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Abstract— Navigating in complex and highly dynamic en-
vironments such as crowds is still a major challenge for
autonomous vehicle such as autonomous wheelchairs or even
autonomous cars. This article presents a new way of navigating
in crowds by using behavioral clustering for the surrounding
agents and representing the crowd as a set of moving polygons.
Once the environment has been modelled in his way and the
robot has all the information it needs, we then propose a
navigation algorithm that is able to guide the vehicle through
the scene. The key-points of this algorithm are that (1) it can
avoid densely-populated areas in order to minimize the risk of
being on a collision course with any of the surrounding dynamic
obstacles, (2) it generates socially compliant trajectories.

I. INTRODUCTION

The motivation of this work is to be able to navigate
an autonomous vehicle/robot in a highly dynamic and
densely human populated environments such as crowds.
This type of situation has posed many problems for classical
path planning algorithms, e.g. freezing problems, heavy
recomputation of the route, zigzagging, and a lack of
consideration for normative social behaviors. A critical
aspect of the work is to derive socially compliant trajectories
that are accepted by the passengers inside of the vehicle
and by the pedestrians around the vehicle. In everyday
situations, humans do not necessarily take the shortest path
when navigating through a crowd. Instead, they take into
account social norms, such as not walking through and
breaking up a family group. We also have to overcome the
so-called Freezing Robot Problem [1]. This happens when
a robot cannot find a safe (i.e. collision-free) path and,
thus, either stops moving or starts engaging in excessive
avoidance manoeuvres in order to reach its destination.
While autonomous vehicles perform well on standard roads
and junctions, they succumb to the freezing robot problem
in spaces that are densely populated by pedestrians. Shared
spaces is a relatively new urban design approach that
minimises the segregation between different types of road
users (e.g. cars, bicycles and pedestrians) by removing
features such as kerbs, road surface markings, traffic signs,
and traffic lights. Our goal is for autonomous vehicles to be
able to navigate safely, whilst adhering to social norms, in
shared urban spaces.

II. RELATED WORK IN MOTION PLANNING STRATEGIES
AMONG CROWDS

Autonomous navigation in dense human-populated envi-
ronments is at the crossroad of a number of fields, the
most pertinent ones being robotics and multi-agent systems.
Robotics research concerns managing perception, for exam-
ple with lasers and depth maps, and control engineering.
Multi-agent systems involves managing the evolution of the
robot in relation to the other agents, such as vehicles, robots,
and pedestrians, that populate the environment. Experimenta-
tion with real-life crowds and robots is very time-consuming,
resource-dependant (since many volunteers are needed and
the robot is often running for several hours) and potentially
dangerous. Therefore most of the early tests are done in
agent based simulation environments with crowd simulation
models being used to initially validate the approach.

The approach used in [2] and in [3] uses rapidly expanding
random trees applied in a 2D space cost grid representing the
environment. Firstly, at each time-step, the robot observes
its surroundings and detects any obstacles that it can find.
Then, given the observations it estimates their trajectories
as Gaussian processes. This generates a 2D space map that
represents, for any point of the environment, the risk of
a future collision. Using this map, a tree is built in the
following manner: at each iteration, a point is randomly
selected in the map (usually, there is a bias on the selection
of this point so that it is in the general direction of the final
objective). Several trajectories are built to reach that point
from the closest node of the current tree; the one chosen
is the one that minimizes the cost (here, the probability of
collision given by the space risk map). Once the objective is
reached by a node of the tree, the path is rebuilt from start
to goal and the robot starts following it. If a new obstacle is
detected during the run, or if an already known obstacle has
changed its behaviour, and if that triggers a sufficient risk of
collision, the tree will be partially rebuilt from that point on
until a new path is found.

Another approach that relies on a 2D cost map is in Jumel
et al. [4]. In that paper, the authors assume that the whole
environment is known. Then, based on the observations of
the robot, a 2D flow grid is built. For each square of the
grid, the probability of an agent’s direction is stored. Based
on these observations, an orientation estimation is build,
call a virtual flow grid, based on Von Mises distribution
probabilities [5]. The authors use a standard A* short path



computation but modify the cost estimation for selecting
neighbor cells. The cost becomes higher if the cell transition
is facing the opposing flow direction (or estimated direction.
Indeed, the computed short path avoids opposite flows and
in a crowd environment and follows existing human flows.

