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Abstract — Cycle codes are a special case of low-
density parity-check (LDPC) codes and as such can
be decoded using an iterative message-passing decod-
ing algorithm on the associated Tanner graph. The
existence of pseudo-codewords is known to cause the
decoding algorithm to fail in certain instances. In
this paper, we draw a connection between pseudo-
codewords of cycle codes and the so-called edge zeta
function of the associated normal graph and show how
the Newton polyhedron of the zeta function equals the
fundamental cone of the code, which plays a crucial
role in characterizing the performance of iterative de-
coding algorithms.

I. Introduction

We are interested in characterizing the performance of a
binary low-density parity-check (LDPC) code C used for the
transmission of information over a memoryless channel. More-
over, we focus on the case that iterative decoding is performed
at the receiver end.

Let the code be described by a parity-check matrix H . To
a matrix H we can associate a bipartite graph, the so-called
Tanner graph T , T (H) [1]. As was realized in [2], an essen-
tial role in the understanding of iterative decoding is played
by the finite covers of the Tanner graph T and the codes de-
fined by them. In fact, while the main strength of iterative
decoders, namely their low complexity, results from the fact
that they operate locally on the Tanner graph, this very fact
is also the source of the weakness of any iterative decoding
algorithm. The systemic problem is that by just performing
local operations the decoder cannot distinguish if it is decod-
ing on the Tanner graph T or any of the finite covers. Thus,
codewords in a cover of T will be interfering with the iterative
decoding process. Consequently, in order to understand the
behavior of iterative decoders we will have to characterize the
“covering” codes and their codewords.

The goal of this paper is to give a concise geometric and
simple description of these codes in finite covers of T . In
particular, the geometric characterization will relate to a cone
in Euclidean space, the so-called fundamental cone [2].

0This is essentially the paper that was presented at the IT Work-
shop 2004, San Antonio, TX, USA. We replaced “Newton polytope”
by “Newton polyhedron” throughout the text and corrected a slight
unpreciseness in Th. V.4
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We focus on a special class of LDPC codes, namely the class
of cycle codes. These codes are informally defined as LDPC
codes where all bit nodes have degree two.5

From a practical point of view cycle codes are somewhat
marred by the fact that their minimum distance grows (at
best) logarithmically in the block length (assuming fixed
check-node degrees). Nevertheless, their properties make
them more amenable to analysis than general LDPC codes.
In any case, cycle codes can be seen as an interesting object
of study from which results can (hopefully) be suitably gener-
alized to the more interesting class of LDPC codes where part
or all of the bit nodes have degree at least three.

The connections between iterative decoding and LDPC
codes are probably best understood for cycle codes. First of
all, the fundamental cone can be related concisely to the de-
coding behavior under iterative decoding, and secondly, as we
aim to show in this paper, the fundamental cone may be identi-
fied as the Newton polyhedron of Hashimoto’s edge zeta func-
tion [11] associated to the normal graph (defined in Sec. II)
of the code. For an early reference about the performance of
iterative decoding techniques in conjunction with cycle codes
see [4, ch.6]. In the case of general LDPC codes, the rela-
tion of the fundamental cone to the exact characterization of
the iterative decoding behavior is more intricate. Neverthe-
less, even here the fundamental cone gives an amazingly exact
picture of the behavior.6 While we here only establish the
connection between the fundamental cone and the edge zeta
function for cycle codes, we conjecture the existence of such a
zeta function for the case of general LDPC codes.

This paper is structured as follows: Sec. II introduces the
basics about Tanner graphs and normal graphs of binary linear
codes and Sec. III discusses graph covers and the fundamen-
tal cone associated with a code. The notion of an edge zeta
function of a graph will be introduced in Sec. IV and Sec. V
discusses the main result of this paper, namely the identifi-
cation of the fundamental cone and the Newton polyhedron
in the case of cycle codes. Throughout the whole paper we
will use two running examples containing two different codes,
namely Code A and Code B: the first is not a cycle code
whereas the latter one is a cycle code.

II. Binary Linear Codes and Their Graphs

Definition II.1. An undirected graph X = X(V (X), E(X))
consists of a vertex-set V , V (X) and an edge-set E , E(X)
where the elements of E are 2-subsets of V . We assume a
fixed ordering on E so that E = {e1, . . . , en}, where n ,

5The reason for the name “cycle codes” will become clear in
Sec. II.

