
Hierarchical Time-Optimal Planning for Multi-Vehicle Racing*

Georg Jank, Matthias Rowold, and Boris Lohmann

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective

works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Abstract— This paper presents a hierarchical planning al-
gorithm for racing with multiple opponents. The two-stage
approach consists of a high-level behavioral planning step
and a low-level optimization step. By combining discrete and
continuous planning methods, our algorithm encourages global
time optimality without being limited by coarse discretiza-
tion. In the behavioral planning step, the fastest behavior
is determined with a low-resolution spatio-temporal visibility
graph. Based on the selected behavior, we calculate maneuver
envelopes that are subsequently applied as constraints in a
time-optimal control problem. The performance of our method
is comparable to a parallel approach that selects the fastest
trajectory from multiple optimizations with different behavior
classes. However, our algorithm can be executed on a single
core. This significantly reduces computational requirements,
especially when multiple opponents are involved. Therefore, the
proposed method is an efficient and practical solution for real-
time multi-vehicle racing scenarios.

I. INTRODUCTION

Planning trajectories in environments with dynamic ob-
stacles is a major task in autonomous driving. Although
approaches for traffic scenarios and racing can be similar,
high speeds, small distances, and different rules pose a
unique challenge in competitive driving on race tracks (like
the Indy Autonomous Challenge). Trajectory planning in this
environment requires rapid solving of non-convex optimiza-
tion problems to generate time-optimal behavior (e.g. left or
right overtake) with a corresponding feasible trajectory.

The majority of recent planning approaches for racing
solve the behavior and trajectory generation problem in one
step by selecting the cost-minimum option from a finite
number of generated trajectories [1]–[3]. These methods are
not prone to local optima, as they cover a large region of
the search space. However, they only find discrete-optimal
solutions, as they do not explore all possible trajectories.
We call them discrete methods in the following. Numerical
optimization-based methods, on the other hand, solve an op-
timal control problem (OCP) with only the time or progress
along a curve being discretized. Thus, they are often referred
to as continuous methods. As the control problem is non-
convex, they converge to different local optima, depending on
the initialization. One way to consider the non-convexity is to
solve multiple OCPs in parallel, one for each behavior class.
However, this does not scale well for multiple opponents
and relies on parallel processing capabilities to achieve low
computation times.

*This work was not supported by any organization
All authors are with the Chair of Automatic Control, Depart-

ment of Mechanical Engineering, TUM School of Engineering and
Design, Technical University of Munich, 85748 Garching, Germany
georg.jank@tum.de

For rapid planning in an environment with multiple oppo-
nents, we propose a hierarchical planning approach that uses
a spatio-temporal visibility graph to determine a high-level
behavior and set the constraints for a low-level numerical
optimization. In essence, we adopt discrete methods for
exploration and continuous methods for exploitation, thereby
combining the strengths of both approaches.

II. RELATED WORK

Discrete planning methods generate and compare a finite
number of candidate trajectories. There are two main subcat-
egories of discrete planning approaches: sampling-based and
graph search methods [4]. Sampling-based methods, using
a rapidly-exploring random tree (RRT) [5], generate tra-
jectory candidates randomly with forward dynamics. These
are checked for feasibility and ranked to find the discrete-
optimal trajectory. Other sampling-based approaches, applied
in racing, sample jerk-minimal splines [1], [3]. A major dis-
advantage of sampling-based methods is the large number of
candidates required to plan complex driving maneuvers [6].

Graph search methods aim to reduce the number of trajec-
tory candidates by creating a graph of feasible trajectory seg-
ments called edges. A graph search then determines the cost-
minimal sequence of edges. In path-velocity decomposition
[7], trivial overtaking maneuvers are planned by calculating
a collision-free velocity profile on an optimal path derived
from a spatial graph. Even though such approaches have
been applied in racing [8], they are not time-optimal, as
they do not fully capture the spatio-temporal character of the
problem. Directly considering dynamic obstacles in the graph
leads to spatio-temporal graphs [2]. However, this requires
at least one additional dimension (time, velocity, or both).
Therefore, the discretization must be kept coarse to mitigate
the curse of dimensionality.

