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Abstract—This paper considers a communication system where
a source sends time-sensitive information to its destination. We
assume that both arrival and service processes of the messages
are memoryless and the source has a single server with no
buffer. Besides, we consider that the service is interrupted by
an independent random process, which we model using the On-
Off process. For this setup, we study the age of information for
two queueing disciplines: 1) non-preemptive, where the messages
arriving while the server is occupied are discarded, and 2)
preemptive, where the in-service messages are replaced with newly
arriving messages in the Off states. For these disciplines, we derive
closed-form expressions for the mean peak age and mean age.

Index Terms—Age of information, Peak age, On-Off process,
preemptive discipline, non-preemptive discipline.

I. INTRODUCTION

The sixth generation (6G) of mobile communication system
is envisioned to support diverse use cases requiring massive
machine-type communication (MMTC) and/or ultra-reliable
low-latency communication (URLLC) [1], [2]. Many of these
use cases will include remote monitoring and/or actuation
where the timeliness of the information may be crucial. For
example, the sensors in MMTC may transmit time-sensitive
updates, such as obstacle detection in autonomous car driving
or fault detection in production chain, to a central processing
unit. In such cases, maintaining freshness of updates received
at the central unit is critical. For this, a recently introduced
metric, called age of information (AoI), is useful for measuring
the freshness of information received at the destination [3].
Because of its analytical tractability, the mean AoI has emerged
as a key performance indicator for the real-time MMTC [1].
Besides, the distribution of AoI is also useful for character-
izing the performance of URLLC [4]. However, in several
scenarios, the update service process gets interrupted, causing
the undesired increase in the age of updates observed at the
destination. Such scenarios, where the service toggles between
On and Off states, include 1) a mobile user going in and
out of outage, 2) resources sharing/scheduling, and 3) energy
harvesting communication. The AoI under service interruptions
caused by an external process has not received much attention
yet, which is the main theme of this paper.

Related works: The authors of [3] introduced the AoI met-
ric and derived its average for M/M/1, M/D/1, and D/M/1
queues under the first-come-first-serve (FCFS) discipline. Sub-
sequently, the same authors derived average age for M/M/1
queue in [5] with two types of last-come-first-serve (LCFS)
disciplines: 1) LCFS without preemption, where a new arriving
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update replaces the stale update in queue, and 2) LCFS with
preemption, where a new arriving update replaces the in-service
update. In a majority of works so far, the consideration of
memoryless inter-arrival and service times processes act as
the main facilitator. Besides, the average age has also been
analyzed for a general arrival/service process. For example,
[6] derived average age for M/G/1/1 queue with HARQ, [7]
derived the mean age and mean peak age of G/G/1, M/G/1,
and G/M/1 queues with FCFS and LCFS in-service preemption
disciplines, and [8] derived the mean age and its bounds for
G/G/1/1 queue with and without preemption.

Some recent works have started focusing on the distribution
of age. The authors of [9] studied the age distribution for
D/G/1 queue with FCFS discipline, whereas [10] derived a
general formula for the stationary distribution of age that is
applicable for a wide class of update systems and demonstrated
its use for various queues with FCFS and preemptive/non-
preemptive LCFS policies. On similar lines, [11] derived a
general formula for the age distribution under ergodic settings,
which is then used to derive the generating function of age
for discrete systems. The authors of [12] derived the MGF of
age for M/M/1 queue with and without preemption. Besides,
a new approach based on the idea of stochastic hybrid system
is developed for characterizing the distributional properties of
age in [13], [14]. Besides, significant work exists on the age
characterization for a variety of system settings, such as mutiple
source system [15], HARQ based update systems [6], energy
harvesting based update system with a single source [12] and
with multiple sources [13], [14], FCFS queues in tandem [16],
and M/M/1/2 system with random packet deadlines [17], M/G/1
queue with vacation server [18], etc. However, the AoI under
externally interrupted service process remains unexplored, de-
spite its relevance in many situations as aforementioned.

Contributions: This paper considers a modified M/M/1/1
system whose server toggles between on and off states ac-
cording to an independent random process that models the
service interruptions. We model these interruptions using an
On-Off process such that the On and Off states duration are
independent and exponentially distributed. For this setup, we
derive the mean age and mean peak age for two disciplines:
1) non-preemptive, where the updates arriving when server
is busy are dropped, and 2) preemptive, where the in-service
updates are replaced with new arrivals during Off states. For the
limiting cases of these On and Off state parameters, the derived
expressions for the mean of age and peak age approach to their
mean values for the M/M/1/1 queue with continuous service.