6The behavior of the linear programming decoder [3] (for the
most canonical relaxation) is exactly characterized by the funda-
mental cone in the cycle code case and in the non-cycle code case.
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Figure 1: (Code A) Left: Tanner graph T (H) of the sim-
ple binary linear code in Ex. II.4. Right: Tanner graph
of an example of an M -cover of T (H).

n(X) , |E|. By a graph (without further qualifications) we
will always mean an undirected graph. We will not allow self-
loops or multiple edges. For v ∈ V , we write ∂(v) for the
neighborhood of v, i.e., the collection of vertices of X which
are adjacent to v.

Definition II.2. Let7 H = (hji) be the parity-check matrix
of a binary linear code C. We let J , J(H) be the set of
row indices of H and we let I , I(H) be the set of column
indices of H , respectively. For each i ∈ I , we let Ji , Ji(H) ,{
j ∈ J | hji=1

}
. For each j ∈ J , we let Ij , Ij(H) ,

{
i ∈

I | hji=1
}
. Furthermore, for any I ′ ⊆ I and any vector x of

length |I |, we let xI′ be the vector that has only the entries
of x whose indices are in I ′. The Tanner graph [1] (or factor
graph [5]) associated to H will be called T (H): it consists of
bit nodes X1, . . . , X|I|, (parity-)check nodes p1, . . . , p|J|, and
edges between the two types of nodes. More precisely, bit node
i and check node j are connected if and only if hji = 1. The
degree of bit node i is the number of adjacent check nodes in
T (H) and is therefore equal to |Ji(H)|. The degree of check
node j is the number of adjacent bit nodes in T (H) and is

therefore equal to |Ij(H)|. We say that a vector x ∈ F
|I|
2 is

a configuration of the Tanner graph T (H) and we call x ∈

F
|I|
2 a valid configuration if all the checks are fulfilled, i.e.∑
i∈I hjixi =

∑
i∈Ij

xi = 0 (in F2) for all j ∈ J . Obviously,

the set of all valid configurations forms the linear binary code
C.

Definition II.3. A binary linear code C defined by a parity-
check matrix H is called a cycle code if the associated Tanner
graph T (H) is 2-regular in the bit nodes, i.e. all bit nodes
have degree 2. This is equivalent to the condition that for
all i ∈ I(H) we have |Ji(H)| = 2. Such codes were studied
e.g. in [6].

Example II.4 (Code A). Let C be a binary [4, 2] code with
parity-check matrix

H ,

(
1 1 1 0
0 1 1 1

)
.

7Note the following convention: a row index of H will be denoted
by j and a column index of H will be denoted by i.
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Figure 2: (Code B) Left: Tanner graph T (H) of the cycle
code C in Ex. II.5. Right: Normal graph N(H) of the
cycle code C in Ex. II.5.

Obviously, C =
{
(0, 0, 0, 0), (0, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)

}
,

J = {1, 2}, J1 = {1}, J2 = {1, 2}, J3 = {1, 2}, J4 = {2},
I = {1, 2, 3, 4}, I1 = {1, 2, 3}, and I2 = {2, 3, 4}. The Tanner
graph T (H) that is associated to H is shown in Fig. 1 (left);
it can easily be seen that this is not a cycle code.

Example II.5 (Code B). Let C be a binary [7, 2] code with
parity-check matrix

H ,




1 1 0 0 0 0 0
0 1 1 1 0 0 0
1 0 1 0 0 0 0
0 0 0 1 1 0 1
0 0 0 0 1 1 0
0 0 0 0 0 1 1




.

Obviously, C =
{
(0, 0, 0, 0, 0, 0, 0), (1, 1, 1, 0, 0, 0, 0), (0, 0, 0, 0,

1, 1, 1), (1, 1, 1, 0, 1, 1, 1)
}
.8 The Tanner graph T (H) of C is

shown in Fig. 2 (left). As can easily be seen, all bit nodes
have degree 2 and so the code C is a cycle code. From the
Tanner graph T (H) we can derive another graph N(H) in the
following way: replace each (degree-2) bit node and its adja-
cent edges by a single edge and label the new edge according
to the labeling of the bit node in the Tanner graph.9 For
code C we obtain the graph N(H) shown in Fig. 2 (right).
From this graph the notion of “cycle code” becomes clear: ev-
ery codeword (i.e. every valid configuration) corresponds to a
simple cycle or a symmetric difference set of simple cycles in
the normal graph. This will be made more precise in Sec. IV.

