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Abstract— Nowadays, mobile devices enable constant track-
ing of the user’s position and location trajectories can be
used to infer personal points of interest (POIs) like homes,
workplaces, or stores. A common way to extract POIs is to
first identify spatio-temporal regions where a user spends a
significant amount of time, known as stay regions (SRs).

Common approaches to SR extraction are evaluated either
solely unsupervised or on a small-scale private dataset, as pop-
ular public datasets are unlabeled. Most of these methods rely
on hand-crafted features or thresholds and do not learn beyond
hyperparameter optimization. Therefore, we propose a weakly
and self-supervised transformer-based model called DeepStay,
which is trained on location trajectories to predict stay regions.
To the best of our knowledge, this is the first approach based
on deep learning and the first approach that is evaluated on a
public, labeled dataset. Our SR extraction method outperforms
state-of-the-art methods. In addition, we conducted a limited
experiment on the task of transportation mode detection from
GPS trajectories using the same architecture and achieved
significantly higher scores than the state-of-the-art. Our code
is available at https://github.com/christianll9/deepstay.

I. INTRODUCTION

Extracting stay regions (SR) from location trajectories
identifies segments where a subject stays in the same place. It
supports fine-grained spatio-temporal analysis of human and
animal behavior and is often an intermediate step in point of
interest (POI) mapping or POI extraction.

Common SR extraction approaches apply unsupervised
clustering algorithms and use thresholds for time, distance,
and velocity, among others. These thresholds are determined
by a qualitative analysis or a quantitative hyperparameter
optimization. Typically, all experiments are performed either
on small private datasets, in some cases with manually
annotated labels, or on large datasets without any labels. This
makes it difficult to compare different approaches and makes
the problem less suited for supervised learning that requires
a large amount of labeled data.

Even though most trajectories do not contain ground truth
SR labels, it is still possible to derive so-called ”weak labels”
from OpenStreetMap (OSM). For example, we can classify
any location point lying within a building as part of a stay
and a point near a road as part of a ”non-stay” (see Figure 1).
Given the large number of weak labels available, we assume
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Creative Tech, 211 20 Malmö, Sweden. {emma.andersson,
christina.jenkins}@devoteam.com

Fig. 1: Weak supervision of trajectories using OSM data
and additional heuristics. Blue points indicate weakly labeled
non-stays, yellow indicate stays.

that this data contains enough signal to learn useful latent
representations. To this end, we apply a transformer model
[1] that takes a trajectory as a time series of location points
and classifies each point as either part of a stay or a non-stay.

To our knowledge, this is the first approach to extract
SRs from trajectory data using deep learning. Furthermore,
we use publicly available data for training and evaluation
to ensure reproducibility. We derived a ground truth dataset
from the field of activity recognition and use it to compare
our model with baselines from related work.

II. PROBLEM STATEMENT

We define a location trajectory X = {g1, g2, . . . , g|X |} as
a time series of consecutive location points gi = (ti, xi, yi),
where x, y ∈ R denote the 2D coordinates and t ∈ R≥0

the ascending timestamp. The sample rate ∆ti = ti − ti−1

is defined as the time difference between two consecutive
points and is either constant or fluctuating, depending on the
dataset.

SR extraction can be viewed as a time series segmentation
task, where the trajectory X is split in a set of segments
T S = {ts1, . . . , tsq}. Each segment tsj = (tstartj , tendj

, cj)
is defined by its start tstart and end time tend and the binary
class c ∈ {0, 1} indicating whether the user is staying at one
place (c = 1) or is moving around (c = 0) within the time
window tstart ≤ t < tend. Moreover, we define

tstart1 = t1,

tendq
= ∞,

tstartj < tendj
∀j ∈ {1, . . . , q},

tendj
= tstartj+1

∀j ∈ {1, . . . , q − 1},
cj ̸= cj+1 ∀j ∈ {1, . . . , q − 1}.
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The set of stay regions SR is a subset of all segments, where

SR = {tsj |tsj ∈ T S ∧ cj = 1}. (1)

The task of SR extraction is now to predict SR (and therefore
T S) solely from the trajectory data X .