II. SYSTEM MODEL

We consider a communication system where a source sends
time sensitive updates about some physical process to its desti-
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nation. It is assumed that the source has a single server with no
packet storing facility and both the arrival and service processes
follow exponential inter-arrival and service times with rates
λ and µ, respectively. Further, we assume that the service
process is interrupted by an On-Off process, wherein the server
operates normally during the On states and stays idle, which
we term as off, during the Off states. The On and Off times
are also assumed to be exponentially distributed with parameter
κo and κf , respectively. We consider two queueing disciplines:
1) non-preemptive, where the updates arriving while the server
is occupied are discarded, and 2) preemptive, where the in-
service updates are replaced with newly arriving messages, if
any, in the Off states. For such systems, we aim to analyze the
AoI which is defined as ∆(t) = t − U(t), where U(t) is the
generation instance of the most fresh update received by the
destination. Fig. 1 shows sample paths of the age ∆(t) for non-
preemptive and preemptive disciplines where tk and t′k denote
the arrival and departure instances of k-th delivered update. The
service time of the k-th update is denoted as Tk = t′k− tk, and
the i-th On and Off states’ periods are denoted as To,i and Tf,i,
respectively. Let Yk = t′k−t′k−1 be the time between departures
of k-th and (k−1)-th updates, and let Bk = tk−t′k−1 denote the
time required to arrive the k-th update since (k−1)-th delivery.
We denote Tk and Yk as T ?k and Y ?k for the preemptive case.

We focus on the analysis of the mean age and mean peak
age. The mean age, denoted by ∆, is defined as the time mean
of the age process ∆(t), whereas the mean peak age, denoted
by Ā, is defined as the mean of age process ∆(t) observed
just before the delivery of updates. For the non-preemptive
discipline, these can be expressed as

Ā = E[Yk] + E[Tk−1], (1)

and ∆ = 0.5λeE[Y 2
k ] + λeE[YkTk−1], (2)
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Figure 1. Typical sample path of age ∆(t) for non-preemption (top) and
preemption (bottom) policies. The green up and blue down arrow markers on
t-axis indicate update arrivals and departures, respectively. The red cross and
circle markers on t-axis show discarded and preempted updates, respectively.

respectively, where λe is the effective arrival rate. Please
refer to [19, Section III] for more details. For the preemptive
discipline, we can determine the mean peak age Ā? and the
mean age ∆? using T ?k and Y ?k in the above expressions.

III. AGE ANALYSIS FOR ON-OFF SERVICE

We first present the age analysis for the non-preemptive case.
From (1) and (2), and Yk = Bk + Tk, it is clear that the mean
age analysis requires the first two moments of service time Tk.
As will be evident shortly, the key step in deriving the moments
of Tk is conditioning it on the arrival of the delivered update
in On and Off states. The probability of this conditional event
is presented in the following lemma.

Lemma 1. The probability that the delivered update arrives in
the On state is

POn = (λ+ κf)(λ+ κo + κf)
−1. (3)

Proof. Please refer to Appendix A for the proof.

Lemma 2. The first and second moments of service time Tk
for non-preemptive policy are

T̄1
k =

1

µ
+
κo

κf

[
1

µ
+

1

λ+ κo + κf

]
, (4)

and T̄2
k =

(
1

µ+ κo
+

1

κf

)2(
1 + 3

κo

µ
+ 2

κ2
o

µ2

)
+

1

(µ+ κo)2

+
µ+ κo

µκ2
f

(1− 2POn)− 2

µκf
POn, (5)

respectively, where POn is given in Lemma 1.

Proof. Please refer to Appendix B for the proof.

The effective arrival rate for any given queueing system can
be calculated using the its inter-departure times distribution Yk
as λeff = E[Yk]−1. Finally, using the above lemmas along with
(1) and (2), we obtain the mean age in the following theorem.

