
The Potential for Synergy between Information Visualization

and Software Engineering Visualization

Orlena C.Z. Gotel
1
, Francis T. Marchese

1
, Stephen J. Morris

2

1
Pace University, New York, USA,

2
City University, London, UK

{ogotel@pace.edu, fmarchese@pace.edu, sjm@soi.city.ac.uk}

Abstract
To be provocative, it could be argued that

information visualization is a tool in search of an

application. This viewpoint becomes most apparent when

one seeks to adopt and adapt practices from the

information visualization field and attempt to apply them

elsewhere. Software engineering is an appealing area in

which a number of researchers have been seeking to

leverage some of the benefits that information

visualization can bring. Through an examination of the

two fields, and their underlying motivations and foci, we

highlight an as yet untapped area in which future

research efforts should be directed to gain the most

impact in software engineering. We also highlight recent

concerns from the information visualization field to

emphasize the role of establishing criteria through which

new contributions can be assessed.

Keywords--- Information Visualization,

Requirements Engineering, Software Engineering

Visualization.

1. Introduction

Both 'information visualization' and 'software

engineering visualization' are data intensive activities but

their motivations are markedly different. In software

engineering visualization, associated as it is with a

primary design function, the fixing and communication

of structure are paramount, whereas in information

visualization the revealing and understanding of structure

are the principal concern. In some parts of the overall

software development process, in particular the 'software

visualization' of implemented code, the understanding of

hidden structures is important, as it may also become in

the as yet unrealized field of 'requirements engineering

visualization'.

Given this basic disparity in current motivations, it

is difficult to formulate any type of overarching

framework for both fields, although a semiotic view may

provide some insights. Each field also exhibits unique

problems, in software engineering visualization the

semantic and syntactic complexities of defining a

universally applicable form of structuring for software

systems via the Unified Modeling Language (UML), and

in information visualization the need to discover or

create appropriate metaphors to guide the structuring of

new data sets. Both fields share the need for standards of

effectiveness though, whether based purely

pragmatically on survival and broad use, or more

theoretically on visual language definition or cognition.

In this paper, we suggest that the most fruitful area for

future development is the emerging field of requirements

engineering visualization, and we draw upon information

visualization efforts to provide a basis upon which to

develop and assess the effectiveness of contributions.

This paper is therefore a first attempt to define the

overlap of the two fields of software engineering and

information visualization and to look for where the

opportunities lie for a more fruitful marriage of ideas. In

sections 2 and 3, the paper examines the contrasting

motivations behind software engineering visualization

and information visualization, and explains those areas in

which commonality or overlap occurs. This highlights

the potential for activity in requirements engineering.

Section 4 suggests a framework within which to examine

the state of the art and gives possible reasons for the

predominantly textual focus in requirements engineering

to date. Section 5 lists problems unique to each field and

outlines a common problem area that demands attention

as research moves forward. Specifically, establishing

criteria through which the effectiveness of visual

contributions should be examined.

2. Visualization in Software Engineering

The wide scope of what might be called

visualization in the domain of software engineering

suggests that broad, vernacular definitions would be

appropriate. Standard definitions, “the action or fact of

visualizing; the power or process of forming a mental

picture or vision of something not actually present to the

sight; a picture thus formed” [26], place emphasis both

on the cognitive activities and their products. In software

engineering, visualization as an activity (or non-textually

based process) and visualizations as artifacts (or process

12th International Conference Information Visualisation

1550-6037/08 $25.00 © 2008 IEEE

DOI 10.1109/IV.2008.56

547

products) have played fundamental roles from the

earliest days of automated computing [11] and since the

advent of the first software engineering notation [23].

