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A Novel Approach for Trajectory Tracking Control
of an Under-actuated Quad-rotor UAV

Kang Huang, Ke Shao, Shengchao Zhen, Hao Sun, and Rongrong Yu

Abstract—A novel Udwadia-Kalaba approach for the trajec-
tory tracking control of an under-actuated quad-rotor unmanned
aerial vehicle (UAV) is presented. Compared to standard control
approaches, the desired trajectories are treated as constraints
called trajectory tracking constraints in this approach. Neither
making any approximations or linearization of the nonlinear
system nor imposing any a priori structure on the nature
of the nonlinear controller, this methodology provides closed-
form nonlinear control. The control inputs satisfying the desired
trajectory requirements can be obtained explicitly in compact
closed form by solving Udwadia-Kalaba equation. Nonlinear
dynamics modeling of a quad-rotor UAV is processed and a
desired trajectory is given in this paper to illustrate this approach.
The theoretical analysis and MATLAB simulation results verify
the validity and efficiency of this approach. The real-time servo
constraint forces are obtained conveniently and the quad-rotor
UAV’s movement meets the designed trajectory precisely.

Index Terms—Servo constraint force, trajectory tracking con-
straint, under-actuated, quad-rotor UAV, Udwadia-kalaba ap-
proach, .

I. INTRODUCTION

RECENTLY various researches are carried out for de-
veloping unmanned aerial vehicles (UAVs). UAVs have

broad practical application prospects in both military and
public services such as in environmental research, resource
exploration, national defense, material transport, logistics,
search and rescue, space detection and other fields where it
is dangerous or difficult for human. In order to accomplish
these unmanned autonomous objects, UAVs are often required
to follow desired trajectories autonomously.

As a kind of UAVs, a quad-rotor UAV has easier im-
plementation and more excellent maneuverability compared
to other UAVs. The quad-rotor is a classical under-actuated
system with characteristics of nonlinear and strong coupling,
such that its tracking control becomes especially difficult.
Various studies have been done focusing on the trajectory
tracking control problem of under-actuated quad-rotor UAVs
in recent years [1− 8]. Linear control methods such as classi-
cal PID (Proportional-Integral-Differential) and LQR (Linear
Quadratic Regulator) control [9] – [11] produce unsatisfactory
performance because of the nonlinearity of the system. In
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order to improve control stability, various nonlinear control
methods are proposed, such as backstepping control [12],
[13], sliding mode control [14], [15] and nonlinear controller
design based on visual feedback [16], [17]. However, all these
methods mentioned above either make some assumptions or
a linearization of the nonlinear system or impose a priori
structure on the controller’s nature, which increases control
complication largely, and the tracking performance is also not
very optimistic.

In this paper, a novel Udwadia-Kalaba approach is consid-
ered to solve the trajectory tracking problem of the quad-rotor.
The Udwadia-Kalaba approach provides a new perspective
for dealing with the under-actuated quad-rotor system. Firstly,
this approach provides closed-form nonlinear control, neither
making any linearization or approximations of the nonlinear
system nor imposing any a priori structure on the nature of
the nonlinear controller as common control methods usually
do especially for an under-actuated system. Furthermore, this
approach treats the desired trajectory as a constraint of the
mechanical system called trajectory tracking constraint. By
solving Udwadia-Kalaba equation, the control inputs (lift
forces in this paper) can be obtained explicitly in closed
form. An excellent tracking performance of the quad-rotor is
acquired in this paper by using Udwadia-Kalaba approach.

Classical theories for dynamic modeling of constrained
mechanical system (e.g., Newton-Euler equation, lagrangian
equation, Maggi equation, Boltzmann and Hamel equation,
etc.) treat d’Alembert’s principle and principle of virtual dis-
placements as their starting point [18] – [24]. However, these
assumptions do not apply well to all situations. Moreover,
dynamic modeling process becomes complicated and difficult
especially for many-degree-of-freedom mechanical systems by
using lagrangian equation. Pars (1965) indicates the lagrangian
equations of the unconstrained motion of mechanical systems
yield non-singular, symmetric and positive definite mass ma-
trix while the minimum number of coordinates are employed.
This restricts the flexibility and multiplicity of one’s modeling
since systems with singular mass matrices are not common in
classical dynamics when dealing with unconstrained motion.