III. The Fundamental Cone

The following definition introduces the graph theoretic no-
tion of a “graph cover”.

Definition III.1. [8, 9] An unramified, finite cover, or, sim-
ply, a cover of a graph X is a graph Y along with a surjec-
tive map π : Y → X which is a graph homomorphism, i.e.,
which takes adjacent vertices of Y to adjacent vertices of X,
such that for each vertex x of X and each y ∈ π−1(x), the
neighborhood ∂(y) of y is mapped bijectively to ∂(x). For a

8Note that the rank of H is 5 and not 6: therefore the dimension
of C is 2 and not 1.

9We gave the label N(H) because such a graph is also known as
normal graph or Forney-style factor graph [7].
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Figure 3: (Code B) Left: A double cover of the Tanner
graph T (H) in Fig. 2 (left). Right: The corresponding
double cover of the normal graph N(H) in Fig. 2 (right).
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Figure 4: (Code B) A directed normal graph of the nor-
mal graph N(H) in Fig. 2 (left).

positive integer M , an M-cover of X is an unramified finite
cover π : Y → X such that for each vertex x of X, π−1(x)
contains exactly M vertices of Y .

Example III.2 (Code A). We continue with Code A defined
in Ex. II.4. Let T , T (H) be the Tanner graph corresponding

to H . An M -fold cover T̃ (as shown in Fig. 1 (right)) of
T is specified by defining the permutations π1,1, π1,2, π1,3

(corresponding to the first row of H) and the permutations
π2,2, π2,3, π2,4 (corresponding to the second row of H).

The parity-check matrix H̃ associated to one possible 3-fold
cover Tanner graph T̃ looks like

H̃ ,




0 1 0 1 0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 0 0 1 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 1 0 0 0 1




=

(
I2 I0 I2 0
0 I1 I1 I0

)
,

where Is is a 3 × 3 identity matrix, cyclically shifted
to the left by s positions. This parity-check matrix de-
fines a code C̃: an example of a codeword of C̃ is c̃ =
(1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0).

Other examples of a graph cover are shown in Fig. 3: the
left-hand side shows a double cover Tanner graph of the Tan-
ner graph in Fig. 2 (left) and the right-hand side shows the
corresponding double cover normal graph of the normal graph
in Fig. 2 (right). The following remark formalizes Ex. III.2.

Remark III.3. Let C be a binary code with parity-check
matrix H and Tanner graph T , T (H). Let J , J(H) and

Ij , Ij(H). For a positive integer M , let T̃ be an arbitrary

M -fold cover of T and let C̃ be the binary code described by T̃ .
Knowing the graph T , the graph T̃ is completely specified by
defining for all j ∈ J and all i ∈ Ij the permutations πj,i that
map [M ] , {1, . . . ,M} onto itself. The meaning of πj,i(m),
m ∈ [M ] is the following: the mth copy of the check node j is
connected to the πj,i(m)th copy of the ith bit. It follows that

c̃ ∈ C̃ if and only if
∑

i∈Ij

c̃i,πj,i(m) = 0 (in F2)

for all j ∈ J and all m ∈ [M ]. The parity-check matrix H̃ that
expresses this fact can be defined as follows. Let the entries
of H̃ be indexed by (j,m) ∈ J × [M ] and (i,m′) ∈ I × [M ].
Then

h(j,m),(i,m′) ,

{
1 if i ∈ Ij and m′ = πj,i(m)

0 otherwise.

Definition III.4. [2] Let C be a binary linear (base) code
with parity-check matrix H and let T , T (H) be the corre-

sponding Tanner graph. For any positive integer M , let T̃ be
an M -fold cover of T and let C̃ be the binary code described
by T̃ . We will denote a codeword of C̃ by c̃, where the (i,m)’s
component of c̃, i.e. c̃i,m, denotes the value of the mth copy
of the ith bit.

