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Abstract—In-network caching is an appealing solution to
cope with the increasing bandwidth demand of video, audio
and data transfer over the Internet. Nonetheless, an increasing
share of content delivery services adopt encryption through
HTTPS, which is not compatible with traditional ISP-managed
approaches like transparent and proxy caching. This raisesthe
need for solutions involving both Internet Service Providers
(ISP) and Content Providers (CP): by design, the solution
should preserve business-critical CP information (e.g., content
popularity, user preferences) on the one hand, while allowing for
a deeper integration of caches in the ISP architecture (e.g., in
5G femto-cells) on the other hand.

In this paper we address this issue by considering a content-
oblivious ISP-operated cache. The ISP allocates the cache storage
to various content providers so as to maximize the bandwidth
savings provided by the cache: the main novelty lies in the fact
that, to protect business-critical information, ISPs only need to
measure the aggregated miss rates of the individual CPs and do
not need to be aware of the objects that are requested, as in
classic caching. We propose a cache allocation algorithm based
on a perturbed stochastic subgradient method, and prove that
the algorithm converges close to the allocation that maximizes the
overall cache hit rate. We use extensive simulations to validate
the algorithm and to assess its convergence rate under stationary
and non-stationary content popularity. Our results (i) testify
the feasibility of content-oblivious caches and (ii) show that the
proposed algorithm can achieve within 10% from the global
optimum in our evaluation.

I. I NTRODUCTION

It is widely known that content delivery over the Internet
represents a sizeable and increasing fraction of the overall
traffic demand. Furthermore most of the content, including
video, is carried over HTTP connections: this evolution of
the last decade was not among those forecasted for the IP
hourglass model evolution [1], and is rather a choice of prac-
tical convenience. This evolution has a tremendous practical
relevance, to the point that HTTP was overtly recognized and
proposed [2] as the new de facto “thin waist” of the TCP/IP
protocol family.

In very recent times, we are on the verge of yet another
shift of the thin waist: we indeed observe that the fraction of
traffic delivered through HTTPS has already passed 50% [3],
and it is expected to increase, as the IETF Internet Architecture
Board (IAB) recommends “protocol designers, developers, and
operators to make encryption the norm for Internet traffic” [4].
Besides the IAB recommendation, Content Providers (CP)
are already heavily relying on encryption to both protect the

privacy of their users, as well as sensitive information (related
to user preferences) of their own business.

This evolution toward an all-encrypted Internet creates a
tussle between security and efficiency. Today’s Internet heavily
relies on middleboxes such as NATs (to combat the scarcity of
IPv4 addresses) and transparent or proxy caches [5] (to relieve
traffic load). However, some of these middleboxes will simply
fail to operate in tomorrow’s Internet with end-to-end en-
cryption: for example, end-to-end encryption renders caching
useless, since multiple transfers of the same object generate
different streams if the same object is encrypted with different
keys. At times where the design of the new 5G architecture
strives to reduce latency, increase the available bandwidth and
better handle mobility, this tradeoff is especially unfortunate,
as distributed caches represent a natural way to reduce latency,
reduce bandwidth usage and to cope with mobility avoiding
long detours to anchor points.

This architectural evolution calls for a redesign of the
current operations involving both Internet Service Providers
(ISP) and Content Providers (CP): by design, the solutions
should preserve business-critical CP information (e.g., content
popularity, user preferences) on the one hand, while allowing
for a deeper integration of caches in the ISP architecture (e.g.,
in 5G femto-cells) on the other hand.

In this paper we address this issue by proposing a content-
oblivious algorithm that manages the storage space of an ISP
cache that deliversencrypted content: the algorithmdynami-
cally partitions the cache storage among various CPs so as to
maximize the cache hit rate (hence, the bandwidth savings).
The most important feature of the algorithm is that in order to
protect business-critical information of the CPs, the ISP only
needs to measure theaggregated miss ratesof the individual
CPs. We prove that relying on the aggregated miss rates only,
our algorithm converges close to the optimal allocation that
maximizes the overall cache hit rate, and provide a bound
on the gap compared to the optimal allocation. Extensive
simulations under realistic scenarios show the feasibility and
good performance of the proposed algorithm.