Udwadia and Kalaba (1992, 1996) derived general and ex-
plicit fundamental dynamic equation of constrained systems
from Gauss’s principle in their theory, no matter its constraints
are holonomic or not [25] – [29]. This theory can deal with
ideal and also non-ideal constraints, producing explicit and
closed-form formulation. The motion equation of constrained
system can be obtained concisely by using this theory, without
consideration of the system’sphysical structure’s function as in
classical methods. Thus it is especially applicable for dynamic
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modeling of many-degree-of-freedom mechanical systems.
And the number of coordinates turns out less important, as
long as the constraint equations are consistent and the mass
matrix is positive definite.

The trajectory tracking control is in fact an inverse dy-
namics. In analytical dynamics, the tracking control problem
can be redefined as servo constraint control problem. The
Udwadia-Kalaba theory simplifies this problem in a new way.
Using the research results of Udwadia-Kalaba, Chen system-
atically put forward the concept of servo constraint control of
mechanical systems and achieved the design of constraint force
by servo control [30] – [32]. Also Chen studied servo con-
straint problems on the basis of Maggi equation and indicated
that the required constraint force can be obtained by servo
control [33]. Bajodah studied some mathematical computation
problems in the servo control problem on Udwadia-Kalaba
equation, providing some theoretical basis for the practical
application of the equation [34]. Using this equation, Chen also
carried on the thorough research on the adaptive robust control
of uncertain systems [35] – [39]. Schutte studied the control
problem of nonlinear mechanical systems with holonomic and
non-holonomic constraints on the basis of Udwadia-Kalaba
equation and proposed two types of nonlinear state feedback
controllers which were shown to provide exact tracking and
stabilization to the constrained system under certain conditions
[40]. Udwadia firstly applied the servo constrained control
method in the tracking control of nonlinear structural and
mechanical systems and made a preliminary research in this
field [41].

This paper proposes a dynamic modeling of an under-
actuated four-rotor UAV and a desired flying path is given.
A novel control design is worked out based on Udwadia-
Kalaba approach. By solving Udwadia-Kalaba equation, the
control inputs satisfying the desired trajectory requirements
are obtained explicitly and in compact closed form. To verify
the tracking performance, MATLAB simulation by ode45
integrator is processed. The simulation results indicate that
the servo forces are solved conveniently and the quad-rotor
shows an excellent tracking performance.

II. THE FUNDAMENTAL EQUATION OF UDWADIA-KALABA
APPROACH

We first consider the unconstrained discrete mechanical sys-
tem. The n generalized coordinates of the system are assumed
as q := (q1 q2 · · · qn)T . By using Newtonian or lagrangian
equation [25], the equation of motion of the unconstrained
system can be written as

M(q, t)q̈ = Q(q, q̇, t), q(0) = q0; q̇(0) = q̇0 (1)

where M(q, t) is a positive definite n × n inertia matrix.
Q(q, q̇, t) is an n×1 vector denoting the known force imposed
on the system whose constraints are released, and may include
centrifugal force, gravitational force and control input. q̇ is the
n × 1 vector of velocity and q̈ is the vector of acceleration
respectively. The initial conditions at time t0 are defined by
q0 and q̇0 respectively. The generalized acceleration at time t

of the unconstrained system, which is defined by a(q, q̇, t), is
thus given by

q̈ = M−1(q, t)Q(q, q̇, t) = a(q, q̇, t). (2)

Then, constraints presented in the system are considered. We
assume that the system is subjected to h holonomic constraints
in the form of

ϕi(q, t) = 0, i = 1, 2, · · · , h. (3)

And also there are m−h non-holonomic constraints of the
form

ϕi(q, q̇, t) = 0, i = h + 1, h + 2, · · · ,m. (4)

Here the equations must be consistent in description of
any given set of constraints, and we do not care whether the
constraints are linearly independent or not. Under the assump-
tion of sufficient smoothness, by differentiating holonomic
constraints (3) twice and non-holonomic constraints (4) once
with respect to time t, 2-order constraint equations in the form
of matrix equation can be acquired, which is written as

A(q, q̇, t)q̈ = b(q, q̇, t) (5)

where A(q, q̇, t) is an m × n matrix denoting the constraint
matrix and b(q, q̇, t) is an m× 1 vector.