While formalizing the Freezing Robot Problem, in 2010
Trautman and Krause [1] reached the conclusion that a viable
path-planning model had to take joint avoidance into account.
Indeed, the state of the art at the time considered each agent
independently: the robot predicted the trajectory of other
agents assuming that agents would not change their behaviors
when crossing the robot. Based on this result, the Optimal
Reciprocal Collision Avoidance [6] was developed. ORCA
can be used on top of a classic path-planning algorithm, such
as A* or Dijkstra. If a collision is predicted in the near future
both agents will avoid the collision by each of them taking
evasive manoeuvres. The objective is to avoid collision while
minimizing the effect on each agent, rather than forcing a
single agent to take all of the responsibility (thus triggering
the freezing robot problem). The work by Stein et al. [7], like
the previously described learning approaches, draws upon the
idea that humans are able to effectively navigate crowds. One
finding by [8] is that in crowds people walking in the same
direction tend to follow each other, thus creating corridors of
unidirectional flow. [7] exploits this by looking around for
humans and selecting one as a leader, which is then followed
through the crowd, exploiting the gap created by the leader’s
passage. When the selected pedestrian is lost, or is no longer
deemed to be a good leader, the robot either selects another
pedestrian or adopts another navigation strategy until a new
leader is found. The leader is selected through a set of criteria
(e.g. walking towards the desired goal, not moving too fast
or too slow, not visibly being made uncomfortable by the
robot).

However, these methods have strong limitations when they
are used in dense crowds. The approach of Stein et al.
relies on finding a leader, or at least another agent that is
going in the same direction as the robot. In cases where
the robot is alone and facing a contra-flow, the approach
would be limited. The approach of Jumel et al. assumes
that the environment is known, which is not entirely realistic
since real life situations are non-deterministic and irregu-
lar behaviours are common. Although reciprocal avoidance
(ORCA) largely mimics real life situations where people
jointly share collision avoidance, it cannot be completely
replied upon; as we see in real life, although collisions
between people are rare, they do happen. Finally, previous
approaches have problems generating socially acceptable
trajectories where pushing through a social group, such as a
family contravenes social norms.

III. EFFECTIVE AVOIDANCE COMBINATION STRATEGY

Effective Avoidance Combination Strategy (EACS) is
a middle-term planning method proposed by Pettré and
Bruneau in [9]. It is a multi-agent method originally aimed at
crowd-simulation. In order to take the best decision, the agent
(i.e. a pedestrian) must take into account all of its immediate

surroundings and evaluate the consequence of each avoidance
move in order to make the best choice, rather than being
near-sighted and dealing with anticipated collisions one by
one.

[9] concerns crowd simulation and tries to make simulated
pedestrian movements as close to reality as possible. Con-
sidering the assumption that a human-imitating robot will
travel effectively among a crowd, it was natural to consider
adapting this method for robot navigation. In their paper,
the authors proposed a middle-term strategy in order to find
the best succession of avoidance manoeuvres for a short
sequence of moves. The number of moves is determined by
the field of view and occlusion of the agent, and the final
objective is to reach a goal, i.e. a defined position.

To do so, the agent first computes a path to its goal (figure
1.a). Then, it considers the first agent, in green, and evaluates
if a collision will occur with the computed path. If it is the
case, candidate waypoints are considered around the potential
collision point (4 cardinal points, figure 1.b). 4 candidates
are respectively selected at a time by applying the following
robot actions: accelerating, decelerating, turning left, turning
right. Each of these candidates are then tested to find a valid
path to the goal (without a potential collision with other
agents,figure 1.c and d). If so a path is found, elsewise four
new waypoints are created and the algorithm re-iterates.
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Fig. 1: EACS path selection steps. The black dot is the
current agent, the red dot is the agent’s objective, the green
and blue agents are other agents that cross the path

This approach allows for more complex behaviours than
immediate social force-based collision avoidance (e.g. choos-
ing an empty but further away corridor if the closest one
is crowded, or finding a sparse "corridor" among a moving
crowd and taking it).

In this approach there is no uncertainty about the position
and velocity of other agents. A direct consequence is that
the four new way-points are built as the close to the original
collision point but still avoiding any collision. The other
agent will be avoided without any "safety margin": the
EACS-running agent will respect the minimal distance with
regards to any other agent, and nothing more.

By dodging the collisions with minimal margin, even
the slightest reorientation of the other agent could put
both agents on a collision course again. As a consequence,
EACS becomes very unstable in dynamic environments.
This will force the EACS-running agent to constantly
recompute its path. This is a problem, not only because
of the high computational cost, but also because it totally
negates the point of EACS, which is to be a middle-term
planner. Moreover, the resulting trajectories are usually far
from adhering to socially acceptable behavior. The path



it produces should have at least some consistency and be
valid for several seconds (the span of such middle-term
planning). The algorithm does not avoid high-density areas,
as it often finds an opening in the crowd. However, such
openings are always short-lived, disappearing long before
they are reached by the robot. As a consequence, a new
path needs to be found, leading to either a total change
of direction without any efficient progression towards the
goal or getting stuck in high-density areas, zig-zagging and
causing great disturbances to the agents around it.