The pseudo-codeword associated to c̃ is the rational vector
ω(c̃) ,

(
ω1(c̃), ω2(c̃), . . . , ωn(c̃)

)
with

ωi(c̃) ,
1

M

∑

m∈[M]

c̃i,m,

where the sum is taken in R (not in F2). We call the vector
M ·ω(c̃) the unscaled pseudo-codeword associated with c̃. In
fact, any multiple (by a positive scalar) of ω(c̃) will be called
a pseudo-codeword associated with c̃.

Note that any codeword is also a pseudo-codeword.

Remark III.5. Notice that a pseudo-codeword, as defined
in Def. III.4, has length |I(H)|, the same as the length of

any codeword, whereas a codeword like c̃ ∈ C̃ has length
M · |I(H)|, where M is the degree of the corresponding cover
Tanner graph.

Example III.6 (Code A). We continue with Code A defined
in Ex. II.4. We saw that c̃ = (1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0) was

a codeword of the code C̃. Applying Def. III.4 we see that
the corresponding pseudo-codeword is ω(c̃) = ( 2

3
, 2
3
, 2
3
, 0) and

that the corresponding unscaled pseudo-codeword is 3·ω(c̃) =
(2, 2, 2, 0). Note that ω(c̃) cannot be written as a convex
combination of the codewords in C.

The influence of a pseudo-codeword on the decoding behav-
ior under iterative decoding can be measured by its pseudo-
weight which is a function of the pseudo-codeword and the
channel used (see [2] and references therein). An important
property of the pseudo-weight is its scaling invariance, i.e. scal-
ing a pseudo-codeword by a positive scalar leaves its pseudo-
weight unchanged.

The fundamental cone that is given in the following defini-
tion will be, along with the zeta functions of a graph, a main
object of interest in this paper.



Definition III.7. [2, 3] Let C be an arbitrary binary linear
code and let H be its parity-check matrix. We define the
fundamental cone K(H) of H to be the set of vectors ω ∈ R

n

that satisfy

∀i ∈ I : ωi ≥ 0,

∀j ∈ J, ∀i ∈ Ij :
∑

i′∈Ij\{i}

ωi′ ≥ ωi,

where J , J(H), I , I(H), Ij , Ij(H).

Example III.8 (Code A). We continue with Code A defined
in Ex. II.4. The fundamental cone K(H) is the set

K(H) = {(ω1, ω2,ω3, ω4) ∈ R
4
∣∣ω1 ≥ 0, ω2 ≥ 0, ω3 ≥ 0, ω4 ≥ 0,

− ω1 + ω2 + ω3 ≥ 0, −ω2 + ω3 + ω4 ≥ 0,

+ ω1 − ω2 + ω3 ≥ 0, +ω2 − ω3 + ω4 ≥ 0,

+ ω1 + ω2 − ω3 ≥ 0, +ω2 + ω3 − ω4 ≥ 0}.

The next two lemmas establish that there is a very tight
connection between the fundamental cone of a code and code-
words that live in finite covers. More specifically, in one di-
rection we prove that the pseudo-codeword associated to any
codeword in a cover of a Tanner graph must lie within the
fundamental polytope. In the other direction we prove that
to a given vector in the fundamental polytope we can find a
cover with a codeword in it whose (suitably scaled) pseudo-
codeword is arbitrarily close to the given vector.

Lemma III.9. [2] Let C be a binary linear code with parity-
check matrix H and Tanner graph T = T (H). For a positive

integer M , let T̃ be an arbitrary M-fold cover of T and let C̃
be the binary code described by T̃ . If c̃ ∈ C̃ then ω(c̃) ∈ K(H).

Lemma III.10. [2] Let C be a binary linear code with parity-
check matrix H and Tanner graph T = T (H). Let the vector
ω

′ ∈ R
n satisfy ω

′ ∈ K(H). Then for any ε > 0, there is a

positive integer M such that there is a codeword c̃ in a code C̃

defined by an M-fold cover T̃ of T such that ||αω(c̃)−ω
′||2 < ε

for some α > 0.