III. RELATED WORK

Trajectory segmentation is an important research topic
with many examples such as activity recognition, transporta-
tion mode detection (TMD) and SR extraction. In TMD, each
segment is assigned to a mode, e.g. walking, car, bus, etc.
[2]. A special binary case of this task is SR extraction with
only two possible modes: stay and non-stay. In most cases,
it functions as a preprocessing step for tasks such as POI
mapping/extraction/prediction. In POI mapping, each SR is
assigned to a visit to one of several POIs [3].

SR extraction identifies segments of a user’s trajectory
where the subject remains at the same place. A virtual
location, usually the centroid of an SR, is called a stay point.
So this task is also called stay point extraction/recognition/
identification/detection.

A. Threshold-based Clustering

The vast majority of published work uses threshold-
based spatio-temporal clustering methods, where the clusters
represent stay segments of the trajectory. Commonly used
thresholds are a minimum duration Tmin and a maximum
distance Dmax [4], [5], [6], [7], [8]. Here, the task is to
find the maximum sets of consecutive location points P =
{gm, gm+1, . . . , gn} in the trajectory X , such that:

tn − tm ≥ Tmin (2)
dist(gi, gj) ≤ Dmax ∀ gi, gj ∈ P (3)

Others apply additional thresholds for velocity, acceleration,
and heading change [9], [10], [11], [12], [13].

B. Adapted Density-based Clustering

Other approaches adapt density-based clustering methods
such as DBSCAN [14] and OPTICS [15]. If the trajectory
is sampled at a constant rate, prolonged stays will result in
dense spatial data and thus can be detected. Unlike k-means,
they do not require a predetermined number of clusters,
which is crucial for SR extraction.

These approaches define SR extraction more as spatial
clustering rather than time series segmentation. Therefore,
the constraint that the clustered points must be consecutive
is not always enforced. Many extensions have been proposed
to utilize the temporal information as well [16], [17].

C. Others

The authors in [18] and [19] classify single location points
as stay points when a GPS connection loss is detected. The
algorithm proposed by [20] extracts SRs by searching for
local minima of speed and zero crossings in acceleration
within the trajectory.
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Fig. 2: Overall architecture of DeepStay. Light brown colored
boxes indicate trainable models.

IV. METHODOLOGY

A. Architectural Overview

Figure 2 shows the overall architecture of our model
DeepStay and the intermediate results of the processing
pipelines. First, the raw trajectories are standardized and split
into sequences of equal size. Furthermore, additional features
are extracted to improve the performance of the subsequent
transformer encoder. This encoder receives a sequence of
constant length and outputs an embedding vector for each
point comprising latent features about the point within its
sequence. The following feedforward layer acts as a decoder
and predicts a probability for each vector to be part of a
stay. In the next step, all consecutive points with a predicted
probability above a certain threshold are grouped as SRs.

1) Preprocessing of raw GNSS trajectories: All datasets
in this work contain GNSS coordinates, such as GPS. In
the first step, we project all coordinates into a 2D Cartesian
system (x, y) using an appropriate UTM zone [21].

Since trajectories may have varying sample rates, we use
the time difference ∆t between each point and its prede-
cessor as an additional feature. Our preliminary experiments
indicate that this approach leads to better results than using
linear interpolation as proposed by [22]. We also add the
current velocity v as the ratio of the Euclidean distance and
∆t between two consecutive points as another feature.

All trajectories are chunked into sequences of equal length
n = 256. This allows the transformer encoder to be trained
with multiple sequences in a single batch of size B = 64.

Furthermore, we standardize the features ∆t and v sepa-
rately based on their distribution in the training set to obtain
a mean of 0 and a standard deviation of 1. The standard-
ization of the location features x and y is done jointly.
Each sequence is subtracted from its mean (xseq, yseq) and
divided by the common standard deviation of the entire
training set σx,ytrain to prevent the model from memorizing
specific regions. To further reduce overfitting, we rotate every
sequence uniformly at random with respect to its origin (0, 0)
before feeding it to the model. The final features of the i-th
data point in sequence seq are shown in 4.

seqi =
[
xi yi ∆ti vi

]
, seq ∈ Rn×4 (4)

2) Transformer Encoder: We choose the encoder of the
transformer model [1] to learn latent embeddings embi for
each sequence point seqi. This allows us to predict the
class probabilities pointwise instead of segmentwise. Thus,
by design, segmentation and classification are performed
jointly. We stick with the original setting of the base encoder



including the projection and positional encoding as described
in [1] to get the final embeddings emb ∈ Rn×dmodel .