Continuous methods only discretize the time or progress
along a curve and solve an OCP numerically. As they
converge to continuous local optima, they have become
a common choice for trajectory planning in autonomous
motor-sport [9]–[14]. Due to the non-convexity of most
planning problems in racing, different initial guesses can lead
to different local optima [14]. To find the global optimum, a
common approach is to solve multiple OCP in parallel, one
for each homotopy class, i.e. overtaking behavior [10], [12].
The results are then compared in search of the progress-
maximizing solution. This approach increases the chances
of finding the global optimum at the cost of computational
complexity. A different approach that reduces online com-
putational effort is to determine overtaking with a policy
learned from offline simulations [11]. While this method is

ar
X

iv
:2

30
9.

06
76

8v
1

 [
cs

.R
O

]
 1

3
Se

p
20

23

fast, it is not versatile because the calculated policy is only
valid for a specific track.

Lim et al. [15] propose a hierarchical planning approach
for traffic scenarios. The behavior is determined with a
spatio-temporal graph search, and the solution is used to
initialize an OCP. This method combines the ability of dis-
crete methods to find solutions close to the global optimum
with the precision of trajectories calculated with continuous
methods. However, the algorithm is only viable with a
low resolution of the graph, resulting in too conservative
behaviors for racing.

There are several ways to enforce overtaking behavior
in numerical optimization algorithms. Some authors suggest
initializing the OCP with a trajectory estimate, following
the behavior [9], [10], [12]. Other methods convert the
non-convex OCP into a convex subproblem by limiting
motion to a maneuver envelope so that the behavior of the
planned trajectory is more predictable [11], [16], [17]. This is
especially important in racing, where following the optimal
behavior is critical.

A. Contributions

We introduce a hierarchical planning method that extends
the local racing line algorithm in [13] for multi-vehicle
scenarios. Inspired by [15], we combine discrete high-level
behavioral planning with low-level numerical optimization.
This reduces computational complexity compared to [12] and
[10] and improves flexibility compared to [11]. The main
contributions to the hierarchical approach are as follows:

• We propose a behavioral planning step based on spatio-
temporal graphs. In contrast to [15], temporal planning
precedes spatial planning. Progress variants, derived
from the previous planning iteration, determine the
geometry of spatial planning problems that are solved
with low-resolution visibility graphs.

• We adapt the constraints and cost function of the time-
optimal control problem in [13] to generate a feasible
trajectory for the generated high-level behavior.

• We perform a monte carlo simulation to compare our
approach with parallel optimization-based methods and
naive overtaking strategies. We analyze the results re-
garding computation time and driving performance.

III. METHODOLOGY

Our approach operates in two modes shown in Figure 1:
(1) Without any opponents in the planning horizon, the
trajectory is generated according to [13]. A time-optimal
control problem with a point mass model, constrained by
gg-diagrams, is solved for the upcoming track section. In
Sections III-A and III-B, we will briefly summarize the used
track and vehicle model.
(2) When opponents are present, the first step is to make a
behavioral decision, whether to pass opponents on the left
or right and to define a corresponding maneuver envelope.
These processes are explained in Sections III-C and III-D.
The second step, described in Section III-E, is to solve the

Behavioral
Planner

Maneuver
Envelope
Definition[right,

left,
left]

Trajectory Optimization

Opponents

Perception/
Prediction/
Localization

�ov

�lr,tr

�guess = �ev; �lr,coll = �lr,tr

true

false

�guess;
�lr,coll;
�coll

�ev [13]

Fig. 1. Overview of the hierarchical planning approach.

Fig. 2. 3D track with road frame R and velocity frame V .

time-optimal OCP with constraints adapted to comply with
the determined maneuver envelope.

A. Track Model

We use the curve-ribbon approach for modeling three-
dimensional (3D) tracks, presented in [18]. The road frame R
moves along a 3D reference curve, called the spine. It defines
the road surface, as shown in Figure 2. The arc length along
the spine is denoted as s, while n is the lateral displacement
in the direction of the y-axis of R. The rotation rate of R
with respect to arc length s is expressed as angular velocity
RΩR =

[
Ωx Ωy Ωz

]⊤
in the R-frame. For a detailed

description of the 3D track representation, we refer to [18].