Putting Lemmas III.9 and III.10 together, we have:

Theorem III.11. Let C be a binary linear code with parity-
check matrix H and fundamental cone K(H). Then the lines
through the pseudo-codewords for C are dense in K(H).

Moreover, we have

Theorem III.12. The point ω = (ω1, . . . , ω|I|) ∈ K(H)∩Z
n

is an unscaled pseudo-codeword if and only if
∑

i∈I
hjiωi =

0 (in F2) for each j ∈ J.

Proof. This follows from Lemma III.10 and Corollary V.5.

IV. Zeta Functions of Graphs

Before we can talk about zeta functions of graphs we need
to say exactly what we mean by a cycle in a graph.

Definition IV.1. Let X be an undirected graph as in
Def. II.1. A sequence (ei1 , . . . , eik) of edges of X is a cycle
on X if the edges eij can be directed so that eis terminates
where eis+1 begins for 1 ≤ s ≤ k−1 and eik terminates where
ei1 begins. The characteristic vector of the cycle (ei1 , . . . , eik)

on X is the binary vector of length n whose tth coordinate is
1 if and only if et appears as some eij . If the cycle does not
cross itself, i.e., if each vertex of X is involved in at most two
of the edges ei1 , . . . , eik , then we say the cycle is simple.

This definition relates as follows to the cycle codes intro-
duced in Sec. II:

Lemma IV.2. Let N , N(H) be the normal graph of a bi-
nary cycle code C with parity-check matrix H. The character-
istic vector of any simple cycle in N is a valid configuration of
N , i.e. it is a codeword of C. Moreover, the symmetric differ-
ence of the characteristic vector of simple cycles in N is also
a valid configuration of N , i.e. it is a codeword of C. On the
other hand, to any codeword in C corresponds the symmetric
difference of simple cycles in N .

Proof. This follows from Euler’s Theorem [10, Th. 1.2.26].

The code C in Lemma IV.2 can also be seen as spanned
by the characteristic vectors of the simple cycles of N . The
length of C equals n(N), the number of edges in N . Further,
the minimum Hamming distance dmin of C is the length of the
shortest cycle in N , i.e., the girth of N . Also, the dimension
of C is the number of independent cycles in N , i.e., the rank
of the fundamental group of the underlying topological space
of N , i.e., |E(N)|− |V (N)|+1 = 1−χ(N), where χ(N) is the
Euler characteristic of N .

Let us turn back to graph-theoretic notions: the next im-
portant step is to introduce a special class of cycles called
“primitive, backtrackless and tailless cycles”.

Definition IV.3. Let Γ = (ei1 , . . . , eik) be a cycle in a graph
X. We say Γ is backtrackless if for no s do we have eis = eis+1 .
We say Γ is tailless if ei1 6= eik . We say Γ is primitive if there
is no cycle Θ on X such that Γ = Θr with r ≥ 2, i.e., such
that Γ is obtained by following Θ a total of r times. We say
that the cycle Ψ = (ej1 , . . . , ejk ) is equivalent to Γ if there is
some integer t such that ejs = ej(s+t) mod k

for all s.

It is easy to check that any simple cycle is a primitive, back-
trackless and tailless cycle and that the notion of equivalence
given in Def. IV.3 defines an equivalence relation on primitive,
backtrackless, tailless cycles.

Example IV.4 (Code B). Let us return to Code B defined
in Ex. II.5 and its normal graph shown in Fig. 2 (right); the
edge with variable label Xi will be called ei. We see that
the edge-sequences (e1, e2, e3) and (e5, e6, e7) are simple cy-
cles: they correspond to the codewords (1, 1, 1, 0, 0, 0, 0) and
(0, 0, 0, 0, 1, 1, 1), respectively, in C.

In contrast to these two cycles, the cycles

Γ1 = (e1, e2, e4, e5, e6, e7, e4, e3)

Γ2 = (e3, e4, e7, e6, e5, e4, e2, e1)

Γ3 = (e1, e2, e4, e5, e6, e7, e5, e6, e7, e4, e3)

are not simple cycles; but they are inequivalent, backtrack-
less, tailless, primitive cycles. Indeed, we can obtain infinitely
many inequivalent, backtrackless, tailless, primitive cycles on
N(H) by, for example, following the path (e1, e2, e4), then ar-
bitrarily many copies of the loop (e5, e6, e7), and then (e4, e3).