The rest of the paper is organized as follows. Sec. II reviews
related work. Sec. III describes the system model and presents
our cache partitioning algorithm. Sec. IV provides analytic
results, and Sec. V evaluates the performance of the algorithm.
Sec. VI concludes the work.
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II. RELATED WORK

The problem of cache partitioning has first been considered
in the context of partitioning CPU cache among competing
processes [6]. Clearly, the cache workload created by CPU
jobs differs very much from the characteristics of traffic
requests from a user aggregate, so that our technique signif-
icantly differs in their design choices: i.e., there is no notion
of privacy within the CPU that would force the scheduler to
be agnostic of the instruction patterns, unlike in our case.

Related to our work are recent works in the area of
in-network caching, which is an established technique that
continues to receive significant interest in recent years [7].
They generally consider the cache as a whole, but for a
few exceptions [8], [9] that partition a cache among different
applications and video quality levels, respectively, and assume
that the served content is observable by the ISP. Our work
differs from these works, as we consider a cache partitioned
among CPs, and the ISP can observe the aggregate miss rates
of the CPs only. A recent work [10] proposes to share a cache
managed by an ISP among different CPs in order to achieve
fairness. Partitioning of the storage is done using a pricing
scheme based on the value that each CP gives to cache space.
Unlike [10], our proposed algorithm aims to maximize the
cache hit rate, and does not involve payments, which may
make its adoption less controversial considering the disputes
among ISPs and CPs in recent years [11]. To the best of
our knowledge, our work is the first to propose an effective
way to maximize the efficiency of an ISP-managed cache, by
partitioning it among multiple CPs, without being aware of the
content that the CPs serve and without involving payments.

Closer in scope to ours are worth mentioning a set of
recent works that target ISP/CDN cooperation [12], [13], [14],
[15]. These not only show that ISPs have strong incentive
in investing in caching to reduce the traffic on their critical
paths, but also show that the other Internet actors, i.e. CPsand
users, would benefit from ISP in-network caching. The game
theoretical study in [12] shows that caches are inefficient when
operated by CPs, since CP content placement and ISP traffic
engineering are often not compatible. Solutions are proposed
in [13], [15], which however require ISPs to share with the
CP confidential information, such as topology, routing policies
or link states, and as such are arguably highly impractical.
Conversely, [14] fosters an ISP-operated cache system, but
requires the ISP to be able to observe every object requested
by the users, which is arguably equally impractical since CPs
purposely hide this confidential information via HTTPS. In
contrast with these previous works, our solution does not yield
to any leaking of business critical information. Furthermore,
our solution is not limited to a single CP, unlike [13].

Finally, from a technical viewpoint, our work is aligned
with recent industry efforts in the Open Caching Working
Group (OCWG) [16]. The mission of the OCWG is to develop
standards, policies and best practices for a new layer of content
caching within ISP networks, which can coexist with HTTPS
and provide shared access to storage for many CPs. Our work
fits the OCWG requirements and as such is, we believe, of
high practical relevance.

III. STOCHASTIC DYNAMIC CACHE PARTITIONING

A. System Model and Problem Formulation

We consider a cache with a storage size ofK slots (e.g.,
in units of MB) maintained by an operator and shared byP
content providers (CPs). The operator is not aware of what
content the individual slots store and only decides how to
partition the slots among CPs.