B. Vehicle Model

Following [13], we use a low-dimensional point mass
model to describe the dynamics of the vehicle. The state
x is defined as

x =
[
V n χ̂ âx ây

]⊤
, (1)

where V is the velocity and χ̂ is the orientation of the
velocity-alinged frame V relative to the road frame R. The
longitudinal and lateral accelerations of V are given by âx
and ây, respectively. The accelerations are constrained by
gg-diagrams according to [13]. The longitudinal and lateral
jerks ĵx and ĵy form the input vector

u =
[
ĵx ĵy

]⊤
. (2)

With the vertical velocity w and the angular velocity of V
with respect to time VωV =

[
ω̂x ω̂y ω̂z

]⊤
, the dynamics

Behavioral Planning

Progress

Variants

Spatial

Planning

Feasibility

Check

Feasible
false true

Fig. 3. Overview of the behavioral planning algorithm.

Fig. 4. Behavioral planning for an example maneuver with a single
opponent. The top figure shows the generation of progress variants, while
the middle and bottom figures depict the visibility graphs for the variants
(1.1,1) and (0.9,1).

are described by

ẋ =
dx

dt
= f(x,u) =

âx − wω̂y

V sin(χ̂)
ây+wω̂x

V − Ωzṡ

ĵx
ĵy

 . (3)

C. Behavioral Planning

Given the predicted motion of the opponent vehicles, the
behavioral planning step approximates an optimal overtaking
trajectory and selects the fastest sequence of left or right
passing decisions. Since the times and positions of overtakes
depend on the progress of the ego vehicle, this is a spatio-
temporal problem. We solve this problem by first sampling
progress variants, second finding the optimal path for a given

variant, and third checking the feasibility of the resulting
trajectory. Following this order allows for the creation of
low-resolution visibility graphs that take advantage of the
problem geometry.

1) Progress Variants: Progress variants are generated by
following different set speed profiles ṡset, based on the
optimal trajectory of the previous planning iteration xprev. To
do this, we modulate acceleration with a feedback controller
s̈ = K(ṡset − ṡ). Following a certain speed profile ṡset
determines the s-coordinate where the next opponent vehicle
is passed. At these passing points, the speed profiles branch
out by switching to different set speed profiles. The passing
points for a single opponent and set speed profiles ṡset ∈
{0.9 · ṡprev, 1 · ṡprev, 1.1 · ṡprev} are shown in the top
diagram of Figure 4. In the same diagram, we highlight
two exemplary progress variants (1, 1.1) and (0.9, 1). The
first variant follows 1.1ṡprev at the start of the maneuver
and switches to 1ṡprev after the overtake, while the second
one goes from 0.9ṡprev to 1ṡprev. For multiple opponents,
the aforementioned procedure can quickly result in a large
number of progress variants. With three speed profiles and
N opponents, 3N+1 variants are possible. Performing spatial
planning, as described in Section III-C.2, for all variants
would be too computationally complex. Therefore, we gen-
erate the progress variants as needed, beginning with the
fastest variant. If the spatial planning step can generate
a feasible trajectory for the current variant, the trajectory
and corresponding behavior are applied to the numerical
optimization. Otherwise, we continue with the next fastest
variant. This iterative procedure is visualized in Figure 3
and promotes finding the global time-optimal solution. More
details on the feasibility checks are given in Section III-C.3.

2) Spatial Planning: With the passing points of the con-
sidered progress variant, a spatial graph can be generated. We
utilize visibility graphs. These are undirected graphs, con-
necting all vertices of obstacles with straight edges that do
not cross an obstacle [19]. Originally, they were developed to
find the shortest collision-free path. Compared to the spatio-
temporal lattice with fixed nodes [15], the discretization,
based on the corner points of moving obstacle polygons,
allows for the generation of short and direct path candi-
dates with a small number of nodes. Considering vehicle
dimensions and safety distances, we virtually expand the
track boundaries and opponent polygons to avoid collisions
when the center point of the ego vehicle is within bounds.
The visibility graphs for the progress variants (1, 1.1) and
(0.9, 1) are shown in the two bottom diagrams of Figure 4.