Remark 1: The constraint used in classical mechanics, such
as lagrangian equation, Maggi equation, Boltzmann and Hamel
equation, Gibbs and Appell equation, etc., is either in the
0-order or 1-order form. The Udwadia-Kalaba equation first
converted all the constraints (holonomic constraints as well as
non-holonomic constraints) into 2-order forms (Chen 1998),
which is significant for the flexible modeling of the equation of
motion. When modeling of a constrained mechanical system
by using Udwadia-Kalaba equation, one needs to do is just
considering the constraints of the unconstrained system and
then transforming them into 2-order matrix equations in the
form of (5), by differentiating the constraints with respect to
time t once or twice.

Therefore the constraints of the system are conveniently
modeled. By combining the unconstrained equation and the
constraints, the explicit equation of motion with constraints
can be acquired. Additional generalized forces of constraints
resulting from the constraints should be imposed on the
system. We assumed the actual explicit equation of motion
of the constrained system in the form of

M(q, t)q̈ = Q(q, q̇, t) + Qc(q, q̇, t) (6)

where Qc(q, q̇, t) ∈ Rn is the additional generalized forces
imposed on the system, arising due to the holonomic and non-
holonomic constraints. Qc(q, q̇, t) is considered to be ideal in
lagrangian mechanics, which is derived based on d’Alembert’s
principle indicating that the constraint forces do zero work
under virtual displacements. The ideal constraints generate
non-ideal constraint forces on the basis of d’Alembert’s prin-
ciple. In a practical mechanical system, non-ideal constraints
also exist and generate non-ideal constraint forces such as
friction force, electro-magnetic force, etc., [27]. Considering a



HUANG et al.: A NOVEL APPROACH FOR TRAJECTORY TRACKING CONTROL OF AN UNDER-ACTUATED QUAD-ROTOR UAV 3

constraints mechanical system with ideal as well as non-ideal
constraints, Qc(q, q̇, t) can be given by

Qc(q, q̇, t) = Qc
id(q, q̇, t) + Qc

nid(q, q̇, t) (7)

where Qc
id(q, q̇, t) represents the ideal constraint force and

Qc
nid(q, q̇, t) the non-ideal one respectively.
Udwadia extends the lagrangian form of d’Alembert’s prin-

ciple to include non-ideal constraints as described in (7).
He generalizes d’Alembert’s principle to include forces of
constraint that may do positive, negative, or zero work under
virtual displacement at any instant of time during the motion
of the constrained system. We denote constraint force as
c(q, q̇, t) ∈ Rn and its work W = vT c in any displacement v
subjecting to A(q, q̇, t)v = 0. Since the work done by c(q, q̇, t)
equals to that done by Qc(q, q̇, t), we have

W = vT Qc = vT c (8)

which is the extended lagrangian form of d’Alembert’s prin-
ciple. The work done by the ideal constraint force Qc

id under
virtual displacements is

vT Qc
id = 0 (9)

and the work done by non-ideal constraint force Qc
nid is

vT Qc
nid 6= 0. (10)

Udwadia and Kalaba have proved that the ideal constraint
force takes the form

Qc
id = M1/2B+(b−AM−1Q) (11)

and non-ideal constraint force takes the form

Qc
nid = M1/2(I −B+B)M−1/2c (12)

where B = AM−1/2, and the superscript “ + ” denotes the
Moore-Penrose generalized inverse.