We denote byθp ∈ Z≥0 the number of cache slots allocated
to CPp, which it can use for caching its most popular contents.
We define the set of feasible cache allocation vectors

Θ , {θ ∈ Z
P
≥0|

P
∑

p=1

θp ≤ K} ⊂ Z
P
≥0. (1)

We consider that the arrival of requests for content can be
modeled by a stationary process, and the number of arrivals
over a time interval of lengthT can beboundedby some
positive constantA(T ). This assumption is reasonable as
requests are generated by a finite customer population, and
each customer can generate requests at a bounded rate in
practice. Upon reception of a request for a content of the
CPs that share the cache, the request can either generate a
cache hit (for content stored in the CP partition at time of
the request) or a cache miss (otherwise). Formally, we denote
the expectedcache miss rate (i.e., expected number of misses
per time unit) of CPp when allocatedθp slots of storage
by Lp(θp). We make the reasonable assumption thatLp is
decreasing and strictly convex on[0 . . .K]. This assumption
corresponds to that having more storage decreases the miss
intensity (in expectation) with a decreasing marginal gain,
and each CP would in principle have enough content to fill
the entire storage. For convenience we define the cache miss
intensity vector

~L(θ) , (L1(θ1), . . . , LP (θP ))
T
. (2)

Finally, we define the overall expected cache miss intensity

L(θ) ,

P
∑

p=1

Lp(θp). (3)

Motivated by the increasing prevalence of encrypted content
delivery, we assume that the operator cannot observe what con-
tent an individual request is for, but it can observe the number
of content requests received by a CP and the corresponding
number of cache misses.

Given a static cache partitioningθ ∈ Θ, the observed num-
ber of content requests and the number of cache misses would
form a stationary sequence when measured over subsequent
time intervals. The objective of the operator is to find the
optimal allocationθOPT that minimizes the overallexpected
cache miss intensity, i.e.,

θ
OPT ∈ argmin

θ∈Θ
L(θ), (4)

based on the measured cache miss intensity. In what fol-
lows we propose the Stochastic Dynamic Cache Partitioning
(SDCP) algorithm that iteratively approximates the optimal
allocation.
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Table I
FREQUENTLY USED NOTATION(WITH PLACE OF DEFINITION)

P Number of content providers (CP)
K Available cache slots
K ′ Allocated cache slots (6)
θ Cache configuration
Θ Set of feasible cache allocations (1)
C Set of allowed virtual cache allocations (5)

L(θ) Expected cache miss intensity (3)
~L Miss intensity vector (2)

L̄(θ) Interpolant of the miss intensity (Lemma 8)
θ∗ Unique minimizer ofL̄ (Lemma 8)

D(k) Perturbation vector (8)
T Time slot length
ϕ Euclidean projection (10)

ĝ(k) Stochastic subgradient (line 11 of Alg. 1)
ḡ(θ) Subgradient of̄L (21)

Algorithm 1: Stochastic Dynamic Cache Partitioning Al-
gorithm

1 Choose an initial allocationθ0 ∈ C ∩ R
P
≥0

2 for k = 0; ; k ++ do
3 GenerateD(k)

4
+θ(k) = Γ(θ(k)) + 1

2
D(k)

5
−θ(k) = Γ(θ(k))− 1

2
D(k)

6 Set the configuration to+θ(k) for time T/2

7 Measure+~y(k)

8 Set the configuration to−θ(k) for a timeT/2
9 Measure−~y(k)

10 δ~y(k) =+ ~y(k) −− ~y(k)

11 ĝ(k) = δ~y(k) ◦D(k) − 1
P
· (δ~y(k)T ·D(k))1P

12 θ(k+1) = ϕ(θ(k) − a(k)ĝ(k))
13 end

B. Stochastic Dynamic Cache Partitioning (SDCP) Algorithm

The proposed SDCP algorithm is an iterative algorithm that
is executed over time slots of fixed durationT . The pseudo
code of the algorithm is shown in Alg. 1. For simplicity we
present the algorithm assuming thatP is even, but the case
of an odd number of CPs can be handled by introducing a
fictitious CP with zero request rate.

At time slot k the algorithm maintains a virtual cache
allocationθ(k). The virtual allocation is an allocation ofK ′

storage slots among the CPs, i.e.,

θ
(k) ∈ C ,

{

θ ∈ R
p|1T

P · θ , K ′
}

, (5)

where
K ′ = K − P/2. (6)

We will justify the introduction ofK ′ and ofC in the proof
of Lemma 6.