An A* search determines the optimal path to minimize
the total travel distance

∑
i di and angle deviation

∑
i |χ̂i|

relative to the spine: min
i

∑
i(wddi + wχ|χ̂i|). The search is

guided by a heuristic function h(P), based on the length
dPD and angle deviation |χ̂PD| of a virtual edge PD
connecting the current point P to the destination D: h(P) =
wddPD+wχ|χ̂PD|. By discouraging long and weaving paths,
the goal is to predict which path is most likely to be feasible
for the given progress variant. We increase the speed of the

Fig. 5. Generation of maneuver envelopes.

search algorithm by applying the following simplifications to
reduce the number of nodes in the graph: (1) With the help
of the Ramer–Douglas–Peucker algorithm [20], we reduce
the number of boundary points to a subset of points that
approximates the shape. (2) We remove the boundary nodes
at the start and end of the planning horizon, as the vehicle
would have to drive perpendicular to the spine or in reverse
track direction to reach them.

3) Feasibility Check: Spatial planning with visibility
graphs results in non-continuous curvature profiles, so the
unprocessed paths are not feasible. To confirm the suitability
of a path and its corresponding overtaking behavior, a cubic
spline fspline(s) is placed through the path, as seen in Fig-
ure 4. The smoother path candidate ncand = fspline(scand(t))
is then combined with the considered progress variant
ṡcand(t) to form the trajectory candidate

xcand =

Vcand

ncand

χ̂cand

âx,cand
ây,cand

 =

ṡcand(1−ncandΩz)

cos χ̂

ncand

arctan f ′
spline(scand)

V̇

V (ωz + ˙̂χ)

 . (4)

If the accelerations from the trajectory xcand lie within the
gg-diagrams, behavioral planning finishes with the trajectory
estimate xguess = xcand and its corresponding behavior.
Otherwise, the next slower progress variant is examined.

D. Maneuver Envelope Definition

The maneuver envelope should force the solution of the
OCP with initialization xguess = xcand to remain in the
previously determined optimal behavior class.

The maneuver envelopes are formed by extending obstacle
polygons of the opponents to cover the side of the track
where overtaking is suboptimal according to the behavioral
planning step. As the vehicle travels along the planning
horizon, the resulting spatio-temporal obstacle constraints
form a narrowed driving corridor, as depicted in Figure 5.
We reduce complexity by combining all obstacle constraints
into collision constraints that describe this narrowed driving
space. This is achieved by sampling the lateral restriction
n ∈ [nr,coll(s), nl,coll(s)] for the initial guess xguess.

While the complexity of the OCP is significantly reduced,
information gets lost when spatio-temporal constraints are

reduced to spatial constraints. As the constraints now only
depend on the distance, they can influence the vehicle speed
solely through the feasible curvatures in the narrowed driving
space. To make the vehicle slow down when the gap for
overtaking is too small, we re-introduce the spatio-temporal
component by adding a constraint on vehicle progress s <
scoll + Vcollt. This longitudinal constraint acts like a wall
moving at the average speed of the obstacle.

E. Optimal Control Problem

Following [13], the second step of our hierarchical ap-
proach solves an OCP parametrized by s for a constant
spatial planning horizon s ∈ [s0, se]. By using numerical
optimization, we can calculate fast trajectories that are not
limited by discretization. The cost function (5a) consists of
three terms: a time optimality term, a term that smooths the
acceleration profile by minimizing jerk, and a slack term
that ensures that the soft constraints on velocity and vehicle
position are fulfilled. The OCP is defined as

min
x,u

∫ se

s0

1

ṡ
+ u⊤Ru + ϵ⊤Sϵ ds (5a)

s.t. x′ = f(x,u)
1

ṡ
(5b)

V − ϵV ≤ Vmax with ϵV ≥ 0 (5c)
(9a), (9b), (9c) in [13] (5d)
nr,tr + ds ≤ n ≤ nl,tr − ds (5e)

−π

2
≤ χ̂ ≤ π

2
(5f)

n− ϵnl,coll
+ ds ≤ nl,coll with ϵnl,coll

≥ 0 (5g)
n+ ϵnr,coll

− ds ≥ nr,coll with ϵnr,coll
≥ 0 (5h)

s− ϵs,coll ≤ scoll with ϵs,coll ≥ 0 (5i)

with

R =

[
wj,x 0
0 wj,y

]
,

ϵ =
[
1 ϵV ϵnl,coll

ϵnr,coll
ϵscoll

]⊤
,

S =

0

wϵ,V,1

2

wϵ,nl,coll,1

2

wϵ,nr,coll,1

2

wϵ,scoll,1

2wϵ,V,1

2 wϵ,V,2 0 0 0
wϵ,nl,coll,1

2 0 wϵ,nl,coll,2 0 0
wϵ,nr,coll,1

2 0 0 wϵ,nr,coll,2 0
wϵ,scoll,1

2 0 0 0 wϵ,scoll,2

 .