3) Decoder: A feedforward layer with sigmoid activation
decodes the embeddings and predicts the probability for each
point embi to be part of a stay:

ĉi = σ(embi Wd
T + bd), ĉ ∈ [0, 1]

n (5)

Now the segmentation can be done by simply grouping
consecutive points where ĉi < 0.5 for non-SRs and ĉi > 0.5
for SRs, respectively.

4) Supervision: In the case of available SR labels, we can
compute the pointwise binary cross entropy (BCE) between
the prediction ĉ and the ground truth c:

BCE(ĉi, ci) = −ci log ĉi − (1− ci) log(1− ĉi) (6)

The distribution of the binary labels can be highly imbal-
anced. To prevent the model leaning towards one of the
classes, we apply class weighting based on the mean ctrain
within the training set:

BCEw(ĉi, ci, ctrain) =

(
ci

ctrain
+

1− ci
1− ctrain

)
BCE(ĉi, ci)

(7)
Now the total loss Lsuper is the average weighted BCE over
all points in all Ntrain training sequences:

Lsuper =
1

Ntrain · n

Ntrain∑
j=1

n∑
i=1

BCEw(ĉ
(j)
i , c

(j)
i , ctrain) (8)

B. Weakly Supervised SR Extraction

Since the vast amount of publicly available location tra-
jectories does not contain SR labels, we apply programmatic
weak supervision [23] by generating weak labels based
on other data sources. These labels are often inaccurate.
However, since we can generate them on a large scale, and
since the error generally does not correlate with the input, we
expect our model to still learn useful latent representations.

For that, we define a function fweak that returns the
estimated probability ciweak

that the location point gi is part
of a stay, and a confidence score wiweak

for that prediction:

fweak(gi) = (ciweak
, wiweak

) (9)

Here, ciweak
replaces the ground truth value ci, while wiweak

is used to weight the influence of the weak label on the total
loss. Thus, the model learns more from weak labels, where
the labeling function is more certain. The total loss is then:

Lweak =

Ntrain∑
j=1

n∑
i=1

w
(j)
iweak

Ntrain · n
BCEw(ĉ

(j)
i , c

(j)
iweak

, ctrainweak
)

(10)
Furthermore, the mean label ctrainweak

is also weighted by
the confidence score:

ctrainweak
=

∑Ntrain

j=1

∑n
i=1 c

(j)
iweak

· w(j)
iweak∑Ntrain

j=1

∑n
i=1 w

(j)
iweak

fweak works as an ensemble of separate labeling functions
that predict whether a location point is part of a stay or

not. All labeling functions implement simple heuristics and
may conflict with each other. Here, they predict a pair
(cweak, wweak(g)) with a constant value for cweak and a
confidence weight wweak depending on the input data g. In
total, four different functions are defined:

• fbuild predicts a stay with high confidence if a location
lies within a building.

• fam predicts a stay with high confidence if a location
lies within small amenities.

• fstreet predicts a non-stay with high confidence if a
location is close to a street.

• ftransport predicts a non-stay based on available trans-
portation mode labels.

The data source for the first three functions is OSM.
Similar to [19], the coordinates of the location gi are used
to query additional information from the map service.

1) Stay Labeling Functions: fbuild checks, if gi lies
within a building b ∈ BOSM. If so, it returns a confidence
weight of 1, since points that fall inside a building have a
high chance of being part of a stay:

wbuild(gi) =

{
1, if ∃ b ∈ BOSM | b ∩ gi ̸= {}
0, otherwise

(11)

Similarly, fam returns wam > 0, if gi lies within an
amenity a ∈ AOSM. This is an OSM category for facilities
like hospitals or airports that can encapsulate multiple build-
ings. For larger amenities, since it is less certain that people
will stay in a single location, we model the confidence weight
as a function of their geographic area:

wam(gi) =

 max
a∈AOSM|a∩gi ̸={}

exp

(
− area(a)

1
|AOSM|

∑
j area(AOSMj

)

)
if ∃a|a ∩ gi ̸= {}

0, otherwise
(12)

Here, the fraction is the ratio of the area of an encapsulating
amenity to the average area of all amenities in the dataset.
By using a negative exponent, the weight starts at 1 for an
area of 0 and decreases as the area increases. We use the
maximum value, when multiple amenities encapsulate gi.