Theorem 1. For M/M/1/1 queue with On-Off service under
non-preemptive policy, the mean peak age and mean age are

Ā =
1

λ
+

2

µ
+

2κo

κf

[
1

µ
+

1

λ+ κo + κf

]
, (6)

and ∆ =
1

1 + λT̄1
k

[
1

λ
+
λ

2
T̄2

k + T̄1
k

]
+ T̄1

k, (7)

respectively, where T̄1
k and T̄2

k are given in Lemma 2.

Proof. The mean peak age given in (6) directly follows by
substituting E[Yk] = E[Bk] + E[Tk] = 1

λ + T̄1
k in (1), where

T̄1
k is given in Lemma 2. Next, using Yk = Bk + Tk, (2) and

independence of Tk’s, the mean age can be written as

∆ =
1

E[Yk]

[
E[T 2

k ] + E[B2
k] + 2E[Tk]E[Bk]

]
+ E[Tk].

Further, substituting E[Yk] = 1
λ + T̄1

k, and T̄1
k and E[T 2

k ] = T̄2
k

from Lemma 2, provides (7).
Recall that in the preemptive policy the in-service update is

replaced with a newly arriving update during Off states. For the
analysis of this case, the crucial step is to derive the mean of
the service time T ?k . Similar to the analysis of Tk, we derive the
mean of T ?k by conditioning on the arrival of delivered update



in On/Off state. The probability of arrival of a delivered update
in On state is smaller, compared to non-preemptive case, due
to the replacement of older updates with new ones arrived in
the Off states. This probability is derived in Lemma 3.
Lemma 3. The probability that the successfully delivered
update under preemption discipline arrives in the On state is

P?On = POn(1− β)(1− αβ)−1, (8)
where POn is given in (3), β = κo

µ+κo
and α = κf

λ+κf
.

Proof. Please refer to Appendix C for the proof.

Lemma 4. The mean service time T ?k with preemption is

T̄1,?
k =

1

1− γ

[
1

λ+ κf
+

1

µ+ κo

λ+ κo + κf − µ
λ+ κo + κf

]
, (9)

where γ = κoκf(λ+ κf)
−1(µ+ κo)−1.

Proof. Please refer to Appendix D for the proof.

Finally, using results from Lemma 3 and 4, we obtain the
mean age for the preemption case in the following theorem.

Theorem 2. For M/M/1/1 queue with On-Off service and
preemption policy, the mean peak age and mean age are

Ā? =
1

λ
+

1

µ
+
κo

κf

[
1

µ
+

1

λ+ κo + κf

]
+ T̄1,?

k , (10)

and ∆? =
1

1 + λT̄1
k

[
1

λ
+
λ

2
T̄2

k + T̄1
k

]
+ T̄1,?

k , (11)

respectively, where T̄1
k and T̄2

k are given in Lemma 2 and T̄1,?
k

is given in Lemma 4.

Proof. Due to preemption, the time of arrival of the update
(that is getting delivered) since its last delivery is higher as
compared to that under non-preemption case, i.e., B?k ≥ Bk.
This increment is equal to the reduction in the service time due
to preemption. This is because the preemption under memory-
less service process essentially replaces the older packet with
the new one without affecting the service/inter-departure time
statistics. Hence, we have Yk = Tk + Bk = T ?k + B?k = Y ?k .
This can also be verified from Fig. 1. This also implies that
the effective arrival rates λe with the preemption and non-
preemption disciplines are the same. Thus, using λe = 1

E[Yk] ,

E[Y ?k ] = E[Yk] = λ−1 + T̄1
k,

E[Y ?
2

k ] = E[Y 2
k ] = T̄2

k + 2λ−2 + 2T̄1
kλ
−1,

and following the steps provided in the proof of Theorem 1,
we obtain expressions given in (10) and (11).

Remark 1. The mean peak age and mean age derived for both
non-preemptive (in Theorem 1) and primitive (in Theorem 2)
disciplines approach to 1

λ + 2
µ and 1

λ + 2
µ −

1
λ+µ , respectively,

as κo → 0 and/or κf →∞. These limiting values are equal to
the mean peak age and mean age observed under conventional
M/M/1/1 queue [19, Eq. (21) and Eq. (25)]. This is expected
since the service tends to appear as uninteruppted as the On
state duration becomes larger and/or the Off state duration
becomes smaller, in which case the considered queue discipline
will behave similar to the conventional M/M/1/1 queue.
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Figure 2. Age vs. λ for µ = 1, µ
κo

∈ {1, 10}, and κo
κf

∈ {1, 10}. The solid
and dotted lines show the non-preemptive and preemptive policies, respectively.