Remark 2: When describing the constrained motion by us-
ing Udwadia-Kalaba equation, the Moore-Penrose generalized
inverse of constraint matrix A as shown in (11) and (12) is
a substantial tool in the calculation of the constraint force.
To obtain the explicit equation of motion of the constrained
mechanical system, the rank of the matrix A is not essential.
The Moore-Penrose generalized inverse gives a deeper insight
into the nature of constrained motion of mechanical system.
The Moore-Penrose generalized inverse A+ which is unique
possesses the following characteristics

AA+ = (AA+)T , A+A = (A+A)T ,

AA+A = A, A+AA+ = A+ (13)

From (6), (7), (11) and (12), the explicit equation of motion
that governs the evolution of the constrained system including
both ideal and non-ideal constraints is given by

Mq̈ = Q+M1/2B+(b−AM−1Q)+M1/2(I−B+B)M−1/2c
(14)

where the vector c is determined by the engineer, which can
be obtained by experiment or observation.

Equation (14) is called the Udwadia-Kalaba fundamental
equation of motion. When c equals zero, say, the constraints

are ideal and the total work done under virtual displacement
is zero according to the d’Alembert’s principle, equation (14)
becomes

Qc = Qc
id = M1/2B+(b−AM−1Q) (15)

and the explicit equation of motion of the constrained system
including only ideal constraints can be written as

Mq̈ = Q + M1/2B+(b−AM−1Q). (16)

Thus, at any instant of time t, the constrained system is
subjected to an additional constraint force F c(t), given by

F c(t) = M1/2B+(b−AM−1Q). (17)

When the matrix M is a constant diagonal matrix, so we
have M = mI . Equation (17) simplifies to

F c(t) = mA+(b−AM−1Q). (18)

Furthermore, when the unconstrained acceleration M−1Q
is zero, equation (18) becomes

F c(t) = mA+b. (19)

If the mass matrix M in (14) is singular, the Udwadia-
Phohomsiri equation is utilized (Udwadia & Phohomsiri 2006)
instead of Udwadia-Kalaba equation (Udwadia & Kalaba
2000) to acquire the equation of motion of the constrained
system.The equation of motion is given by [29]

q̈ =
[

[I −A+A]M
A

]+ [
Q
b

]
(20)

where the superscript “ + ” denotes the Moore-Penrose gen-
eralized inverse (Moore 1920; Penrose 1955). Equation (20)
is valid when the matrix [M |A]T is in full rank (Udwadia &
Phohomsiri 2006). The full rank condition is essential for the
equation of motion of the constrained system to be unique,
which can be used to check whether the proposed model is
correct.

III. TRAJECTORY TRACKING CONTROL OF A
QUAD-ROTOR UAV

A. Dynamics of the Quad-rotor

As is shown in Fig. 1, every rotor driven by a DC servo
motor produces lift force as well as moment [3], [11]. It is
assumed that the body fixed frame B{xb, yb, zb} is created
at the mass center of the rigid quad-rotor body where the
z-axis is pointing upwards. The frame B has six degrees of
freedom with respect to the earth fixed frame I{x, y, z} which
is assumed as an inertial frame. Therefore the position and
orientation of the quad-rotor can be described as a position
vector p = (x y z)T and an orientation vector r = (θ ψ φ)T .
θ, ψ and φ are Euler angles corresponding to xb-axis, yb-axis
and zb-axis respectively. Let q = (x y z θ ψ φ)T ∈ R6 denote
the generalized coordinates of the system.
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Fig. 1. The quad-rotor modeling

The total lift force
∑4

i=1 Fi generated by the four rotors
points at zb-axis, thus the total lift force vector can be
described in the body fixed frame B as

FB =




0
0∑4

i=1 Fi


 , i = 1, 2, 3, 4 (21)

where, FB is the total lift force vector, the subscript B
indicates this vector is described in frame B. Fi(i = 1, 2, 3, 4)
is the lift force produced by the i−th rotor respectively.