2) Non-Stay Labeling Functions: fstreet checks if gi is
near a street, since those points have a high probability
of being part of a non-stay. Thus, if a street s ∈ SOSM

intersects with a centered bounding box bbi(ls) around gi,
fstreet returns a confidence weight of 1. The box has a shape
of d(ls)× d(ls) with ls denoting the importance level of the
street s (e.g. highway). Formally, this can be defined as:

wstreet(gi) =

{
1, if ∃ s ∈ SOSM|s ∩ bbi(ls) ̸= {}
0, otherwise

(13)

ftransport is designed for the GeoLife (GL) dataset, which
will be introduced in Chapter V in more detail. Its trajectories
include additional transportation mode labels, which are:
walking, running, biking, motorcycle, car, taxi, bus, train,
subway, boat, and airplane. While the dataset lacks a separate
stay mode, we can use all motorized modes (i.e., all modes



except walking, running, and biking) as a heuristic for non-
stays. The confidence weight is formalized as:

wtransport(gi) =

{
1, if label(gi) ∈ modesmotorized

0, otherwise
(14)

3) Combining the Labeling Functions: We combine the
results of all heuristics H by averaging the predicted proba-
bilities and adding up all confidence weights as follows:

fweak(gi) = (ciweak
, wiweak

)

=

∑
j∈H cj · wj(gi)∑

j∈H wj(gi)
,

∑
j∈H

wj(gi)

 ,
(15)

where H = {build, am, street, transport}.

Thus, each labeling function fj has a linear influence on the
total confidence weight wiweak

, independent of the output of
other labeling functions. On the one hand, this combination
is similar to an ensemble with model averaging, whereas,
on the other hand, this resembles also a Mixture of Experts,
where the weights depend on the input gi.

C. Self-Supervised Encoder

Many points are not captured by any heuristic and receive
a total confidence weight of 0. Self-supervised learning
(SSL) could still leverage those data in a (weakly) semi-
supervised manner and further strengthen the model’s ro-
bustness to inaccurate training data [24]. Since [25], [26]
show good results by using forecasting as a pretext task for
time series data, we adopted their approach.

1) Forecasting Task: We choose the velocity as one
forecast target, which is less dependent on the sample rate
compared to the location. Additionally, the bearing angle
is forecasted as a second target because it is not directly
included in the input and requires the model to encode more
informative embeddings. More specifically, we predict the
sine and cosine values of the angle to capture the periodicity.

Given the encoder output emb, we concatenate its se-
quence mean emb and last embedding vector embn as an
aggregated embedding vector embagg ∈ R2dmodel for the
whole sequence. This vector is then passed to two separate
feedforward layers. No activation function is used for the
velocity, while for the sine and cosine prediction we apply
tanh to bind the output between -1 and 1:

v̂n+1 = embagg Wvel
T + bvel (16)[

ˆsinαn+1

ˆcosαn+1

]
= tanh

(
embagg Wang

T + bang
)

(17)

2) Multitask Loss: The loss for each pretext task is
defined by the Mean Squared Error (MSE) between the
prediction and the ground truth:

MSE(ŷ, y) =
1

Ntrain

Ntrain∑
j=1

∥ŷ(j)n+1 − y
(j)
n+1∥ (18)

TABLE I: Summary of weak labels derived from GL dataset.

weak label heuristic total sum of
confidence weights

stays (cweak = 1) building 1.0 M
amenity 0.2 M

non-stays (cweak = 0) street 5.0 M
transport 2.7 M

Lvel = MSE(v̂, v) (19)

Lang = MSE( ˆsinα, sinα) +MSE( ˆcosα, cosα) (20)

We follow [25] and approach SSL as multitask learning
with the sum of the downstream loss Lweak and the pretext
losses:

Lfinal = Lweak + λvelLvel + λangLang, (21)

where λ denotes tunable hyperparameters. If ground truth
labels are available, Lweak is replaced with Lsuper.

V. DATA

For this study, we select two datasets: GeoLife (GL) by
[6], [12], [27] and ExtraSensory (ES) by [28]. GL contains
two orders of magnitude more location points than ES but
lacks proper SR labels. ES is chosen because of its activity
labels, from which we can infer ground truth SR labels.