In order to overcome such behaviour, we developed the
following method that tries to avoid such high density and
highly dynamic areas.

IV. CLUSTERED EACS BASED NAVIGATION

The aim is to create a socially acceptable trajectory.
The approach can be succinctly described as follows. We
first gather agents that share the same behaviors (velocity,
orientation, position) into clusters. The resulted clusters
intend to average individual behaviors. These clusters are
treated as convex polygons. This effectively treats the
crowd both discretely (as each unclustered agent will be
treated individually) and as a continuum (since the polygons
are seen as one single mass, independently of how many
agents they contain). Finally, we navigate through this new
representation of the crowd by dodging the polygons with
as safe a margin as possible. Finally a best path is selected.
The basic algorithm is shown below, with further details
given in Algorithm 2 concerning collision checking.

Algorithm 1: Social Aware Trajectory computation
input

: start_pose : current robot position,
goal : goal targeted

1 begin

2 Compute trajectory from start_pose to goal

3 Detect pedestrian positions and velocities (a € A)
Fig. 2 a)

4 Compute Cluster ¢ € C' with DBSCAN Fig. 2 b)

5 Compute polygon p € P associated to each cluster
C Fig.2¢)

6 Create a container of possible paths path = []
7 CheckCollision(start_pose, goal, P,path, [])
8 Get best path best in path

9 Apply best path best

10 end

A. Clustering the crowd

1) DBSCAN Clustering Method: We apply the Density-
Based Spatial Clustering of Applications with Noise (DB-
SCAN) defined in [10]. This clustering algorithm will, in an
unsupervised way, classify groups of agents (clusters) that
are close to each other with regards to a given distance,
noted dist(aq,as) where aj, ag are agents. The DBSCAN
method offers good performance and is faster than other
approaches like EM-algorithms, and detects complex pattern

Algorithm 2: CheckCollision algorithm
input : start_pose : current position,
goal : goal targeted,
P list of polygons,
path list of valid paths,
current_path current path in construction

1 begin

2 collision=false

3 for p; in P do

4 if Collision between start_pose — goal and p;

then

5 Compute dodge way points W Fig. 2 d)

6 for w; in W do

7 current_path.add(w;)

8 CheckCollision(w;, goal, P,path,
current_path) Fig 2 ¢)

9 end

10 collision=true

11 end

12 if /collision then

13 path.add(current_path) Fig. 2 f)

14 end

15 end

16 end

without the need for kernel-clustering. In addition it can also
define elements that do not belong to any cluster.

The DBSCAN algorithm ascribes one of 3 status to each
agent: "CORE" if the agent is on the inside of its cluster;
"BORDER" if the agent is on the edge of its cluster; and
NOISE if the agent is isolated with regards to the given
distance, i.e. it does not have enough neighbours. At the
start of the algorithm, all of the agents are marked with
the status not_treated. The algorithm takes two parameters:
MinNeigh and NeighDist. Let A be the set of all agents,
and N(ay) with a; € A the set of neighbours of a;.
NeighDist is the considered radius of the neighbourhood
around an agent :

Ya,be A,b e N(a) < dist(a,b) < NeighDist

MinNeigh refers to the minimal number of neighbours
an agent should have to be considered as a CORE agent of
its cluster.

Va € A, status(a) = CORE <= |N(a)| > MinNeigh

A high value of NeighDist leads to a low-density large
clusters (in distance), Whereas, a high value of MinNeigh
leads to more dense clusters.

An agent will be classified as a BORDER agent if at least
one of its neighbours is a CORE, and it will be put in the
same cluster as the CORE. An agent that is not neighbour
with a CORE will be classified as NOISE.
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Fig. 2: Social aware trajectories steps. a) refers to the agent position and velocity detection (Alg. 1 1.3), b) clusters agents
through position and velocity (Alg. 1 1.4), ¢) computes polygon associated to cluster (Alg. 1 1.5), d) detects collision (Alg.
2 1.4) and computes dodge points if needed (Alg. 2 1.5), e) and f) iterates until all dodged points are computed (Alg. 2 1.8)

2) DBSCAN in the navigation problem: In our method
we first apply the DBSCAN algorithm to the list of all the
pedestrians (or any agent in a case where other robots are
present). The idea of using DBSCAN to cluster crowds
comes from [11].