In order to move the quad-rotor model from earth to the
fixed mass center, the direction cosine matrix from frame I to
frame B is donated by R [15], which is given by

R =




cos ψ cos φ sin θ sinψ cos φ− cos θ sinφ
cos ψ sinφ sin θ sinψ sinφ + cos θ cos φ
− sinψ sin θ cos ψ

cos θ sinψ cos φ + sin θ sinφ
cos θ sinψ sinφ− sin θ cos φ

cos θ cos ψ


 (22)

where, the transformation matrix R is the direction cosine
matrix. θ, ψ and φ are the roll angle, the pitch angle and
yaw angle, respectively.

Therefore, the corresponding x-axis, y-axis and z-axis com-
ponent force vector in frame I can be written as

UI =




U1

U2

U3


 = RFB

(23)

=




cosθsinψcosφ + sinθsinφ
cosθsinψsinφ− sinθcosφ

cosθcosψ




4∑

i=1

Fi, i = 1, 2, 3, 4

where, UI is the total lift force vector, the subscript I indicates
this vector is described in frame I .

Then by using force and moment balance, the dynamic
equation of motion can be written as

mẍ = U1 −K1ẋ (24)

mÿ = U2 −K2ẏ (25)

mz̈ = U3 −K3ż (26)

Ixθ̈ = l(−F1 + F2 + F3 − F4)−K4θ̇ (27)

Iyψ̈ = l(F1 + F2 − F3 − F4)−K5ψ̇ (28)

Izφ̈ = M1 −M2 + M3 −M4 −K6φ̇ (29)

where, m is the mass of the quad-rotor. Fi(i = 1, 2, 3, 4) is the
lift force generated by the i−th rotor and Mi(i = 1, 2, 3, 4) is
the additional moment due to rotation of the corresponding ro-
tor, imposed on the quad-rotor body. Ki(i = 1, 2, 3, 4, 5, 6) is
the aerodynamic drag coefficient corresponding to the UAV′s
velocity and angular velocity q̇ = (ẋ ẏ ż θ̇ ψ̇ φ̇)T ∈ R6. l
is the distance from the center of rotation of the rotor to xb-
axis or yb-axis. Ix, Iy and Iz are the moment of inertia of the
quad-rotor around x-axis, y-axis and z-axis respectively.

Remark 3: The moment Mi has been experimentally ob-
served to be linearly dependent on the force Fi for low speeds.
Since the four forces are the input parameters to be controlled,
the relationship between Mi and Fi can be modeled. Equation
(29) becomes

Izφ̈ = lC(F1 − F2 + F3 − F4))−K6φ̇ (30)

where the constant C is the force to moment scaling factor,
in this paper, C = 0.05.

Since drag is negligible at low speeds, the drag coefficients
given above are assumed to be zero. By combining (23) – (28),
the mathematical model of the quad-rotor dynamics becomes



m
R13

0 0 0 0 0
0 m

R23
0 0 0 0

0 0 m
R33

0 0 0
0 0 0 Ix

l 0 0
0 0 0 0 Iy

l 0
0 0 0 0 0 Iz

lC







ẍ
ÿ
z̈

θ̈

ψ̈

φ̈




+




0
0

mg
R33

0
0
0




=




1 1 1 1
1 1 1 1
1 1 1 1
−1 1 1 −1
1 1 −1 −1
1 −1 1 −1







F1

F2

F3

F4


 (31)

where R13 = cosθsinψcosφ + sinθsinφ, R23 =
cosθsinψsinφ −sinθcosφ, R33 = cosθcosψ.

Matrix (31) can be rewritten in the form of equation (6)

M(q, t)q̈ = Q(q, q̇, t) + Qc(q, q̇, t) (32)

where

M =




m
R13

0 0 0 0 0
0 m

R23
0 0 0 0

0 0 m
R33

0 0 0
0 0 0 Ix

l 0 0
0 0 0 0 Iy

l 0
0 0 0 0 0 Iz

lC




(33)

Q = −




0
0

mg
R33

0
0
0




(34)
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Qc =




1 1 1 1
1 1 1 1
1 1 1 1
−1 1 1 −1
1 1 −1 −1
1 −1 1 −1







F1

F2

F3

F4


 (35)

q =




x
y
z
θ
ψ
φ




, q̇ =




ẋ
ẏ
ż

θ̇

ψ̇

φ̇




, q̈ =




ẍ
ÿ
z̈

θ̈

ψ̈

φ̈




(36)

Remark 4: The second part of the right side of (32) is
the control input (i.e., the lift forces Fi generated by servo
DC motors) desired to be applied to the quad-rotor to realize
the trajectory tracking control. That is, while the quad-rotor
is desired to fly along a designed specific trajectory, every
servo DC motor must drive its corresponding rotor to generate
a certain level of lift force Fi respectively to make sure
the mechanical system realize the required trajectory tracking
control target.