Similar to [29] and [30], we remove outliers based on
unrealistic velocity values and split a user’s trajectory if the
time difference between two consecutive points exceeds 20
minutes or if an unrealistic location jump is detected.

A. GeoLife

Instead of ground truth SR labels, the GL dataset contain
time-segmented transportation mode labels from 69 of all
182 participants. These labels are used to derive weak labels
and for our experiment on TMD.

To reduce network traffic and memory, we gather OSM
data for points that fall within the 15%/85% percentile of
longitude and latitude, which covers about 62% of the total
dataset. An overview of the total sum of confidence weights
used for weak supervision can be found in Table I. The
remaining unlabeled data is still used for SSL instead. The
sample rate of GL is non-constant and varies between 1 and
6 seconds. For the UTM projection, we choose zone 50N.

B. ExtraSensory

We use the ES dataset to fine-tune and evaluate DeepStay.
Besides GNSS points, this dataset contains other sensor data,
which we ignore. It was collected for the task of activity
recognition. Participants should self-report their current ac-
tivities such as ”biking” or ”watching TV”. Some activity
modes clearly indicate stays and non-stays. Thus, we define
a function that maps these modes to SR labels.

In the second step, we remove suspicious stays, where
the velocity is higher than the average velocity of non-stays.
The final number of points and derived labels are listed in
Table II. The sample rate of ES is nearly constant at 1

min .
To achieve reasonable results with an encoder pre-trained



TABLE II: Summary of the cleaned ES dataset.

total number
GNSS points 306 k
stays (ci = 1) 223 k
non-stays (ci = 0) 28 k

on GL, we linearly interpolate the location trajectory at a
rate of 0.5Hz. However, for the final test results, only the
predictions for the real, non-interpolated labels are evaluated.
The prediction value is taken from the nearest interpolation
point. For the map projection, we use the UTM zone 11N.

VI. EXPERIMENTS

In the first experiment, we train and test DeepStay on
SR labels. The second experiment shows the ability of our
architecture to be used for the more general task of TMD.

A. Experiment 1: Stay Region Extraction

For this experiment, DeepStay is pre-trained on weak
labels from the GL dataset and then fine-tuned and tested
together with traditional baselines on the ES dataset, where
it achieves the best overall results among all methods.

1) Baselines: We implement the following algorithms as
baselines and test them on the ES dataset:

• Kang et al. [4]: Threshold-based clustering. It collects
consecutive points until a distance threshold to the
points’ centroid is exceeded. Then the time criterion 2
is checked and if the minimum duration is reached, the
collected points form a SR. Although the authors only
proposed a POI extraction algorithm, it also implicitly
incorporates SR extraction, which can be outsourced.

• D-Star [17]: Density-based clustering. It is based on
DBSCAN, but instead of solely clustering the location
points spatially, it considers only neighboring points
along the trajectory and tries to exclude outliers. D-Star
seems to be state-of-the-art.

• CB-SMoT [16]: Density-based clustering. While the
algorithm is similar to D-Star, the resulting SRs contain
only consecutive points, which is more in line with
our definition. It can incorporate prior known POIs.
However, for a fair comparison, we exclude this data.

We optimize the hyperparameters of Kang et al. and CB-
SMoT using a 3×3 grid search based on the values reported
in the original publications. D-Star has 4 parameters to
adjust, hence we perform a random search with 10 different
constellations. Each parameter search is incorporated in a 5-
fold cross-validation based on the F1 score. We split the ES
data in the same way as for DeepStay.

2) Training, Validation, and Test: The training and testing
pipeline for DeepStay can be summarized in three steps:

1) Hyperparameter optimization: Training on about 80
% of the GL dataset with weak labels and optimization
of hyperparameters on the remaining 20% in respect to
the loss Lweak. These hyperparameters are the number
of training epochs, the weight decay, the learning rate,
and the SSL weights λvel and λang.

TABLE III: Final results on the ES dataset.

Method F1 Acc. Precision Recall
DeepStay (ours) 0.788 0.954 0.822 0.757
D-Star [17] 0.753 0.951 0.877 0.660
CB-SMoT [16] 0.548 0.909 0.619 0.491
Kang et al. [4] 0.453 0.796 0.325 0.748
constant ĉi = 0 0.203 0.113 0.113 1.000
constant ĉi = 1 0.000 0.887 - 0.000

2) Pre-training: Creating a pre-trained DeepStay model
by reinitiating the training on the full GL dataset and
using the best-known hyperparameters.