Constraint (5b) enforces the equations of motion in (3). Us-
ing the diamond interpolation method presented in [13], we
limit the combined accelerations in (5d). The vehicle is kept
a safety margin ds away from the track boundaries in (5e).
Inequality (5f) prevents driving in reversed track direction.
The aforementioned restrictions are hard constraints that have
to be satisfied for a solution to exist.

However, there are cases where such a strict definition
of constraints might be disadvantageous regarding the ro-
bustness of the solver. E.g., the speed limit is not safety-
critical and can be violated for short periods of time. The
soft velocity constraint is realized by the slack variable ϵV
in (5c). Similarly, the maneuver envelopes from Section III-D

are realized as soft constraints with (5g)–(5h). With hard con-
straints, the result, if feasible, would be too conservative be-
cause the uncertainty of the opponent’s prediction increases
with distance. Following [21], our slack variables have linear
and quadratic terms in the cost function. These are realized
by the matrix S. If the initialization of the OCP violates
one of the soft constraints x0 ≰ xmax, the corresponding
slack variable ϵx is initialized with the value of the excess
ϵx,0 = x0−xmax. Within and between the planning steps, the
violation is gradually decreased and eventually eliminated.
The linear and quadratic weights wx,1, wx,2 determine how
hard the violations are penalized and are therefore used for
adjusting the softness of the constraints. This is especially
useful for the collision constraints (5g)–(5i). Here, the slack
weights wϵ,icoll,j(s) for i ∈ {nl, nr, s} and j ∈ {1, 2} are
defined as a function of progress with parameters wϵ,icoll,j,s0

and wϵ,icoll,j,se (wϵ,icoll,j,s0 > wϵ,icoll,j,se)

wϵ,icoll,j(s) = wϵ,icoll,j,se

(
wϵ,icoll,j,s0

wϵ,icoll,j,se

) se−s
se−s0

. (6)

Large slack weights close to the ego vehicle (s ≈ s0) reduce
the likelihood of collisions. Meanwhile, low weights at the
end of the planning horizon make the solver more stable in
the presence of large and sudden changes in the predicted
vehicle position. For the velocity constraint (5c), we use
constant slack weights wϵ,V,1 and wϵ,V,2.

As long as the behavior, determined by the high-level
planning step in Section III-C, remains the same, we initialize
the OCP with the solution of the previous optimization
xguess = xprev. If the behavior changes, the smoothed
trajectory, passing the feasibility check in Section III-C.3,
is used as a new initial guess for the OCP xguess = xcand.

IV. RESULTS

To validate and evaluate the hierarchical planning ap-
proach, we perform randomized simulations with three vehi-
cles on the Modena race track. All simulations are calculated
on an Intel Core i7-5600U CPU. The planning horizon is
set to H = se − s0 = 300m and progress variants are
generated with the set speed factors {0.5, 1, 2}. The slack
weights wϵ,ncoll,1,s0/se = 50/25, wϵ,ncoll,2,s0/se = 5/2.5,
wϵ,scoll,1,s0/se = 20/10 and wϵ,scoll,2,s0/se = 2/1 are
selected for collision-free overtaking. The definition of all
other parameters was guided by [13]. At the beginning of
each simulation, two opponent vehicles are positioned at
random within a range of 120m in front of the ego vehicle.
Once the ego vehicle has overtaken both opponents and
opened a gap of 50m, the simulation is stopped. Each initial
configuration is tested with the following four approaches:

1) The hierarchical approach presented in this paper
2) A pseudo-parallel optimization approach
3) Overtaking only on the left of the opponents
4) Overtaking only on the right of the opponents

The pseudo-parallel approach is based on the parallel op-
timization from Section II. For each behavior class, we
specify a maneuver envelope and solve an OCP. To initialize

the different OCPs, we generate path candidates with cubic
splines. These paths start at the current vehicle position, pass
through points of the obstacle polygons and finish on the
track spine at the end of the planning horizon. We initialize
the OCP with xguess = xprev for the behavior class equal
to the previous solution of the planning algorithm. For a
comparison with our single-core hierarchical approach, we
solve all OCPs sequentially. We name this single-core variant
of parallel optimization pseudo-parallel optimization.

