before surgery, term

infants with hypoplastic left heart syndrome and transposition of the great arteries have

brains that are smaller and structurally less mature than expected for full-term infants. They

suggested that brain immaturity may increase the occurrence probability of periventricular

leukomalacia in the preoperative, intraoperative, and postoperative periods.

Recently, there has been a growing interest in clinical research to aim to understand the

progression and pathology of PVL, to develop protocols for the prevention of PVL

development and to examine the trends in outcomes of individuals with PVL [15], [16].

Results of a study by Petit et al. [17] showed that pre-operative brain injury in neonates with

transposition of the great arteries is associated with hypoxemia and longer time to surgery.
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The study of the relationship between preoperative cerebral blood flow and preoperative

neurologic conditions has been carried out by Licht et al. [18]. Their findings indicated that

the low cerebral blood flow values were associated with PVL. Deficiency in oxygen

concentrations in the blood and low carbon dioxide concentrations (PCO2) have also been

suggested as important factors indicating PVL occurrence [19].

Despite advancement in research in the field of PVL, there are no treatments currently

prescribed for PVL; furthermore, clinical prediction of PVL occurrence almost always has

low accuracy [20]. This is due to fact that the origin of PVL and its physiology still remain

to be clearly understood. Consequently, all treatments administered are in response to

secondary pathologies, such as seizures, that develop as a consequence of the PVL [21]–

[23].

A computer based decision making tool, also referred to as an Intelligent Patient Monitoring

(IPM) Tool or as computer-aided diagnostics or clinical decision making systems, will help

the care-givers aggregate different types of physiological data and discover the hidden

knowledge or patterns in the data to quickly make the correct decision [24]–[28]. Most of

the currently used IPM tools employ data driven techniques with data collected from an

experiment. These techniques analyze the collected data using statistical or computational

intelligence algorithms to arrive at a conclusion on the state of health of the patient. The

IPM is comprised of a knowledge base data mining approach as well as patient-specific

information to provide support for decision-making in patient care. A systematic review by

Garg et al. [29], [30] of a hundred studies concluded that IPM improved practitioner

performance in 64% of the studies and improved patient outcomes in 13% of the studies.

Computational intelligence (CI) techniques are potentially powerful tools for classification

and prediction and are attracting increasingly more attention in the field of clinical decision

making [19], [24], [31]–[38]. The CI techniques include data mining algorithms and

techniques like decision tree (DT) [37], [39], neural networks (NN) [19], support vector

machine (SVM) [35], [36], [40], adaptive neuro-fuzzy inference system (ANFIS) [34], [41],

etc. Among the many different CI techniques, we have chosen DT for the task of PVL

prediction in the current study. The main advantages of DT based approach that makes it a

perfect fit for this study are the ability to discover hidden patterns in the data and generation

of easily interpretable classification rules.

DT algorithms give reliable and effective results that provide high-classification accuracy

with a simple representation of gathered knowledge, and are especially appropriate to

support decision-making processes in medicine.

In this study, we investigate how DT can help the clinicians to predict the PVL occurrence

after the neonatal heart surgery. By constructing a DT and extracting classification rules, the

clinicians will be able to identify predictive factors for the occurrence of the PVL. As a

result the goal in this paper is to classify patients with PVL from patients showing no sign of

PVL after heart surgery. These rules will enable better management of the patient targeting

the reduction of events, as well as, reduction of the cost of therapy, due to the expected

restriction of interventions in necessary cases only.
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II. Materials and Methods

A. Data Collection

Vital sign data from 44 neonates were collected according to a pre-specified protocol at the

Children’s Hospital of Philadelphia (CHOP). Subjects of this study were limited to two heart

diagnoses; hypoplastic left heart syndrome (HLHS) and transposition of great arteries

(TGA), accounting for the fact that these two diseases are considered to have the highest

likelihood of PVL occurrence as their postoperative effect. Demographic data collected

includes sex, type of disease (HLHS or TGA), cardiopulmonary bypass (CPB) duration in

minutes, aorta cross-clamp time (ACC) in minutes and deep hypothermic circulatory arrest

(DHCA) duration in minutes. Clinical and demographic characteristics of the study cohort

are shown in Tab. I.