3) Fine-tuning and test: Fine-tuning the decoder of the
pre-trained model on the ES dataset and freezing all
other model weights including the encoder layers. We
apply 5-fold cross-validation, i.e. each iteration about
80 % of the data is used for training, and validation
and 20 % for testing. Of this 80 %, 10 % is used for
a second hyperparameter optimization.

We follow [31] and split the data by the participants of
the respective study, to avoid leakage between training,
validation and test set. During both the pre-training and the
fine-tuning, we apply an Adam optimizer [32] and SSL.

3) Metrics: A common metric in time series segmentation
is the pointwise accuracy, i.e. the ratio of correctly classified
points to the total number of labels.

In addition, we measure the pointwise calculated recall and
precision. The definition of the positive class is crucial for
both metrics. Since the final test dataset, i.e. ES, is highly
imbalanced and contains many more stays than non-stays
(see Table II), it is more important to detect a non-stay
than a stay. This also resembles everyday life, where people
mostly stay in one place and only move from time to time.
Therefore, we choose non-stays as the positive class. The
derived F1 score is used as the main metric to evaluate all
SR extraction algorithms.

4) Results: The final results are shown in Table III. All
reported values are calculated over all 5 ES test data splits.
In addition to the three baselines, two simplistic baselines
predict a constant value (either always non-stay ĉi = 0 or
always stay ĉi = 1).

DeepStay achieves higher overall scores than all imple-
mented baselines, while the results for D-Star are comparable
in terms of accuracy. Kang et al. use an approach with hard
thresholds, which seems to be disadvantageous compared to
a density-based approach. Even though CB-SMoT achieves
relatively high accuracy, its F1 score is significantly worse
than the similar D-Star algorithm. This may be due to the
missing outlier detection in CB-SMoT.

5) Ablation Study: We compare the contribution of dif-
ferent training components in Table IV, where we analyze
the effect of training DeepStay first without any SSL and
second without any pre-training, i.e. solely trained on the
ES dataset. For the latter, the original sample rate of 1

min
was used instead of interpolation. In addition to the previous
metrics, we also measure the area under the PR curve (PR-
AUC). It can be seen that the effect of SSL is relatively



TABLE IV: Ablation study of DeepStay tested on ES.

Method F1 Acc. PR-AUC Precision Recall
DeepStay (full) 0.788 0.954 0.821 0.822 0.757
w/o SSL 0.780 0.953 0.809 0.837 0.729
w/o pre-training 0.557 0.850 0.787 0.418 0.838

small. However, the pre-training has a significant impact on
the performance, showing that the model correctly handles
the noise coming from the weak labels and learns reasonable
latent representations of the SRs.

B. Experiment 2: Transportation Mode Detection

To further demonstrate the broader applicability of Deep-
Stay and to contribute our findings to a broader field of
research, we apply the same encoder for TMD.

There has been some work on transformer-based TMD
for data other than trajectories, such as accelerometer, gyro-
scope, and magnetometer data [33]. However, these sensors
are sampled at a much higher rate (> 20Hz) and thus the
input sequences cover only a few seconds. In this case, the
transportation mode is mostly constant, so the segmentation
part is dropped from the TMD task and only the classification
part remains.

For TMD from location trajectories, sequences typically
cover several minutes and therefore mode changes are likely
to occur. Nevertheless, most of the related work presup-
poses a correct segmentation and simply classifies each
of the segments as one of the available modes [22]. This
is problematic for real-world applications, where a correct
segmentation is never given in advance. Here, the advantage
of using the transformer encoder is the joint segmenta-
tion and classification of transportation modes by simply
predicting the pointwise class probabilities and grouping
consecutive predicted points of the same modes together.
The baseline model SECA [29] may be the state-of-the-art
approach of those models that segment and classify from
raw GNSS trajectories. Although their published code lacks
the segmentation part, we compare their self-reported results
on the GL dataset with our own results and show that our
approach significantly outperforms SECA.