Over the past two decades, the focus of the

visualization efforts associated with software engineering

has been in two main areas. Firstly, much attention has

been paid to the development of visual notations and

techniques for defining and communicating the

understanding of a problem, its requirements and

possible designs. The dominant approaches today are

fully described in most of the popular software

engineering texts (e.g., [7, 33]). The demand for shared

conventions has ultimately led to the UML [25]. The first

goal of visualization in software engineering is clearly to

fix and communicate structures so as to facilitate

development (visualization as artifact). Secondly, there

has been recent interest in the creation and use of

innovative visualizations to assist with the downstream

activities of algorithm and program analysis, testing and

debugging, giving rise to the term ‘software

visualization’ [1, 17, 36]. The second goal of

visualization in software engineering is, by contrast, to

reveal and understand hidden structures (visualization as

activity).

Software engineering is a discipline much of which

now revolves around the creation and use of models.

These models describe stakeholder problems and needs,

at varying levels of abstraction, from loose requirements

statements through to the concrete programming code

written to satisfy these requirements. The most data-

intensive and media-rich aspects of software engineering

are clearly those early requirements engineering

activities in which stakeholders are determined, problems

explored and goals defined, so the period in which

informal aspirations converge to an agreed statement of

the problem and requirements specification. Despite the

emphasis on information-seeking behaviors and

knowledge creation amongst the multiple parties

involved pre-requirements specification, and amongst the

multiple activities which can take place as conflicts arise,

negotiation occurs and decisions get taken, the

exploitation of any techniques or ideas from the field of

information visualization to support such activities is

rare.

There are long sustained views that requirements

engineering is the software development phase in which

the most errors are introduced and that it is the cheapest

phase in which to fix errors [3]. Coupled with its role

contributing to ongoing software development project

failure [35], it is surprising that visualization techniques

which could potentially mitigate the introduction of

misconceptions, especially when formulating and

communicating requirements, are strikingly absent from

mainstream requirements engineering practice and

literature. This is evidenced in fifteen years of

international conference proceedings in the area where

the predominant visualizations are either associated with

UML diagrams or i* goal models [15] and concerned

with fixing conventions. Attention has only really been

paid to this visual void over the past two years with the

introduction of a new workshop series on requirements

engineering visualization [16]. Papers from these

workshops, in addition to furthering attention on

visualizing requirements in UML models and on visual

techniques to support goal-based requirements

engineering approaches, have begun to focus on the

challenges of visualizing:

• individual requirements and requirements

collections to assess the health of the requirements;

• requirements relationships to support traceability;

• requirements variability to support decision making

about product line requirements; and

• risks to requirements to support requirements-driven

forms of risk assessment.

These initial efforts, however, have yet to capitalize upon

the active role visualization can play in making sense of

what can be complex and initially fragmented data. This

is where further work is needed. Whether visualization

can also assist with the very early lifecycle activities

where these initial tentative data are first generated for

future analysis also merits attention.

3. Overlapping Concerns

In contrast to software engineering visualization

efforts, information visualization focuses almost entirely

on the act of visualization as its primary goal and on

using vision to think [4]. Where the objective of

information visualization is to arouse consciousness and

insight, the focus is on the transformation of data for

easier assimilation by an individual’s sense of sight, on

the creation of a visual artifact. Also, the concern is with

those mechanisms within humans and computers that

allow for the perception, use and communication of

sensory information and so facilitate the desired visual

activity. For this field, visualization is primarily a

cognitive activity [34, 38]. As such, information

visualization draws upon many fields for its foundations,

including: computer graphics, computer vision, computer

science, human computer interaction, art and design,

cognitive science and artificial intelligence. In computer-

supported information visualization, complex data is

mapped to perceptual representations in such a way as to

maximize human understanding and communication, and

to engender a deeper understanding of information,

physical phenomena or the underlying processes related

to them [38].

For Chen [5], information visualization is more

concerned initially with methods for finding and

extracting backbone structures from a complex set of

information and subsequently with techniques for

generating spatial layouts and graph drawing techniques.

His examples all involve potentially large or very large

unstructured data sets. The degree of semantic structure

inherent in the UML, even if not defined in a fully

formal manner, illustrates an important distinction

between much information visualization as generally

defined and the types of visualization characteristic of

software engineering.