Exemplary overtakes for approaches 3) and 4) are shown
in Figure 6. When overtaking on the left is specified, the
vehicle passes on the outside of the first corner. For the
overtake on the right, the vehicle accelerates less at the
beginning to overtake when a gap opens up on the outside
of the second turn. In this scenario, the left behavior class
results in an earlier overtake compared to the right one.

Figure 7 shows the duration of the overtaking simulations
for approaches 1)–4). Compared to the first two methods,
the fixed behaviors produce significantly longer and more
inconsistent overtaking times. This shows that there are
multiple local optima and that it is beneficial to select the
correct behavior before solving the OCP. The overtaking
times from our hierarchical approach are similar to the
pseudo-parallel approach that assesses all behavior classes
in detail. Thus, we deduce that our proposed method selects
the optimal behavior in the majority of cases.

The ego vehicle considers the vehicles within its planning
horizon. To evaluate the scalability of the planning ap-
proaches 1)–4), we assess the calculation times for different
numbers of opponents within the planning horizon. The
results are shown in Figure 8. For the constant overtaking
behaviors 3) and 4), the calculation times are similar and
largely unaffected by the addition of opponents. For our
hierarchical approach, there is a 0.6 s jump when introducing
the first opponent. Adding a second opponent does not result
in any further increase. Thus, computational complexity
appears to scale well with the number of opponents.

Conversely, calculation time increases exponentially for
the pseudo-parallel approach. Instead of planning in two
steps, it optimizes a trajectory for every possible behavior
combination. As there are 2N combinations for N opponents
(e.g. N = 2 → [ll,lr,rl,rr]), the calculation time doubles for
every added opponent. Going from zero to one opponent,
the computation time increases even more, as only one of
the OCPs is initialized with the previous solution when there
are opponents. The other initial guesses are farther from their
corresponding optima, and the OCPs take longer to converge.

V. CONCLUSION

In this paper, we introduced a hierarchical planning
approach for racing with multiple opponent vehicles. We
demonstrated that our approach with low-resolution visibil-
ity graphs for spatio-temporal planning is computationally
efficient and has overtaking performance similar to parallel
optimization. Therefore, the method is to be preferred when
the computational resources are limited to a single core.

Overtake

Overtake

Fig. 6. Example for left overtaking behavior (left) and right overtaking
behavior (right). The lines show the paths of the vehicles and line thickness
indicates speed. The vehicle positions are plotted at intervals of ≈ 1.2 s.

O
v
er

ta
k
in

g
 t

im
e

in
 s

ec
o
n
d
s

Fig. 7. Time required for overtaking two opponent vehicles based on 216
randomized overtaking simulations. The median overtaking performance of
our hierarchical approach is similar to the pseudo parallel optimization.
Compared to that, the fixed strategies generally result in slower overtakes.

C
a
lc

u
la

t
io

n
 t

im
e
 i
n
 s

e
c
o
n
d
s

Fig. 8. Calculation time for different maneuvers and numbers of opponent
vehicles (OV) based on 216 simulations with approximately 300 steps per
simulation. The hierarchical approach shows slightly higher computation
times than methods without behavioral planning. However, in contrast
to the pseudo-parallel approach, the computation time does not increase
exponentially with the number of opponents. Thus, it is more scalable.

REFERENCES

[1] A. Raji, A. Liniger, A. Giove, A. Toschi, N. Musiu, D. Morra,
M. Verucchi, D. Caporale, and M. Bertogna, “Motion Planning and
Control for Multi Vehicle Autonomous Racing at High Speeds,” in
2022 IEEE 25th International Conference on Intelligent Transporta-
tion Systems (ITSC), 2022, pp. 2775–2782.

[2] M. Rowold, L. Ögretmen, T. Kerbl, and B. Lohmann, “Efficient
spatiotemporal graph search for local trajectory planning on oval race
tracks,” Actuators, vol. 11, no. 11, p. 319, 2022.