Fig. 2 shows the age as a function of λ for µ = 1 and
different scales of the On-Off state duration. The figure verifies
that both peak and mean age are minimum for M/M/1/1
system without On-Off service, which is expected. Besides,
the figure also illustrates that the preemption policy provides
smaller peak as well as mean age as compared to non-
preemption policy, for any given configuration of parameters.
It can be seen that both the age metrics degrade for κo > κf .
However, interestingly, it can be noted that the mean ages are
smaller for κo ≥ µ. This is because of the smaller On-Off
cycles resulting in a frequent restart of the memoryless service
such that it reduces the overall service time.

IV. SUMMARY

This paper has analyzed the age of information for bufferless
systems where both the update arrival and service processes
are exponential and the service process is modulated with an
independent On-Off process. We have derived the mean peak
age and mean age for the discipline where the updates arriving
when the server is busy are discarded. Next, we extended
the analysis for the preemptive discipline where the source is
assumed to be capable of replacing the stale updates with fresh
ones arrived during Off states. The derived expressions for both
the mean peak age and the mean age reduce to those for the
simple M/M/1 queue as the On state parameter κo → 0 and/or
the Off state parameter κf →∞.

APPENDIX
A. Proof of Lemma 1

Let si and s′i denote the start times of the i-th On and Off
states, respectively. Without loss of generality, we assume that
a successful delivery occurs at t = 0 and the corresponding
On state is the 1-st On state. The probability that next update
arrives in an On state is equal to the probability that the next
arrival occurs in the interval

⋃∞
i=1(si, s

′
i]. Note that s1 = 0,

si =
∑i−1
k=1(To,k + Tf,k) and s′i = si + To,i, for i = 2, 3, . . . ,

where To,k and Tf,k are the durations of k-th On and Off states,
respectively. Since these intervals are disjoint, the probability
that next arrival occurs in On state for given (si, s

′
i)’s is

Pcond
On =

∑∞

i=1
F (s′i)− F (si),



(a)
=
∑∞

i=1
exp(−λsi)− exp(−λ(si + To,i)),

=
∑∞

i=1
[1− exp(−λTo,i)]

∏i−1

k=1
exp(−λ(To,k + Tf,k)),

where F (·) is the CDF of arrival time. Step (a) follows using
F (s) = 1− exp(−λs). Now, deconditioning Pcond

On gives

POn
(a)
=
∑∞

i=1
ETo [1− e−λTo ]

(
ETo

[
e−λTo

]
ETf

[
e−λTf

])i−1
,

=
∑∞

l=0

[
κo

λ+ κo

κf

λ+ κf

]l
λ

λ+ κo
,

where Step (a) follows directly as both To,ks and Tf,ks are i.i.d.
sequences. Finally, by applying geometric series, we obtain (3).
B. Proof of Lemma 2

Let Z denote the remaining service time of the update and
To denote the duration of an On state. Using the memoryless
property of an exponential service, we can find the probability
that the update gets served in an On state as

Po = E [P[Z ≤ t|To = t]] =
µ

µ+ κo
. (12)

Let Z ′ denote the service time spent in an On state in which
the service gets completed. The distribution of Z ′ becomes

fZ′(z) = fZ(z|Z < To) =
P(To > z|Z = z)fZ(z)∫∞

0
P(To > Z|Z = z)fZ(z)dz

,

= (µ+ κo) exp(−(µ+ κo)z). (13)
Let T ′o denote the On state duration in which the service does
not get completed. We obtain the distribution of T ′o as
fT ′o(t) = fTo

(t|Z > To) = (µ+ κo) exp(−(µ+ κo)z). (14)
Let Go = 0 and Gn =

∑n
l=1 To,n. Consider En is an event

where the service ends in the n-th On state after its arrival. We
can determine the probability of En as

P[En] = P[Gn ≥ Z > Gn−1],

(a)
= P[Gn ≥ Z]P[Z > Gl]

n−1 (b)
= Poβ

n−1, (15)
where Step (a) follows from the memoryless property of Z and
the fact that To,n’s are i.i.d.s. Step (b) follows using (12) where
β = 1−Po = κo