In our context, the clusters represents pedestrians sharing a
common behavior, evolving as a continuum. For this purpose,
the Euclidean distance could not be the only parameter to
characterize the clusters. The following crosswalk example
highlights why: Two groups of roughly the same number of
people cross each other in opposite directions. Their position
when they reach the middle of the crosswalk will be very
close, so if the DBSCAN used only the Euclidean distance
it will see one big group, of average speed zero, leading to a
prediction of one huge immobile group. In this situation, the
different behaviours of the two groups (different orientation
and velocity) are not detected. Thus, the velocity parameter
needs to be taken into account in our DBSCAN distance
computation.

For A the set of agents, let v(a) be the velocity of a given
agent a and p(a) be the position of that agent. The distance
we chose in this work is a linear combination of velocity
and position. A is a parameter that weights the importance
of the velocity in the computation of the distance.

dist 0,5 = 15 (Ip(a) = p(8) 2 + Mo(a) = o))

B. Turning the Clusters into Polygonal Continua

The crowd is now clustered into groups that share a
common behaviour. All of the members of each group have
a certain coherence in terms of position and a similar speed.
These similarities are used to remove some of the uncertainty
of the problem. To do this we turn the clusters (sets of
discrete agents) into polygons (continua). This defines, for
each cluster, an area on the map that contains all of the
agents of the cluster, like a footprint. The polygon we chose
to represent each cluster is the convex envelope of the set of
positions of each of the members (agents) of the cluster.
These are the polygons that we will navigate around. A
cluster represents high pedestrian density that an agent has to
avoid. Geometric operators can be applied on such polygons,
allowing an agent to easily detect group borders.

There are several advantages in choosing to work with
complex polygons: First of all, convex polygons are simple
to manipulate. They have a small number of corners yet
provide a lot of information (unlike bounding boxes, which
have fewer corners, but are very coarse). This eases the
computational charge during the next steps of the method.
Moreover, when viewed from a certain point in space (e.g.
the robot’s sensor), the leftmost and rightmost agents of the
cluster (with regards to the said point) are part of the convex
hull, and are therefore easy to find.

We have represented the crowd as a set of polygons and
lonely agents. Therefore, instead of individually avoiding all
of the agents contained in the clusters, we define an average
behaviour that will be applied to the polygon in order to
predict the future of that polygon. We consider that the
polygon will travel in a linear motion at the average speed
of the agents in the cluster for at least a few seconds. Future
work could take acceleration into account, or anticipate the
member’s goals in order to predict the polygon’s future
position.

C. Cluster dodge distance

As presented in section III, a main limitation of the EACS
method is that it does not produce a socially acceptable
trajectory since the robot moves uncomfortably close to
humans when trying to avoid them. In our approach, when
a the robot detects a collision (figure 3.a) with a cluster
(polygon), it computes different avoidance manoeuvres (as
in EACS). The acceleration and deceleration operations are
similar to the original algorithm. Concerning the "turning
left" and "turning right" operations, our method detects the
upper a, and lower a; pedestrians in the cluster (figure
3.b). In order to define new possible way points, the closest
pedestrian of other clusters (respectively p, and p;) to the
points a,, and a; are retrieved. The resulting possible way
points (w, and w;) are then located in the middle of the
segments [p,,a,] and [p;,a;] (figure 3.c).

During this process, some exceptions could appear. If the
robot could not reach the new way point with an acceptable
speed (< max speed), a maximum dodge distance is applied
on the segment (e.g [p;,a;]). If the segment crosses the cluster
(e.g in the case of no close neighbor cluster), the maximum
dodge distance is applied.
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Fig. 3: Cluster dodge process. The black dot represents
current robot position, the red dot is the robot’s goal, other
dots are pedestrians.

Such approach is close to the Voronoi edges for navigation
found in [12] and [13]. However, these articles deal with
a static environment, with immobile obstacles (e.g. walls,
furniture). In our approach, we consider moving polygons, as
well as estimations of where and of what shape the polygons
will be in the near future.

What motivates this representation is seeing the polygons
as moving high-density areas of the map. Such areas should
be avoided due to the high uncertainty of the environment
inside them. Indeed, going inside a polygon will expose the
robot to highly unstable terrain, where all path planning
would be canceled by a flurry of immediate collision
avoidance measures.