For each patient, vital sign data as well as blood gas measurements were collected for a 12

hour period immediately after surgery. The sampling time for the vital data varies both inter

and intra-patient from 4 to 17 seconds. The blood gas data were also collected at irregular

sampling intervals, and varying from 20 to 90 minutes. Tab. II lists the collected

hemodynamic variables as well as their respective measurement reliability. Reliability

number is qualitatively derived from expert opinions and knowledge of the test. Data that

was captured directly from the patient (i.e., vital sign data) was highly reliable, while data

that was calculated such as HCO3 was considered to be less reliable.

B. Algorithm Design

Next, we discuss the steps involved with the designed algorithm for the task of data

classification and rule extraction. In Fig. (1) we provided a schematic overview of the

proposed algorithm. As shown the algorithm consists of three main steps: feature extraction,

feature ranking and classifier design. First, The patient data was collected at the hospital and

was used to form the pool of features. A modified version of the mutual information method

that takes into account the reliability of the collected data was then used for ranking the

extracted features in the feature pool. After forming the ordered feature set the optimal

feature subset that encapsulates the most critical features was selected by maximizing the

class separability measure. The optimal feature subset was reduced in size compared to the

original feature set; however, by maximizing the class separability measure, this subset can

be expected to result in a higher accuracy in the final prediction. The selected features were

then fed to the decision tree (DT).

C. Feature Extraction

Since the resolution of the collected data is different for blood gas data and the vital data, we

divide them into two categories of high resolution (vital data) and low resolution (blood gas

data). Consequently two different feature pools will be developed for each category of the

data. Table (III) shows the extracted features from different categories of the data.

The minimum and maximum values of the data are important features for both vital and

blood gas data, because they could potentially reveal mechanisms that are triggered in the

body when a hemodynamic variable passes a certain threshold. Skewness and kurtosis are

Jalali et al. Page 4

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2014 August 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



third and forth order statistical moments of a random variable. Statistical moments of a

random variable x are defined using (1).

(1)

where, n is the order, μ is the mean value of the data and E is the expected value. Skewness

is an indicator of probability density function asymmetry and kurtosis is an indicator of the

invariability of a signal. Admission value is the first value of the recorded blood gas data.

Our preliminary results [42] which were carried out using blood gas data collected every

four hours showed the importance of admission recordings in PVL occurrence prediction.

It is known that hemodynamic variables fluctuate at different time scales consisting of

seconds, minutes, hours, and possibly, days. These variations are presumably caused by

different regulatory mechanisms. It is believed that these mechanisms are both affected by,

and affect the PVL occurrence. In order to try to uncover regulatory mechanisms that are

most actively involved with the occurrence of PVL, we use the continuous wavelet

transform (CWT). We calculate the energy of the continuous wavelet transform coefficients

of vital data at 1 minute, 20 minutes and 2 hour time scales. These time scales are selected in

the way that represent the physiological phenomena that are occurring in different time

scales. Since the sampling rate for data collection varies both in inter-patient and intra-

patient, we first up-sample the data to the sampling rate of 1 second using linear

interpolation, calculate the CWT coefficients at the desired time scales and then calculate

the energy of the signal at each scale.

The CWT of signal x(t) is defined by (2):

(2)

where, a is the time scale, b is the transitional value and ψ* is the complex conjugate of the

mother wavelet function ψ. In this study Morlet function is used as a mother wavelet

function; it should be noted that the Morlet function is often used in literature in case of non-

stationary signals [43]. The energy of the CWT at scale a is calculated by (3):

(3)

The Morlet function is defined by (4):

(4)

where, k allows a trade-off between time and frequency resolutions. Sample entropy

(SampEn) is a measure of signal complexity and is the negative natural logarithm of the

conditional probability of having a signal window with length N, having repeated itself

within a tolerance r for m points, will also repeat itself for m + 1 points, without allowing
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self-matches [44]. SampEn is used in the literature to evaluate the cyclic behavior of heart

rate variability (HRV) and blood pressure variability (BPV) [45], [46].