Therefore, if there are no trajectory constraints, the uncon-
strained dynamic equation of the quad-rotor can be written
as

M(q, t)q̈ = Q(q, q̇, t) (37)

B. Trajectory Dracking Constraints

In Udwadia-Kalaba theory, the problem of constrained
motion in analytical dynamics can also be described as a
trajectory tracking control problem. Based on Udwadia-Kalaba
theory, the desired trajectories are treated as constraints named
trajectory tracking constraints, which can be written in the
form of constant (5). Thus the servo constraint force F c(t)
can be redefined as the control input required to apply to the
mechanical system to realize the trajectory tracking control.

The desired trajectory tracking constraints of the constrained
mechanical system can be modeled as

n∑

i=1

Ali(q, t)q̇l + Al(q, t) = 0, l = 1, 2, . . . , m (38)

where n ≥ m ≥ 1, Ali(·) and Al are both C1 in q and t. These
constraints imply restrictions on the velocities as well as the
displacements, and are the 1-order forms of the constraints.

We now transform the constraints into 2-order forms (5).
Differentiating constraint equation (38) with respect to t once
or twice, yields

n∑

i=1

d

dt
Ali(q, t)q̇l +

n∑

i=1

Ali(q, t)q̈l +
d

dt
Al(q, t) = 0 (39)

where

d

dt
Ali(q, t) =

n∑

k=1

∂Ali(q, t)
∂qk

q̇k +
∂Ali(q, t)

∂t
(40)

and
d

dt
Al(q, t) =

n∑

k=1

∂Al(q, t)
∂qk

q̇k +
∂Al(q, t)

∂t
. (41)

The 2-order forms of the constraints (39) can be rewritten
as

n∑

i=1

Ali(q, t)q̈l = −
n∑

i=1

d

dt
Ali(q, t)q̇l − d

dt
Al(q, t)

=: bi(q, q̇, t), l = 1, 2, . . . , m (42)

or, in a matrix form

A(q, t)q̈ = b(q, q̇, t) (43)

where A = [Ali]m×n and b = [b1 b2 . . . bm]T .
Remark 5: What one needs to do is to model the con-

straints first and then transform them into 2-order forms by
differentiating the constraint equations with respect to time t.
Specifically, if a constraint equation is given in 0-order form,
we then differentiate it with respect to time t twice, and 1-
order form once. Thus the 2-order form constraint equations
are conveniently acquired.

Remark 6: In fact, the 2-order form constraint (43) is a
very general form. It includes typical constraints as illustrated
by Rosenberg (1977) and Papastavridis (2002), as well as a
number of standard control problems such as stabilization,
trajectory following and optimality (Chen 1998, 1999). The
trajectory tracking constraint in this paper is just one of the
above constraints.

C. Servo Control Input

The desired trajectory of the quad-rotor which is required
to be tracked is described in the form of constraint (43),
so the constraint force Qc(t) (i.e., the control force) should
be applied to realize the trajectory tracking control target
according to Udwadia-Kalaba equation. From (17), the control
input, say, the servo constraint force F c can be written as

F c = Qc = M1/2(AM−1/2)+(b−AM−1Q). (44)

The constraint force is provided by the motors′ active servo
controls. Based on the available controls, the structure of the
constraint force is predetermined as

Qc = Bτ (45)

where the input matrix B is determined by the structure of
the available servo controls and its actual servo control input.
Thus the actual control input can be given by

τ = B+Qc (46)

so that

τ = B+M1/2(AM−1/2)+(b−AM−1Q) (47)

where the superscript “ + ” denotes the Moore-Penrose gen-
eralized inverse.