548

The structuring effort in software engineering has, in

significant parts of the field, already gone into the

preparation and agreement of conventions for

visualization of important parts of its activities. If

structure is, in general, something requiring visualization

in software engineering design it is not because of the

generally unstructured nature of data sets, but because of

the broad value of conventionalized visualizations as

communicative artifacts in the development process, or

because there may be different structures derived from

the same underlying model at some particular stage of

the process or potentially as the process progresses from

one stage to another.

Such structures are also an essential determinant of

the data available, as a result of collection, analysis,

design, implementation or execution. The nature of the

structures and their visualizations are, in the cases of

requirements collection and code execution, consequent

representations of pre-existing antecedent, whereas with

analysis, design and implementation it is likely, although

not certain, that they will be precedent representations of

subsequent objects. At its most simple, this is a

distinction between the descriptive used for analysis and

the prescriptive used for design.

During and after the implementation of software

designs, increasing complexity has made it necessary to

investigate aspects of this complexity, for example the

dependencies between various components of a software

system [8] and ‘software visualization’ for code artifacts

has become a field in its own right requiring its own

taxonomies [20, 28].

The overlaps between software engineering

visualization and information visualization are depicted

in Figure 1. They mostly occur where the exploration

and understanding of hidden structures is critical, as is

necessary for testing and maintaining implemented code

(‘software visualization’) where structure may be

obscured by complexity, and in requirements engineering

where structure is yet to be formed. Representational and

metaphorical techniques, the concerns of information and

also knowledge visualization [9] activities, offer areas of

promise for conveying and discovering such structures.

Figure 1. Overlapping Concerns and Possibilities

4. Conceptual Framework

The importance of these disparate roles of

visualization as an activity and visualization as an

artifact has been somewhat concealed in software

engineering because of what some semioticians would

call the ‘primary modeling systems’ being employed. In

the semiotic discipline, all sign systems serve as a means

of modeling, cognizing and explaining the world and

particular cultures. Whether an explanation of all such

systems should be based on the framework of natural

language remains a contentious issue, but for the

Moscow-Tartu School of semiotics [14] the ‘primary

modeling system’ (PMS) is natural language, the proper

object of linguistics.

Natural language serves as the universal meta-

language for the interpretation of ‘secondary modeling

systems’ (SMS) which are realized by correlation with

the system of natural language and which use it as their

material, whilst at the same time adding to it further

structures. The classic early application of such

structuring revealed a standard framework within

Russian folk tales [29]. In general, any structured text

serving a descriptive rhetorical function is definable as a

SMS. In software engineering, texts structured as use

case descriptions or scenarios are an important class of

examples [19].

It does not violate the overall principle to posit a

class of ‘tertiary modeling systems’ (TMS) that also

depend on natural language as a meta-language of

interpretation but employ exclusively non-textual

components as the foundation for representation. A UML

use case diagram is an example in software engineering,

as would be any visualization of structured text used for

a particular requirements engineering technique, for

example a Volere requirements template visualization

[13].

In this three-level hierarchy of modeling systems,

text is at the top of the hierarchy and visualizations (in

the vernacular sense) are at the bottom. This position

may explain the relative lack of attention paid to

visualizations in the earliest stages of software

engineering when this agreement with respect language

has yet to be established, one of the chief aims of

requirements engineering being to agree upon language

use.

It is clear, however, that natural language text does

not remain the PMS throughout any comprehensive

software engineering process. For proponents of ‘agile

software development’ [2], ‘rapid or evolutionary

prototyping’ [22] and related approaches, the PMS is the

programming language itself, or some class of such

languages. The dominant role of the programming

language or paradigm as the PMS leaves little room for

the creation of any special type of SMS, although

secondary artifacts are used. In those standard software

engineering processes and practices where the

programming language is only the implicit PMS, as most

importantly is the case in the use of object-oriented

programming languages, the SMS has become the

549

subject of continuous and intensive development

culminating in the definition of the UML [25]. In the

UML, visualizations of a software system, at all stages of

its development, take the form of diagrammatic

representations.