The collected blood gas data have very low resolution and are discontinuous. To overcome

this limitation, and after confirmation by clinicians, we assumed that there are no sharp,

unexpected variations in the data between samples. Hence it is reasonable to linearly

interpolate the blood gas data. The weighted mean of blood gas data takes into the account

the duration of time that the patient stays at a specific measurement. This feature is clinically

more significant than the mean value of the data, because, from a clinical point of view the

time duration of a blood gas reading is as important as its amplitude.

Time weighted mean is calculated using (5).

(5)

where, m is the number of measurements and x is the measured variable.

In addition, we define out of range index (ORI) as a new feature in this paper. Out of range

index is a measure of both amplitude difference of a measurement within its normal range

and the time that the measurement spent out of normal range. The normal range limits of the

collected blood gas data are presented in Tab. IV. Figure (2) shows the defined feature for a

data sample.

D. Feature Ranking

In this paper we apply the concept of mutual information to rank the features. Mutual

information of two random variables is defined as a measure of their mutual dependence.

Let xi be the ith feature and p(xi) be its corresponding probability density function. The

mutual information is then defined as:

(6)

where, wk represents the classes and p(xi, wk) is the joint probability distribution of xi and

wk. To take into account the reliability of the collected data and to bolster the effect of the

data with high reliability, we modified the mutual information technique by inserting

coefficient of reliability into (6). The modified mutual information of feature xi and class wk

is hence calculated using (7)

(7)

where, cR is a measure of the reliability of the collected data. The ordered feature set is not

the best feature set, because we have not considered the mutual information between the

features. To solve this problem we use the concept of mutual information of a set, which is

defined in (8)
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(8)

where, |S| is size of the set S, I(S;wk) is mutual information of set S and class wk and I(xi;xj)

is mutual information of features, xi and xj. By finding the set Sopt that maximizes (8), the

algorithm is able to form the best ordered feature set. In this paper we use the algorithm

proposed by Kappaganthu and Nataraj [48] to find the Sopt.

E. Class Separability Measure

Now that the optimal feature vector have been formed the next step is to find a subset of the

feature matrix that has the maximum discriminative capacity. The subset with the highest

discriminative capacity is the subset that will result in the highest classification accuracy.

The class separability is a measure that has been defined as a measure of divergence

between classes using the feature subset xs,

(9)

where p(xs|wi) is the conditional probability of xs with respect to wi. An optimal feature

subset is the feature subset that maximizes the class separability and has a reduced

dimensionality.

In this part, the algorithm to extract the optimal feature set using the class separability

measure is explained. We intend to extract an optimal subset Sopt from the ordered feature

set S obtained in the previous stages. The criterion for optimization is to achieve the

maximum class separability measure using as few features as possible. We simply start with

an empty feature set S∅ and at each step we add a feature to the set and measure the class

separability between the two classes that we have. The process will stop when the class

separability index reaches its maximum. The algorithm for this is as follows.

1. Set S0 = ∅

2. Initialize i = 1 and Si = S(1).

3. Start loop

4. Measure class separability between the two classes (di) using Eq. (9)

5. If Si = S Stop Loop and proceed to step 12, else continue.

6. i = i + 1

7. Si = Si ∩ Si+1

8. Measure class separability for the Si

9. If di > di−1

10. Return i and Stop the loop
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11. Else continue

12. End loop

13. Obtain Sopt as Si

F. Classifier Design

In this part of the algorithm, a machine learning type classifier is designed to classify PVL

patients from healthy subjects. Decision Tree has been selected as the classifier. The DT

algorithm uses a recursive partitioning technique to construct a tree based structure for

generating a set of “if-then-else” rules in order to predict the desired event. Unlike almost all

other techniques in data mining that construct a gray box model for classification, DT

produces a very easy to interpret model. This characteristic is very useful in clinical settings

because clinicians are not only interested in the final prediction, but are also interested in

finding injury pathways for possible interventions to prevent the injury. The DT induction

consists of two phases: construction and pruning. The Gini index has been used as splitting

criterion for tree construction and Fisher’s exact test (FET) has been used for pruning the

tree [49]. Moreover, the output data type has been chosen as categorical instead of as a

numerical variable since it resulted in a more robust classification. The p-value threshold for

pruning has been set to 0.05.