1) Model Adaptations: The only adaptations made to
DeepStay are in the decoder and the supervision. The
decoder’s weights are expanded and a softmax activation
predicts the pointwise probability ĉi,m for each of the M = 5
transportation modes:

ĉi,m = softmax(embi Wd′
T + bd′)m, ĉ ∈ [0, 1]

n×M

(22)
Now BCEw in 8 is replaced by the weighted cross entropy
(CEw) in 23 between prediction and ground truth ci,m, where
ctrainm

denotes the percentage of labels of the m-th class
within the training set. For segmentation, we can simply
group consecutive points with the same most probable class.

CEw(ĉi, ci, ctrain) = −
M∑

m=1

ci,m
log(ĉi,m)

M · ctrainm

(23)

TABLE V: Total number of GNSS points after preprocessing.

unlabeled
(Training)

labeled
(Training)

labeled
(Test)

This work 16.29 M 3.74 M 4.76 M
SECA [29] 15.43 M 4.76 M 4.76 M

TABLE VI: Final results for TMD tested on the GL dataset.

Method F1 Acc.
DeepStay (ours) 0.830 0.831
SECA with ground truth segments 0.764 0.768
SECA with predicted segments 0.717 0.721

2) Baseline and Comparable Datasets: The SECA model
[29] is used as the only baseline. The authors perform a
change point search by using the PELT method [34] to
first segment the trajectory. Second, they use a convolutional
neural network (CNN) to predict the mode of each segment
and integrate an autoencoder for semi-supervision.

We compare the size of the dataset after our own prepro-
cessing with that of SECA in Table V. It shows that we train
DeepStay with significantly fewer labels compared to SECA.
However, in total more unlabeled data is available. Overall,
the test sets are quite similar, which allows us to compare
the final results of DeepStay and SECA.

3) Training, Validation, and Test: Both SECA and Deep-
Stay are trained semi-supervised. While SECA uses an
autoencoder, DeepStay applies SSL (see Section IV-C).

Unlike in Experiment 1, we randomly assign each se-
quence seq to one of the training or test sets, regardless of
the including participants, to match the setup of SECA. We
also apply 5-fold cross-validation. In addition, 20% of the
training data is used to adjust the same hyperparameters as
in Experiment 1. We optimize our model using Adam [32].

4) Results: We report the weighted F1 score and the
accuracy. This F1 score is the average of the per-class F1

scores weighted by the number of labels per class. SECA is
performing segmentwise classification and DeepStay point-
wise classification, thus the following results are not fully
comparable.

Nevertheless, the final results in Table VI clearly demon-
strate the significant performance improvement of DeepStay.
A major reason may be the pointwise predictions, which do
not require a prior segmentation, but intrinsically segment the
data for the classification task. However, even when SECA is
given ground truth segments, DeepStay still achieves better
results. One reason may be that, unlike SECA, the input
sequence for our model is not limited to a single trans-
portation mode, i.e., it can also learn the transition between
modes. E.g., it is intuitively more likely to see a transition
from bus to train than from bus to car. Furthermore, the
autoencoder in SECA only tries to reconstruct the trajectory,
while SSL can provide proxy labels for DeepStay, which may
be more informative. In addition, the transformer model with
its attention mechanism seems to be superior in comparison
to the CNN layers for this task.



VII. CONCLUSION AND FUTURE WORK

In this work, we show, how to derive programmatically
weak labels for SR extraction and how to successfully train
a transformer encoder with these data. We demonstrate the
effectiveness of this model on ground truth data for SR
extraction and TMD, where it outperforms state-of-the-art
methods. This work should be seen as a starting point for
new data-driven approaches to SR extraction and provides
useful training and test data. Ideas for future work are:

1) More data augmentation: Instead of always training
on the same sequences, all trajectories could be shifted by
a number of points in each epoch. This results in slightly
different sequences and SSL targets and reduces overfitting.

2) Modeling dependencies: We treat all labeling func-
tions independently, although there are clear dependencies.
E.g., wbuild correlates strongly with wam, because buildings
are often part of amenities. Other work suggests that the
performance benefits significantly from incorporating these
dependencies [35].

3) Pre-training on multiple datasets: In this study, we
stick with the GL dataset for pre-training. However, there are
many public unlabeled GNSS trajectory datasets. All of them
could be weakly labeled with our approach and carefully
combined to have an even larger training set.
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