µ+κo
. Now, by the memoryless property, we can

directly consider independently distributed exponential service
times spent in different On states for deriving the expected
service time by conditioning on the service times, On state
durations, and En. Given the arrival in On state, the mean of
Tk becomes T̄1,o

k =
∞∑
n=1

[
E[Z|Z < To,n] +

n−1∑
l=1

E[To,l|Z > To,l] + E[Tf,l]

]
P[En],

(a)
= E[Z|Z < To] +

∞∑
n=1

(n− 1)[E[To|Z > To] + E[Tf ]]Poβ
n−1,

(b)
= (µ+ κo)−1 +

[
(µ+ κo)−1 + κ−1

f

]
PoG(n− 1),

(c)
= µ−1 + κo(µκf)

−1, (16)
where G(f(n)) =

∑∞
n=1 f(n)βn−1, Step (a) follows from

(15) and the fact that both To,l’s and Tf,l’s follow i.i.d.
distributions. Step (b) follows using (13) and (14). Step (c)
follows using G(n− 1) = β(1− β)−2, β = 1− Po, and some
algebric simplifications. Similarly, we obtain the mean of Tk

conditioned on update arrived in an Off state as T̄1,f
k =

∞∑
n=1

[E[Z|Z < To,n] + (n− 1)E[To|Z > To] + nE[Tf ]]P[En],

=
1

µ+ κo
+

1

µ+ κo
PoG(n− 1) +

1

κf
PoG(n),

(a)
=

1

µ+ κo
+

1

µ+ κo

κo

µ
+

1

κf
Po
−1,

= µ−1 + (κfµ)−1(µ+ κo),

where Step (a) follows from the similar steps used in (16).
Thus, the mean of Tk becomes T̄1

k = T̄1,o
k POn+T̄1,f

k (1−POn).

Next, substituting POn from (3) and further solving gives
(4). Now, we derive the second moment of Tk using the similar
approach presented above as

T̄2,o
k =

∑∞

n=1
E

[(
Z ′ +

∑n−1

l=1
[T ′o,l + Tf,l]

)2
]
P[En].

Since Z ′ and T ′o,l are equal in distribution [see (13) and (14)],
we can write

T̄2,o
k =

∑∞

n=1
E

[(∑n

l=1
T ′o,l +

∑n−1

l=1
Tf,l

)2
]
P[En].

Note that, since T ′o,l follows exponential distribution with
parameter (µ+κo) independently, we have So,n =

∑n
l=1 T

′
o,l ∼

Gamma(n, (µ + κo)−1). Similarly, Wf,n−1 =
∑n−1
l=1 Tf,l ∼

Gamma(n− 1, κ−1
f ). Using this, we can write T̄o,2

k

=
∑∞

n=1

[
E[S2

o,n] + E[W 2
f,n−1] + 2E[So,n]E[Wf,n−1]

]
P[En],

=
∑∞

n=1

[
n(n+ 1)

(µ+ κo)2
+
n(n− 1)

κ2
f

+ 2
n

µ+ κo

n− 1

κf

]
P[En],

(a)
=

PoG(n(n+ 1))

(µ+ κo)2
+

[
1

κ2
f

+
2

κf(µ+ κo)

]
PoG(n(n− 1)),

= Po

(
1

µ+ κo
+

1

κf

)2

G(n2)

+ Po

(
1

(µ+ κo)2
− 1

κ2
f

− 2

κf(µ+ κo)

)
G(n), (17)

where Step (a) follows using (15). With some algebraic calcu-
lations, we obtain G(n2) = ZP−1

o , where Z = 1+3κo

µ +2
κ2
o

µ2 .
We also have G(n) = (1− β)−2 = Po

−2. Thus (17) becomes

T̄2,o
k = Z

(
1

µ+ κo
+

1

κf

)2

+
Po

µ2
− 1

Poκ2
f

− 2

µκf
. (18)

Similarly, we determine the second moment of Tk conditioned
on the service started in Off state as

T̄2,f
k

(a)
=
∑∞

n=1
E
[
(So,n +Wf,n])

2
]
P[En],

=
∑∞

n=1

[
E[S2

o,n] + E[Wf,n] + 2E[So,n]E[Wf,n]
]
P[En],

=

[
1

(µ+ κo)2
+

1

κ2
f

]
PoG(n(n+ 1)) +

2PoG(n2)

κf(µ+ κo)
,

= Z
(

1

µ+ κo
+

1

κf

)2

+
Po

µ2
+

1

Poκ2
f

, (19)

where Step (a) follows from So,n = Z ′+So,n−1. Now, we can
obtain the second moment of Tk as T̄2

k = T̄2,o
k POn + T̄2,f

k (1−



POn). Finally, substituting (18) and (19) gives (5).