III. Results

Features that are mentioned in Tab. (III) have been extracted from the data and two separate

feature pool, one for vital data and one for blood gas data, have been formed. The features

have been ranked using the modified mutual information algorithm, the optimal feature set

with maximized mutual information of set have been found and dimension of the feature

pools have been reduced using the class separability measure. Table (V) lists the optimal

feature subsets for both vital and blood gas data.

Table (V) shows that the subset of 12 features out of 36 features extracted from the vital data

will result in highest classification accuracy. For vital data, this table demonstrates that the

energy of the wavelet coefficients, sample entropy and kurtosis are the most important

features for PVL occurrence prediction. This table also shows that compared to other vital

data, RAP contains the least amount of information for PVL occurrence prediction.

Regarding the blood gas data, the table shows that the subset of 19 features out of 80

features extracted from the blood gas data will result in the highest classification accuracy.

This table highlights the rule of the blood partial pressures of O2 and CO2 in occurrence of

PVL after neonatal cardiac surgery. Moreover, it can be seen from Table (V) that the defined

blood gas features, ORI and maximum rate of change in the upper and lower ranges are

significant PVL predictors.

After deriving the optimal feature sets for both vital and blood gas data, a DT classifier has

been generated for each category of the data. A DT that has been formed based on the vital

data to predict the occurrence of the PVL is represented in Figure (3). Investigating the DT

shows that generally high amplitude 20 minute variations and low sample entropy in the

data are important factors for the prediction of PVL. Low sample entropy represents lack of
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variability in hemodynamic measurement, and constant blood pressure with small

fluctuations is an important indicator of PVL occurrence.

In addition, a DT based on the features derived from blood gas data has been generated and

is shown in Figure (4). Results show that among all blood gas measurements, CO2

concentration in blood, and Ionized Potassium, Calcium, Sodium and Bicarbonate HCO3 are

the most valuable parameters for predicting PVL. This result further validates our previous

suggestion presented in [42] which highlighted the role of blood CO2 concentration as an

important factor in the PVL prediction. This result also shows the importance of the rate of

change in blood gas data as well as the defined out of range index as indicators of

hemodynamic instability which could lead to PVL.

The classification accuracy of the designed classifier is shown using the receiver operating

characteristic (ROC) curve. The higher area under the curve shows the higher classification

accuracy. The plot shows high accuracy in classification although, the relatively small size

of the data set makes it impossible to have a smooth curve.

In the final step, by using all of the extracted features from both vital data and blood gas

data, we would like to predict the length of a data collection that would be sufficient for

timely prediction of the PVL. To the best of our knowledge there has been no study carried

out so far to find the optimum length of time needed for data collection after the neonatal

heart surgery to be able to achieve positive PVL prediction. This could help to target time of

intervention to prevent PVL, reducing injury, and reducing healthcare cost. To this end we

trained and tested the DT with first 2, 4, 6 and 8 hours of the data and we compared the

prediction results with the complete data. Table VI shows that six hours of the data contains

sufficient information for reliable PVL prediction. Another way to interpret this result is that

after 6 hours the opportunity to prevent PVL will decrease significantly.

IV. Discussion and Conclusions

In the clinical context, the area under the physiological measurement curve has been

considered a more valuable predictor of the state of patients than extreme values. The results

of this study show that this is a valid argument also in the case of PVL prediction.

The results of formulating a decision tree from vital data put emphasis on stationarity of

both HR and blood pressures as strong predictors of PVL. Moreover, the maximum and

minimum values of the rate of change of PaCO2 are the most important parameters from the

blood gas data. One of the main objectives of this study is to increase PVL prediction

accuracy in order to help clinicians to plan possible treatments in a timely manner to avoid

occurrence of the PVL. Our results show that 6 hours of the data contains sufficient

information for reliable PVL prediction. This in fact is a very important result due to the fact

that it shows a possible time frame for physiological interventions. It should be noted

however that these results are preliminary and we are in the process of collecting additional

patient data to further validate them.