Before attention shifted to the object-oriented

paradigm, diagrammatic representations as visualizations

of software models had also played an essential part in

‘structured analysis and design’ and similar techniques

[7, 39]. In this middle ground of software engineering,

between upstream text-oriented requirements

engineering and downstream implementation-oriented

‘software visualization’, the ‘model’ and the ‘modeling

language’ have now themselves become a PMS in

‘model driven architecture’ [18], again without a specific

SMS except perhaps for recognizable ‘patterns’ [10].

5. Towards Effective Visualizations

The two fields of software engineering visualization

and information visualization focus on unique problem

areas. The problems that are unique to software

engineering visualization include the search for

generalized solutions, hence visual language definition

and advances with the UML. Despite their manifest

function as visualizations of software systems at some

stage of development, the visual characteristics of all

software engineering notations have, since the early days

of standardization in UML v0.9, been subordinated to the

difficult problems of defining agreed semantics,

ironically partly in highly complex natural language. As

a consequence of very effective use of pragmatically

defined visual notations, software engineering has seen

no need, as yet, to exploit the refutation of the argument

that logical soundness cannot be obtained in

diagrammatical reasoning [31], nor advances in the

formal specification of visual languages [21] and hence

to deploy a visual language as a PMS.

However, the specific graphic forms used for all

these visualizations do vitally affect their usefulness as

communicative artifacts. According to Tversky [37],

“Effective visualizations conform to two principles:

• Congruity: structure and content of visualization

should match structure and content of desired

representation.

• Apprehension: structure and content of visualization

should be readily perceived and comprehended.”

In the former case, a UML representation of the

underlying conceptual domain’s classes and their

associations should appropriately reflect a system’s

congruity. But the principle of apprehension remains

problematic because most culturally based visualization

theory has not addressed the practical problems

regarding the use of visual graphical notations, most

importantly how it is possible to guarantee

reproducibility and uniformity of interpretation. In its

oldest form, this is the problem of designing a notational

system that will guarantee the integrity of a work of art

such as a piece of music as it passes from score to

performances and possibly from performance back to

score, or from an architect’s drawing to a building,

directly analogous to the problem of instantiating a

software model in executable code.

The main work in this field [12], subtitled as ‘An

approach to a theory of symbols’, defines a notational

system and a set of criteria that must be met for there to

be invariant relationships between separate,

distinguishable symbols and separate, distinguishable

elements that they denote. Application of this scheme

and criteria has already provided useful insights into the

UML [24].

When Goodman’s criteria fail, often because of the

lack of any certain definition at all, representations

simply become ‘sketches.’ Visualizations based on

metaphors are one such example, which nevertheless

remain valuable because the conventions for their use

and the context in which they are used sufficiently

mitigate ambiguity of meaning. Engineering drawings

may have syntactic problems with individual component

(character) differentiation, but the semantics are fixed by

the delineation within the drawing plane of a separate

space and its occupation by a table specifying types,

identifiers, names, etc. [32].

Goodman’s tests do provide an initial means of

analyzing notations and visualizations in general and of

deciding if particular criteria are clearly satisfied.

However, his definition of a notational system says little

about the nature of syntactic or semantic structure and

nothing about the nature of the morphisms associating

them, or about levels of abstraction. This is a general

problem in information visualization in which data of

various degrees of abstraction, dimensions, degrees of

freedom, and relatedness are correlated employing

graphical means. In such situations, it may be useful to

transform this data into another conceptual structure so

as to make it more readily perceptible. This

transformational process amounts to finding a metaphor

that aptly represents and communicates the information

to be perceived. Gotel, Marchese and Morris have put

forward this approach in the area of requirements

engineering [13], suggesting that the right metaphors

could immediately make complex abstract data

perceptible, thus fulfilling Tversky’s principle of

apprehension.