Remark 7: One should determine the servo structure by
choosing B to get Qc in (45) for a particular mechanical
system. Then, the dynamic system is formulated in the form of
(6). By solving the control input F c based on (44), the actual
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servo control input τ can be constructed using (46). The input
matrix B is very useful in this approach. The servo control
input can be obtained conventionally by determining the input
matrix B, no matter the system is general, under-actuated or
over-actuated.

For the under-actuated quad-rotor in this paper, from (32),
we have

Qc =




1 1 1 1
1 1 1 1
1 1 1 1
−1 1 1 −1
1 1 −1 −1
1 −1 1 −1







F1

F2

F3

F4


 = Bτ (48)

where

B =




1 1 1 1
1 1 1 1
1 1 1 1
−1 1 1 −1
1 1 −1 −1
1 −1 1 −1




, τ =




F1

F2

F3

F4


 (49)

The real-time lift forces generated by the servo DC motors
can be acquired by solving (47).

IV. TRAJECTORY TRACKING SIMULATION

A. The Desired Trajectories

We assume every degree of freedom of the quad-rotor
is given a constraint equation respectively, to accomplish a
certain task. The designed UAV movement is assumed to
tracking a helical trajectory described as

x = 10 sin(t)
y = 10 cos(t)
z = 3t

θ =
π

4
+

π

8
sin

(π

2
t
)

ψ =
π

2
+

π

3
cos

(π

2
t
)

φ =
π

4
sin

(π

3
t
)

(50)

Differentiate the constraint (50) with respect to t twice, we
have

ẍ = −10 sin(t)
ÿ = −10 cos(t)
z̈ = 0

θ̈ = −π3

32
sin

(π

2
t
)

ψ̈ = −π3

12
cos

(π

2
t
)

φ̈ = −π3

36
sin

(π

3
t
)

(51)

The system constraints can be written in the form of (52)

A(q, q̇, t)q̈ = b(q, q̇, t) (52)

where

A = I6×6, b =




−10 sin(t)
−10 cos(t)

0

−π3

32
sin(

π

2
t)

−π3

12
cos(

π

2
t)

−π3

36
sin(

π

3
t)




, q̈ =




ẍ
ÿ
z̈

θ̈

ψ̈

φ̈




(53)

where I6×6 represents the unit matrix.
Remark 8: Constraints (50) is defined as trajectory con-

straints. The four servo DC motors must drive their rotors
to generate corresponding lift forces defined as the control
inputs, to fulfill the trajectory tracking control task.

Initial conditions containing initial coordinate and velocity
of the mass center of the quad-rotor are given in Table I.

TABLE I
INITIAL CONDITIONS FOR SIMULATION

x0 y0 z0

0 10 0
θ0 ψ0 φ0

π/4 5π/6 0
ẋ0 ẏ0 ż0

10 0 3
θ̇0 ψ̇0 φ̇0

π2/16 0 π2/12

Remark 9: The initial conditions q(0) = q0, q̇(0) = q̇0 are
required to satisfy the desired trajectory tracking constraint
equations. However, it is usually difficult to achieve in prac-
tical engineering application due to various factors.

According to the Lyapunov stability theory, the following
differential equation can be constructed

g(q, q̇, t) = −f(g, t; r) (54)

where f(g, t; r) is an m × 1 vector, r is a parameter vector
related to the system’s dynamic characteristics. f(g, t; r) is
chosen so that the system has the following two conditions:
1) g = 0 is an equilibrium point of the system;
2) This equilibrium point is globally asymptotically stable.

Usually numerous systems satisfying the above two con-
ditions can be constructed, such as ġi = −rigi, where the
constant ri > 0, i = 1, 2, . . . , m.

If the m desired trajectory constraints are holonomic in the
form of

gi(q, t) = 0, i = 1, 2, . . . , m (55)

these constraints can be modified as

g̈i = λiġi + µigi = 0, i = 1, 2, . . . , m (56)

with λi, µi > 0, so that the equilibrium solution of the system
g = ġ = 0 is asymptotically stable.