The edge zeta function of a graph is a way to enumerate all
inequivalent, primitive, backtrackless cycles and combinations
thereof.



Definition IV.5. [11, 9] Let Γ be a path in a graph X with
edge-set E; write Γ = (ei1 , . . . , eik) to indicate that Γ begins
with the edge ei1 and ends with the edge eik . The monomial
of Γ is given by g(Γ) , ui1 · · ·uik , where the ui’s are inde-
terminates. The edge zeta function of X is defined to be the
power series ζX(u1, . . . , un) ∈ Z[[u1, . . . , un]] given by

ζX(u1, . . . , un) =
∏

[Γ]∈A(X)

(
1− g(Γ)

)−1
,

where A(X) is the collection of equivalence classes of back-
trackless, tailless, primitive cycles in X.

As Ex. IV.4 shows, the product in the definition of the edge
zeta function is, in general, infinite. However, it is true that
the edge zeta function is a rational function. To see this, we
first need a few more definitions.

Definition IV.6. [9] Let X = (V (X), E(X)) be an undi-
rected graph with edge set E(X) = {e1, . . . , en}. A directed
graph ~X = (~V ( ~X), ~E( ~X)) derived from X is a graph with
vertex set ~V ( ~X) , V (X) and edge set ~E( ~X) , {f1, . . . , f2n},
where the (directed) edges fi and fn+i both correspond to the
same edge ei ∈ E(X) but have opposite directions.

Definition IV.7. [9] Let ~X = (~V ( ~X), ~E( ~X)) be a directed
graph as defined in Def. IV.6. The directed edge matrix of ~X

is the matrix M( ~X) = (mij) where

mij =

{
1, if fi feeds into fj to form a backtrackless path

0, otherwise.

Example IV.8 (Code B). Let us continue with Code B
defined in Ex. II.5. The normal graph N = N(H) of the code
is shown in Fig. 2 (right); the edge with variable label Xi will
be called ei. The directed edges f1 to f14 of a directed version
~N of N are chosen such that the edges f1 to f7 are as shown
in Fig. 4. Implicitly this figure also defines the edges f8 to f14;
e.g., f11 is the same as f4 but directed from right to left. The
directed edge matrix M , M( ~N) of ~N is then the matrix

M =




0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0




.

With these definitions, Stark and Terras [9] prove:

Theorem IV.9. [9] The edge zeta function ζX(u1, . . . , un) is
a rational function. More precisely, for any directed graph ~X

of X, we have

ζX(u1, . . . , un)
−1 = det(I − UM( ~X)) = det(I −M( ~X)U)

where I is the identity matrix of size 2n and U =
diag(u1, . . . , un, u1, . . . , un) is a diagonal matrix of indetermi-
nants.

Example IV.10 (Code B). Let us continue with Code B
defined in Ex. II.5 and its normal graph N , N(H). By
the above theorem and using ~N from Ex. IV.8, the edge zeta
function ζN of our graph N satisfies

ζN(u1, . . . , u7)
−1 = det(I14 − UM) = det(I14 −MU)

= 1− 2u1u2u3 + u
2
1u

2
2u

2
3 − 2u5u6u7 + 4u1u2u3u5u6u7

− 2u2
1u

2
2u

2
3u5u6u7 − 4u1u2u3u

2
4u5u6u7

+ 4u2
1u

2
2u

2
3u

2
4u5u6u7 + u

2
5u

2
6u

2
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2
5u

2
6u

2
7

+ u
2
1u

2
2u

2
3u

2
5u

2
6u

2
7 + 4u1u2u3u

2
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2
5u

2
6u

2
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− 4u2
1u

2
2u

2
3u

2
4u

2
5u

2
6u

2
7.