Finally, one problem that is common to both fields

of endeavor is agreement on a definition of effectiveness.

The majority of visualization effects, particularly in

software engineering, tend to lack any conclusive

validation as to effectiveness in use. Other than a purely

pragmatic measure of survival and use (as per the UML),

what are the determinants of an effective visualization?

Without clear criteria, it will be difficult to assess the

value of what is likely to become a growing number of

contributions in an under-explored field. This is an area

open to research [6, 27, 30].

6. Conclusions

Software engineering is a field that is characterized,

in its earliest stages, by the need to reconcile multiple

550

viewpoints, fuse data from disparate sources and develop

agreed models. Requirements engineering is that part of

the software engineering discipline that has used

visualization the least creatively and, we argue, the least

successfully to date, and we suggest it is the area most

open to future development and practical potential. The

information visualization field is replete with exemplars

that attempt to discover structure in complex

unstructured data sets and this is where the synergy lies.

7. References

[1] ACM Symposium on Software Visualization (SOFTVIS).

Conference Proceedings from 2003, 2005, 2006.

[2] Agile Software Development Alliance. Manifesto for

Agile Software Development. Online at

http://agilemanifesto.org/, February 2001.

[3] Boehm, B.W. and Papaccio, P.N. Understanding and

Controlling Software Costs. IEEE Transactions on

Software Engineering, Vol. 14, No. 10, pp.1462-1477,

October 1988.

[4] Card, S.K., Mackinlay, J.D. and Shneiderman, B.

Readings in Information Visualization: Using Vision to

Think. Morgan Kaufmann, 1999.

[5] Chen, S. Information Visualization: Beyond the Horizon,

2
nd

 edition. London: Springer-Verlag, 2004.

[6] Chen, C. and Czerwinski, M.P. Empirical evaluation of

information visualizations: an introduction. International

Journal of Human-Computer Studies, Vol. 53, No. 5

pp.631-635, November 2000.

[7] Davis, A.M. Software Requirements: Analysis and

Specification. Prentice-Hall, Inc., 1990.

[8] Drew, N.S. and Hendley, R.J. Visualising Complex

Interacting Systems. CHI 95 Conference Companion,

ACM, pp.204-205, 1995.

[9] Eppler, M.J. and Burkhard, R.A. Knowledge

Visualization: Towards a New Discipline and its Fields

of Application. Paper #2/2004, July 2004-07-28, Version

2.5, Institute for Corporate Communication, Faculty of

Communication Sciences, Universita delia Svizzera

italiana.

[10] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.

Design Patterns. Reading, Mass.: Addison Wesley,

1995.

[11] Goldstine, H.H. and von Neumann, J. Planning and

coding of problems for an electronic computing

instrument, Part II, Volume 1. Report prepared for US

Army Ordnance Department, April 1947. In A.H. Traub

(Ed.), John von Neumann, Collected Works Volume V,

Design of computers, theory of automata and numerical

analysis. Pergamon Press, Oxford, pp 80-151, 1963.

[12] Goodman, N. Languages of Art: An approach to a theory

of symbols, 2nd ed. Indianapolis, Ind.: Hackett, 1976.

[13] Gotel, O.C.Z., Marchese, F.T. and Morris, S.J. On

Requirements Visualization. In Proceedings of the

Second International Workshop on Requirements

Engineering Visualization (REV’07), New Delhi, India:

IEEE, 2007.

[14] Groden, M. and Kreiswirth, M. (Eds). Moscow-Tartu

School. In The Johns Hopkins Guide to Literary Theory

and Criticism. Baltimore: The Johns Hopkins University

Press, 1997.

[15] IEEE International Requirements Engineering

Conference (RE). Annual Conference Proceedings from

1994 through 2007.

[16] IEEE International Workshop on Requirements

Engineering Visualization (REV). Workshop Proceedings

from 2006, 2007.

[17] IEEE International Workshop on Visualizing Software

for Understanding and Analysis (VISSOFT). Conference

Proceedings from 2002, 2003, 2005, 2007.