[3] L. Ögretmen, M. Rowold, M. Ochsenius, and B. Lohmann, “Smooth
Trajectory Planning at the Handling Limits for Oval Racing,” Actua-
tors, vol. 11, no. 11, p. 318, 2022.

[4] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[5] J. H. Jeon, R. Cowlagi, S. Peters, S. Karaman, E. Frazzoli, P. Tsiotras,
and K. Iagnemma, “Optimal motion planning with the half-car dynam-
ical model for autonomous high-speed driving,” in 2013 American
Control Conference, 2013, pp. 188–193.

[6] J. Ziegler and C. Stiller, “Spatiotemporal state lattices for fast tra-
jectory planning in dynamic on-road driving scenarios,” in 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2009, pp. 1879–1884.

[7] K. Kant and S. Zucker, “Toward efficient trajectory planning: The path-
velocity decomposition,” International Journal of Robotic Research -
IJRR, vol. 5, no. 3, pp. 72–89, 1986.

[8] T. Stahl, A. Wischnewski, J. Betz, and M. Lienkamp, “Multilayer
Graph-Based Trajectory Planning for Race Vehicles in Dynamic Sce-
narios,” in 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), 2019, pp. 3149–3154.

[9] A. Buyval, A. Gabdulin, R. Mustafin, and I. Shimchik, “Deriving
overtaking strategy from nonlinear model predictive control for a race
car,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2017, pp. 2623–2628.

[10] D. Kalaria, P. Maheshwari, A. Jha, A. K. Issar, D. Chakravarty,
S. Anwar, and A. Towar, “Local nmpc on global optimised path for
autonomous racing,” pesented at the ICRA workshop on Opportunities
and Challenges with Autonomous Racing, May 2021.

[11] J. Bhargav, J. Betz, H. Zheng, and R. Mangharam, “Track based offline
policy learning for overtaking maneuvers with autonomous racecars,”
presented at the ICRA Workshop on Opportunitites and Challenges
with Autonomous Racing, Jul. 2021.

[12] S. He, J. Zeng, and K. Sreenath, “Autonomous racing with multiple
vehicles using a parallelized optimization with safety guarantee us-
ing control barrier functions,” in 2022 International Conference on
Robotics and Automation (ICRA), 2022, pp. 3444–3451.

[13] M. Rowold, L. Ögretmen, U. Kasolowsky, and B. Lohmann, “Online
time - optimal trajectory planning on three-dimensional race tracks,”
in 2023 IEEE Intelligent Vehicles Symposium Proceedings, 2023
(Submitted and Approved for Publication).

[14] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1:43 scale RC cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[15] W. Lim, S. Lee, M. Sunwoo, and K. Jo, “Hierarchical trajectory
planning of an autonomous car based on the integration of a sam-
pling and an optimization method,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 2, pp. 613–626, 2018.

[16] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha - a local, continuous method,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings, 2014, pp. 450–457.

[17] P. Bender, O. Tas, J. Ziegler, and C. Stiller, “The combinatorial aspect
of motion planning: Maneuver variants in structured environments,” in
2015 IEEE Intelligent Vehicles Symposium (IV), 2015, pp. 1386–1392.

[18] G. Perantoni and D. J. N. Limebeer, “Optimal control of a formula one
car on a three-dimensional track—part 1: Track modeling and iden-
tification,” Journal of Dynamic Systems, Measurement, and Control,
vol. 137, no. 5, p. 051018, 2015.

[19] T. Lozano-Pérez and M. Wesley, “An algorithm for planning collision-
free paths among polyhedral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[20] U. Ramer, “An iterative procedure for the polygonal approximation
of plane curves,” Computer Graphics and Image Processing, vol. 1,
no. 3, pp. 244–256, 1972.

[21] E. Kerrigan and J. Maciejowski, “Soft constraints and exact penalty
functions in model predictive control,” in Proc. UKACC International
Conference (Control 2000), 2000, pp. 2319–2327.

	Introduction
	Related Work
	Contributions

	Methodology
	Track Model
	Vehicle Model
	Behavioral Planning
	Progress Variants
	Spatial Planning
	Feasibility Check

	Maneuver Envelope Definition
	Optimal Control Problem

	Results
	Conclusion
	References