Expanding out the Taylor series, we get the first several terms
of ζN :

ζN(u1, . . . , u7) = 1 + 2u1u2u3 + 3u2
1u

2
2u

2
3 + 2u5u6u7

+ 4u1u2u3u5u6u7 + 6u2
1u

2
2u

2
3u5u6u7

+ 4u1u2u3u
2
4u5u6u7 + 12u2

1u
2
2u

2
3u

2
4u5u6u7

+ 3u2
5u

2
6u

2
7 + 6u1u2u3u

2
5u

2
6u

2
7 + 9u2

1u
2
2u

2
3u

2
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2
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2
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+ 12u1u2u3u
2
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2
5u

2
6u

2
7 + 36u2

1u
2
2u

2
3u

2
4u

2
5u

2
6u

2
7 + · · · .

V. Relating the Fundamental Cone and the

Zeta Function of a Cycle Code

The results of this chapter are based on the simple obser-
vations made in the following example.

Example V.1 (Code B). Let us continue with Code B de-
fined in Ex. II.5 and its Tanner graph T , T (H) as shown in
Fig. 2 (left). We saw that any codeword corresponds one-to-
one to a valid configuration in T .

Consider now a double cover T̃ of T as shown in Fig. 3
(left): the set of all valid configurations of T̃ defines a code C̃.

Because of the properties of graph covers, the code C̃ is again
a cycle code and in the same manner as in Ex. II.5 we deduce
its normal graph Ñ . It is not hard to see that Ñ shown in
Fig. 3 (right) is a double cover of the normal graph N , N(H)
shown in Fig. 2 (right).

Just as the codewords of C correspond bijectively to the
vectors in the span of the characteristic vectors of the simple
cycles in N , the codewords of C̃ correspond bijectively to the
vectors in the span of the characteristic vectors of the simple
cycles in Ñ .

An example of simple cycle in Ñ is the edge-sequence10

Γ̃ = (e′1, e
′
2, e

′′
4 , e

′′
5 , e

′′
6 , e

′
7, e

′
4, e

′
3).

After mapping it down to N it reads

π(Γ̃) = (e1, e2, e4, e5, e6, e7, e4, e3),

which is a backtrackless and tailless cycle in N which is not
simple. Note that in general the image of a simple cycle is
always backtrackless and tailless, but not necessarily simple
or primitive. The cycle Γ̃ corresponds to a codeword c̃ and
the mapped cycle π(Γ̃) corresponds to the pseudo-codeword

ω(c̃) =
1

2
· (1, 1, 1, 2, 1, 1, 1) =

(
1

2
,
1

2
,
1

2
, 1,

1

2
,
1

2
,
1

2

)
.

10The edge with variable label X′
i (X′′

i ) will be called e′i (e′′i ).



With this example we can draw the following important
conclusion about cycle codes (which will be formalized in
Th. V.4): listing the pseudo-codewords stemming from all
the possible finite covers is equivalent to listing all backtrack-
less and tailless cycles of the normal graph and combinations
thereof. But listing these cycles (in a certain way) is exactly
what the zeta function of the normal graph essentially does!

Definition V.2. The exponent vector of the monomial
u
p1
1 . . . upn

n is the vector (p1, . . . , pn) ∈ N
n
0 of the exponents

of the monomial.

Example V.3 (Code B). Continuing with Code B that was
defined in Ex. II.5 and the zeta function ζN of its normal graph
N , N(H) (cf. Ex. IV.10), we see that the exponent vectors of
the first several monomials appearing in ζN are (0,0,0,0,0,0,0),
(1,1,1,0,0,0,0), (2,2,2,0,0,0,0), (0,0,0,0,1,1,1), (1,1,1,0,1,1,1),
(2,2,2,0,1,1,1), (1,1,1,2,1,1,1), (2,2,2,2,1,1,1), (0,0,0,0,2,2,2),
(1,1,1,0,2,2,2), (2,2,2,0,2,2,2), (1,1,1,2,2,2,2), (2,2,2,2,2,2,2),
. . . . Note that most of these lie within the span of multiples
of codewords in C; for example,

(1, 1, 1, 0, 2, 2, 2) = (1, 1, 1, 0, 0, 0, 0) + 2(0, 0, 0, 0, 1, 1, 1).

The exceptions thus far are (1,1,1,2,1,1,1), (2,2,2,2,1,1,1),
(1,1,1,2,2,2,2) and (2,2,2,2,2,2,2). The first of these excep-
tions is exactly the pseudo-codeword for C given in Ex. V.1,
and the rest lie within the span of this pseudo-codeword along
with multiples of codewords.