[18] Kleppe, A., Warmer, J. and Bast, W. MDA Explained:

The Model Driven Architecture: Practice and Promise.

Addison-Wesley Professional, 2003.

[19] Maiden, N. CREWS-SAVRE: Scenarios for acquiring

and validating requirements. Automated Software

Engineering Journal, Vol. 11, No. 3, pp.183-192, 1998.

[20] Maletic, J.I., Marcus, A. and Collard, M.L. A Task

Oriented View of Software Visualization. In Proceedings

of the First International Workshop on Visualizing

Software for Understanding and Analysis (VISSOFT’02),

Los Alamitos, CA: IEEE, 2002.

[21] Marriott, K. and Meyer, B. (Eds.) Visual Language

Theory. New York: Springer, 1998.

[22] McConnell, S. Rapid Development: Taming Wild

Software Schedules. Microsoft Press, 1996.

[23] Morris, S. and Gotel, O. Flow Diagrams: Rise and Fall of

the First Software Engineering Notation. In Proceedings

of the 4
th

 International Conference on the Theory and

Application of Diagrams (Diagrams’06), Stanford, USA,

2006 (Lecture Notes in Computer Science 4045,

Springer-Verlag).

[24] Morris, S.J. and Spanoudakis, G. UML: An Evaluation

of the Visual Syntax of the Language. In Proceedings of

the 34
th

 Annual Hawaii International Conference on

Systems Sciences (HICSS'01), Los Alamitos, CA: IEEE

Press, 2001.

[25] Object Management Group (OMG). Unified Modeling

Language, Version 2.1.2. Online at

http://www.omg.org/spec/UML/2.1.2/, November 2007.

[26] Oxford English Dictionary (OED). Online at

http://www.oed.com, February 2008.

[27] Plaisant, C. The challenge of information visualization

evaluation. In Proceedings of the Working Conference on

Advanced Visual interfaces (Gallipoli, Italy, May 25 -

28, 2004). AVI '04. ACM, New York, NY, pp.109-116,

2004.

[28] Price, B.A., Baecker, R.M. and Small, I.S. A Principled

Taxonomy of Software Visualization. Journal of Visual

Languages and Computing, Vol. 4, No. 3, pp.211-266,

1993.

[29] Propp, V. Morphology of the folktale, translated by L.

Scott, 2
nd

 edition. Austin: University of Texas Press,

1968.

[30] Reilly, D.F. and Inkpen, K.M. White rooms and

morphing don't mix: setting and the evaluation of

visualization techniques. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems

(San Jose, California, USA, April 28 - May 03, 2007).

CHI '07. ACM, New York, NY, pp.111-120, 2007.

[31] Shin, S.-J. The Logical Status of Diagrams. Cambridge:

CUP, 1994.

[32] Simmons, C.H. and Maguire, D.E. Manual of

Engineering Drawing to British and International

Standards, 2
nd

 edition. Butterworth-Heinemann, 2004.

[33] Sommerville, I. Software Engineering, 8
th

 edition.

Addison Wesley, 2006.

551

[34] Spence, R. Information Visualization. ACM Press, 2001.

[35] The Standish Group. CHAOS Chronicles III. Online at

http://www.standishgroup.com/chaos/toc.php, 2003.

[36] Stasko, J., Domingue, J., Brown, M.H. and Price, B.A.

Software Visualization: Programming as a Multimedia

Experience. Cambridge, Mass.: MIT Press, 1998.

[37] Tversky, B., Morrison, J.B. and Betrancourt, M.

Animation: Can it facilitate? International Journal of

Human Computer Systems, Vol. 57, pp. 247-262, 2002.

[38] Ware, C. Information Visualization: Perception for

Design, 2
nd

 edition. Morgan Kaufmann, 2004.

[39] Yourdon, E. Modern Structured Analysis. Englewood

Cliffs, N.J.: Yourdon Press, 1989.

552