While the findings of this study seem to be very interesting and important, it still needs

explanation from a physiological point of view. Hence, the next step of the current study is
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to investigate the physiological reasons behind these findings. For example, questions that

need investigating include: how does decreased uncertainty in MAP result in the PVL

occurrence, what is the relationship between PVL and HR, and how does the CO2 affect the

PVL occurrence. Furthermore, additional data is needed to prove the robustness of the

developed algorithm to measurement noise and application to special cases.
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Fig. 1.
Schematic of the proposed algorithm.
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Fig. 2.
Plot of features extracted from a sample blood gas measurement. The blue area is the ORI

index of the PaCO2 for a sample patient.
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Fig. 3.
DT shows that high amplitude 20 minute variations and low sample entropy in the data is an

important factor for prediction of PVL.
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Fig. 4.
DT constructed based on optimal features set derived from blood gas data. Results show that

among all blood gas measurements, CO2 concentration in blood, and Ionized Potassium,

Calcium and Sodium are the most valuable parameters for predicting PVL.
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Fig. 5.
Receiver operating characteristic (ROC) curve (plot of true positive rate vs. false positive

rate).
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TABLE I

Demographic characteristics of the collected data

Male, % 59

Diagnosis, %HLHS 55

DHCA time, mean ± SD 27 ± 26

CPB time, mean ± SD 102 ± 31

CCD time, mean ± SD 61 ± 19

PVL, % 45

Extent, mean ± SD 94 ± 251
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TABLE II

The collected vital and blood gas data at Children’s hospital of Philadelphia (CHOP) with their reliability. SR

is the sampling rate.

Category Data Info. Reliability

Vital

MAP (mmHg)

Irregular SR (3–20 sec)

1

HR (bpm) 1

RAP (mmHg) 1

SpO2 (%) 1

Blood Gas

pH

Irregular SR (20–90 min)

1

PaCO2 mmHg 1

PaO2 mmHg 1

HCO3 mmol/L 0.8

O2Sat % 0.6

Hgb g/dL 0.7

K+ mmol/L 0.8

Ca++ mmol/L 0.8

Na+ mmol/L 0.8

Hct % 0.7
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TABLE III

The extracted features from vital and blood gas data.

Category Data

Vital

Extremes (min, max)

mean, skewness, kurtosis

Wavelet energy at 1,20, 120 minutes

Sample entropy

Blood Gas

Extremes (min, max)

Weighted mean

Admission value

Out of range index

max rate of change

max rate of change in upper range

max rate of change in lower range
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TABLE IV

Normal Range of Blood Gas Data

Measurement Lower Limit Upper Limit

pH [47] 7.34 7.44

PaCO2 35 45

PaO2 75 100

HCO3 22 26

O2Sat 95 100

Hgb 14 16

K+ 3.5 5

Ca++ 8.5 10.5

Na+ 135 145

Hct 36 44
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TABLE V

Optimal subsets of the features extracted from vital and blood gas data which are used for designing the

classifiers.

Category Rank Feature

Vital

1 2 hour variations in HR

2 MAP sample entropy

3 20 min variations in HR

4 Kurtosis HR

5 1 min variations in SpO2

6 20 min variations in SpO2

7 Kurtosis MAP

8 1 min variations in MAP

9 Min SpO2

10 HR sample entropy

11 2 hour variations in MAP

12 RAP sample entropy

Vital

1 Max rate of change PaCO2

2 K+ ORI

3 HCO3 ORI

4 Ca2+ ORI

5 Max PaCO2

6 Max rate of change in lower range Na+

7 PaCO2 ORI

8 Min PaO2

9 Admission PaO2

10 pH ORI

11 Max rate of change K+

12 Max rate of change HCO3

13 Max rate of change PaO2

14 Max rate of change in upper range Ca++

15 Weighted mean Hgb

16 Max rate of change in upper range PaCO2

17 Admission Na+
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