These observations are made precise in the next theorem.

Theorem V.4. Let C be a cycle code defined by a parity-
check matrix H having normal graph N , N(H), let n =
n(N) be the number of edges of N , and let ζN(u1, . . . , un) be
the edge zeta function of N . Then the monomial up1

1 . . . upn
n

has nonzero coefficient in ζN if and only if the corresponding
exponent vector (p1, . . . , pn) is an unscaled pseudo-codeword
for C.

Sketch of proof. By Def. IV.5, the monomial up1
1 . . . upn

n ap-
pears with nonzero coefficient in ζN if and only if there are
backtrackless, tailless, primitive cycles Γ1, . . . ,Γm on X such
that

u
p1
1 . . . u

pn
n = g(Γ1)

q1 · · · g(Γm)qm

for some nonnegative integers q1, . . . , qm. It is thus enough to
prove that Γ is a backtrackless, tailless cycle on N if and only if
Γ = π(Γ̃) for some simple cycle Γ̃ on some (finite, unramified)

cover Ñ of N , where π : Ñ → N is the canonical surjection.
So, first suppose that π : Ñ → N is a cover of N and

that Γ̃ is a simple cycle on Ñ . We must show that π(Γ̃)
is a backtrackless, tailless cycle on N . Suppose otherwise,
namely, that (x, y, x) is part of the vertex sequence of π(Γ̃′)

for some Γ̃′ equivalent to Γ̃. Then it comes from (ũ, ṽ, w̃)

in Γ̃′. In particular, this means that v is adjacent to two
distinct vertices ũ and w̃ in Ñ , both of which project to x.
This cannot happen in a finite unramified cover. Thus π(Γ̃)
is backtrackless and tailless.

For the converse, we must show that given a backtrackless,
tailless cycle Γ on N , there is a cover π : Ñ → N and a simple
cycle Γ̃ on Ñ lifting Γ. This is done by induction on the length
of Γ, with cycles of length 3, which are necessarily simple,

providing the base case. For a nonsimple cycle Γ of length
greater than 3, the idea is to break off the first simple cycle
Γ1 appearing within Γ. Then Γ is equivalent to a composition
of Γ1 with some other cycle Γ2 which has length less than that
of Γ. If Γ2 is backtrackless, then it has a lift to a simple cycle
by induction hypothesis and one must explicitly show how to
“glue together” this lift with the cycle Γ1 to form a simple
lifting of Γ. The case where Γ2 has backtracking presents a
bit more difficulty, but is handled similarly.

The following corollary is contained in the proof of Th. V.4.

Corollary V.5. Consider the same setup as in Th. V.4. The
vector p = (p1, ..., pn) ∈ N

n is an unscaled pseudo-codeword
for C if and only if there is a backtrackless tailless cycle in X

which uses the ith edge exactly pi times for 1 ≤ i ≤ n. More-
over, the unscaled pseudo-codewords of C are in one-to-one
correspondence with the monomials appearing with nonzero
coefficient in the edge zeta function ζN of N . Finally, the
Newton polyhedron of ζN (i.e. the polyhedron spanned by the
exponents of the terms in the Taylor series of ζN) equals the
fundamental cone K(H) of the code C.

References

[1] R. M. Tanner, “A recursive approach to low-complexity
codes,” IEEE Trans. on Inform. Theory, vol. IT–27, pp. 533–
547, Sept. 1981.

[2] R. Koetter and P. O. Vontobel, “Graph covers and it-
erative decoding of finite-length codes,” in Proc. 3rd In-

tern. Conf. on Turbo Codes and Related Topics, (Brest,
France), pp. 75–82, Sept. 1–5 2003. Available online under
http://www.ifp.uiuc.edu/~vontobel.

[3] J. Feldman, D. R. Karger, and M. J. Wainwright, “LP de-
coding,” in Proc. 41st Allerton Conf. on Communications,

Control, and Computing, (Allerton House, Monticello, Illi-
nois, USA), October 1–3 2003. Available online under
http://www.columbia.edu/~jf2189/pubs.html.

[4] N. Wiberg, “Codes and Decoding on General Graphs”,
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