Here for the simplification of simulation, the initial con-
ditions given above satisfy the desired trajectory tracking
constraint equations.

Table II shows the parameters used in the simulation.
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Fig. 2. The simulated position and orientation of the quad-rotor as functions of time

Fig. 3. The simulated lift forces generated by DC servo motors as functions of time

TABLE II
PARAMETERS FOR SIMULATION

Parameter Name Vale
m Mass of the quad-rotor 2 kg
l Arm distance of the quad-rotor 0.2 m

Ix Moment of inertia around x-axis 1.25 kg·m2

Iy Moment of inertia around y-axis 1.25 kg·m2

Iz Moment of inertia around z-axis 1.25 kg·m2

C Force to moment scaling factor 0.05

B. Simulation Results
The simulation is processed in MATLAB by ode45 solver

and the simulation time is 30 seconds. The real-time lift forces
generated by the four DC servo motors can be obtained by
solving Udwadia-Kalaba (46), as described in Fig. 3. Fig. 2

shows the simulated position and orientation as functions of
time t of the quad-rotor UAV, where x, y, z represent the x-
axis, y-axis, z-axis displacement and θ, ψ, φ the roll, pitch,
yaw angle in the inertial frame respectively.

Fig. 4 shows the numerical errors of position and orientation
of the mass center of the quad-rotor as functions of time. It is
clear that the error between the simulated position and orien-
tation and the desired, say, the trajectory tracking constraint
(50), is small enough seen from Fig. 4. More specifically, here
numerical errors e1 = x − xs, e2 = y − ys, e3 = z − zs,
e4 = θ− θs, e5 = ψ−ψs and e6 = φ− φs, where xs, ys, zs,
θs, ψs and φs denote the simulated position and orientation of
the quad-rotor. The position and orientation error of the mass
center of the quad-rotor ei, (i = 1, 2, 3, 4, 5, 6) is of the order
of 10−3, 10−3, 10−12, 10−4, 10−3, and 10−4m respectively,
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Fig. 4. The position and orientation error of the mass center of the quad-rotor as functions of time

which indicates that the computed servo constraint forces
reach the required trajectory tracking constraints we designed,
implying an excellent tracking performance.

A much more indicative view of the trajectory tracking
error is provided in Fig. 5 and Fig. 6, where the blue curve
represents the desired trajectory and the red curve represents
the simulated tracking trajectory. Fig. 5 shows the simulated
and desired helical trajectory of the mass center of the quad-
rotor and Fig. 6 reflects the trajectory tracking error in x− y
plane, x − z plane and x − z plane and their corresponding
partial enlarged views in above three planes respectively. It is
also noted that the tracking error is small enough that these
two trajectories are proved to be coincident.

Fig. 5. The simulated/desired trajectory of the mass center of the
quad-rotor

V. CONCLUSION

A novel approach for the trajectory tracking control of a
quad-rotor UAV is processed in this paper based on Udwadia-
Kalaba theory. Different from conventional approaches, this
approach treats the desired trajectory as a constraint of the
mechanical system called trajectory tracking constraint. The
real-time forces generated by the four DC servo motors can
be obtained explicitly and in compact closed form by solving
Udwadia-Kalaba equation. This approach provides closed-
form nonlinear control, neither making any assumptions or
linearization of the nonlinear system nor imposing any a priori
structure on the nature of the nonlinear controller.

Nonlinear dynamics modeling of a quad-rotor UAV is
proposed and a desired trajectory is designed to illustrate this
approach. The theoretical analysis and MATLAB simulation
results indicate that the servo constraint control based on
Udwadia-Kalaba equation fulfills the trajectory tracking task
of the quad-rotor. The servo constraint forces are obtained
conveniently, and the quad-rotor UAV’s movement meets the
designed trajectory precisely.
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Fig. 6. The simulated/desired trajectory of the mass center of the quad-rotor from different views
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