C. Proof of Lemma 3
The update arrived in an On state will be delivered if it does

not get preempted during the Off states occurring in its service
time. Thus, the probability that the update arrived in On state
will be delivered is

P?On = POnPc
pre, (20)

where POn is given in Lemma 1 and Pc
pre is the probability

that the update will not get preempted. By conditioning on the
event En (defined in Appendix B), we obtain

Pc
pre =

∑∞

n=1

[∏n−1

l=1
P[No arrival in Tf,l]

]
P[En],

(a)
= Po

∑∞

n=1
αn−1βn−1 = (1− β)

1

1− αβ
,

where Step (a) follows using (15), P[No arrival in Tf,l] = α =
κf

λ+κf
and independence of Tf,l’s. Finally, substituting the above

Pc
pre and POn from Lemma 1 in (20) completes the proof.

D. Proof of Lemma 4
We construct the proof on the similar lines as in Appendix B.

Recall, in Appendix B, the probability P[En] that the service of
an update ends in the n-th On state after its arrival is derived
for the case of no preemption. However, under preemption,
this probability depends on the probability that service takes n
On states and there is no preemption during the Off periods
occurring during the service time. Let E?n denote the event
where service of an update ends in the n-th On state after
its arrival under preemption. Note that E?n includes n i.i.d. Off
periods in the service if it starts from an Off state, otherwise
it includes n− 1 i.i.d. Off periods. Thus,

P[E?n] =


P[En]Pno−pre

n−1∑∞
n=1 P[En]Pno−pre

n−1

, if ser. starts in On st.,
P[En]Pno−pre

n∑∞
n=1 P[En]Pno−pre

n
, otherwise,

(21)

where Pno−pre
n is the probability that there is no preemption

in the n Off states occurring during the service time. We
can directly evaluate Pno−pre

n as Pno−pre
n = αn, where α is

the probability that there is no preemption in a typical Off
state which is obtained in Appendix C as α = κf

λ+κf
. Thus,

substituting P[En] = Poβ
n−1 and Pno−pre = αn in (21) and

simplifying, we get
P[E?n] = (1− γ)γn−1, (22)

where γ = αβ, irrespective of whether the services started
in the On or Off state. Note that the distribution of Off state
duration conditioned on no preemption is

fT ′f (t) = (λ+ κf) exp(−(λ+ κf)t).

Now, similar to (16), we obtain the mean of T ?k given the
update arrived in the On state as

T̄1?,o
k =

∑∞

n=1
[E[Z ′] + (n− 1)E[T ′o] + (n− 1)E[T ′f ]]P[E?n],

(a)
= E[Z ′] + [E[T ′o] + E[T ′f ]](1− γ)γ

∑∞

n=1
(n− 1)γn−2,

=
1

µ+ κo
+

[
1

µ+ κo
+

1

λ+ κf

]
(1− γ)γ

d

dγ

∑∞

l=0
γl,

=
[
(µ+ κo)−1 + γ(λ+ κf)

−1
]

(1− γ)−1, (23)

where Step (a) follows using (22). Similarly, we obtain the
mean of T ?k given the update arrived in the Off state as

T̄1?,f
k =

∑∞

n=1
[E[Z ′] + (n− 1)E[T ′o] + nE[T ′f ]]P[E?n],

= E[Z ′] + E[T ′o](1− γ)γ

∞∑
n=1

(n− 1)γn−2 + E[T ′f ]

∞∑
n=1

nγn−1,

=

[
1

µ+ κo
+

1

λ+ κf

]
1

1− γ
. (24)

Next, we obtain mean T̄?k as

T̄1?
k = T̄1?,o

k P?On + T̄1?,f
k (1− P?On).

Finally, by substituting T̄1∗,o
k from (23), T̄1∗,f

k from (24),
and P?On from Lemma 3 in the above expression and further
simplifying, we obtain (9). This completes the proof.
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