V. SIMULATION AND RESULTS
A. Crowd simulation

All of the experiments were run using Pedsim [14], an
open source crowd simulator that implements Helbing’s
social force model [8]. This allowed us to tune our algo-
rithm in an environment filled with agents (pedestrians) with
seemingly realistic behaviours. We worked with a pedestrian-
heavy environment. Predicting the behaviour of a human in
a crowded environment will in most cases not yield good
results for more that a few seconds. Pedsim uses a random
force that allows the simulated agents not to have too rigid
a behaviour. In addition the force model in itself already
yields satisfactory behaviours with sharp turns and sudden
collision avoidance. In this regard, the simulator implements
uncertainty very well.

B. The robot

The simulated robot, which executes our navigation algo-
rithm, is a human sized, circular shaped robot with a tunable
radius. We chose a radius around 30 cm, which is realistic
for robots such as SoftBank Robotics’ Pepper or autonomous
wheelchairs. Pedsim implements only forces between people.
However, we are currently working on extending Pedsim in
two directions: firstly so that human-vehicle interaction is
taken into account and secondly in increasing the size of the
robot in order to represent an autonomous vehicle. Currently
though, other shapes are easily implementable by modifying
the collision-detecting function, given that the right forces
are also coded as an extension of the simulator. The robot
navigates at a human-like speed, with a configurable maxi-
mum speed around 1.5 m/s. It is also considered holonomic,

(i.e. when the number of controllable degrees of freedom is
equal to the total degrees of freedom) and can turn sharply
if necessary. Finally, physical constraints such as inertia and
bounded acceleration were not taken into account due to:

o the reduced maximum speed (thus the low maximum
amplitude of changes in velocity) of the simulated test
subjects that allows for extremely quick variations in
velocity

« the light weight of the simulated test subjects that allows
great manoeuvrability

C. Results

The parameters, A\, MinNeigh and NeighDist of the
DBSCAN were tuned by hand on the crosswalk scenario
inside the simulator. To do this we created two groups of
ten actors with opposite objectives, and ran the algorithm,
comparing it with human observations from the angle of the
robot.

The values that yielded the best results were:

e A=5

e MinNeigh =1 or MinNeigh =2

e NeighDist =1

The big value for A can easily be explained by the fact that
velocity is the preponderant feature of an actor’s behaviour,
and is usually more stable than precision. Indeed, a given
speed indicates a desired objective (e.g. the other side of the
street, a specific street entrance, a specific shop).

Position still needs to be taken into account, nonetheless,
in order to give an upper bound to the distance. Indeed,
even though two pedestrians walk at the exact same speed,
we can pass between them if there are several free meters
available to the robot.

The small value for MinNeigh signifies that an agent
needs to be close (in terms of our custom distance function)
to another agent in order to be in the same cluster. In a dense
crowd if we consider people as being in "rows", only the
closest and part of the second row to the robot will probably
be seen and the rest will be ignored. Agents deeper into the
crowd will not be taken into account.

This limits the clustering to the border of the crowd
closest to the robot, as only a "line" of people will be
detected. Thus, the robot will only see one or two neighbours
even if there are many more agents hidden behind them.

A video showing the differences between EACS and
Clustered EACS on 3 scenarios is available '.

Figure 4 shows the trajectories generated by both EACS
and Clustered EACS. In this simulation, 2 groups of people
are walking, one from left to right, the other from the bottom
to the top of the image. The robot starts from the top of
the image to reach the bottom. The robot using EACS (top
images) finds its way among the group of people going up,
then crosses the other group and after a few oscillations,

I'nttps://youtu.be/200aXblkqOs
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Fig. 4: Comparison of a trajectory produced by EACS (top) and Clustered EACS (bottom)

reach its goal. The robot using the clustered EACS method,
anticipates the incoming flow of people and avoids the group
by passing on its right and the second group by passing on its
left. It does not try to enter the group. Although the trajectory
produced using EACS is more direct, it is clear that the robot
passes extremely close to people, possibly breaking through
social groups. Although the trajectory of the clustered EACS
method is longer, it respects social groups and is more
socially compliant by adhering to social norms.

VI. CONCLUSION

In this article, we proposed two main concepts: a new
way to represent the crowd as seen by the robot, and an
algorithm to navigate this representation. The first point has
the objective of obtaining, from incomplete observations,
a reliable and dynamic way of anticipating the shifts in
density around the robot. This allows the robot to avoid the
most dense areas, which are the most dangerous in terms
of the probability of collision. These are areas in which no
safe path can be computed with any certainty and that will
last long enough for the robot to travel.

We also implemented an algorithm that is able to-
https://www.overleaf.com/project/5bf66905a5705a1596087{74
navigate such a representation. This was done by maximizing
the avoidance margin with the dynamic obstacles previously
computed, and sliding over dynamic Voronoi edges.
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