In order to obtain fromθ
(k) an integral allocation that

can be implemented in the cache, we define the center-point
functionΓ : RP → R

P , which assigns to a point in Euclidean
space the center of the hypercube containing it, i.e.,

γ(x) , ⌊x⌋+ 1/2, ∀x ∈ R,

Γ(θ) , (γ(θ1), . . . , γ(θP ))
T
, ∀θ ∈ C,

(7)

where we use⌊·⌋ to denote the floor of a scalar or of a
vector in the component-wise sense. Furthermore, we define

the perturbation vectorD(k) = (D
(k)
1 , . . . , D

(k)
P )T at time slot

k, which is chosen independently and uniform at random from
the set of−1,+1 valued zero-sum vectors

D(k) ∈ Z ,
{

z ∈ {−1, 1}P
∣

∣zT · 1P = 0
}

. (8)

GivenΓ andD(k) the algorithm computes two cache alloca-
tions to be implemented during time slotk,

+θ
(k)

, Γ(θ(k)) + 1
2D

(k),
−θ

(k)
, Γ(θ(k))− 1

2D
(k).

(9)

The algorithm first applies allocation+θ(k) for T/2 amount of
time and measures the cache miss rate+y

(k)
p for each provider

p = 1, . . . , P . It then applies allocation−θ(k) during the
remainingT/2 amount of time in slotk and measures the
cache miss rates−y(k)p . The vectors of measured cache misses
−~y(k) , (−yk1 , . . . ,

− y
(k)
P )T and+~y(k) , (+yk1 , . . . ,

+ y
(k)
P )T

are used to compute the impactδy
(k)
p ,+ y

(k)
p −− y

(k)
p of the

perturbation vector on the cache miss intensity of CPp, or
using the vector notationδ~y(k) ,+ ~y(k) −− ~y(k).

Based on the measured miss rates, the algorithm then
computes the allocation vectorθ(k+1) for the (k+1)-th step.
Specifically, it first computes (line 11, where◦ denotes the
Hadamard product) the update vectorĝ(k), which we show in
Cor. 12 to match in expectation a subgradient of the miss-
stream interpolant̄L, defined in Lemma 8. The(k + 1)-th
allocation moves from thek-th allocation in the direction
of the update vector̂g(k), opportunely scaled by astep size
a(k) > 0. Additionally, denoting withR≥0 the set of non-
negative numbers,θ(k+1) is computed using the Euclidean
projectionϕ : C → C ∩ R

P
≥0, defined as

ϕ(θ) , arg min
θ′∈C∩R

P

≥0

‖θ− θ
′‖. (10)

Several remarks are worth making. First, we will show in
Lemma 5 that the equation above admits a unique solution
and thus the definition is consistent. Second, we will show in
Lemma 6 that̂g computed as in line 11 guarantees that the
updateθ(k) − a(k)ĝ(k) at line 12 lies insideC. Nonetheless,
this update may have some negative components and we need
to project it intoC ∩ R≥0 by applyingϕ, to ensure that the
subsequent virtual allocationθ(k+1) is valid. Third, thestep
size a(k) must be chosen to satisfy

∑∞
k=1 a

(k) = ∞ and
∑∞

k=1(a
(k))2 < ∞ in order to guarantee convergence (see

Theor. 13). Fourth, although the convergence of the proposed
algorithm is guaranteed, for stationary content popularity, irre-
spectively of the choice ofa(k) satisfying the above conditions,
we point out that the step size plays an important role in
determining the convergence speed, which we will numerically
investigate in Sec. V.

IV. CONVERGENCEANALYSIS OF SDCP

We first provide definitions and known results (Sec.IV-A)
that are instrumental to prove important properties of the
proposed algorithm: consistency (Sec.IV-B), convergence
(Sec.IV-C) and a bound on the optimality gap (Sec.IV-D).
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A. Preliminaries

Let us start by introducing the forward difference defined
for functions on discrete sets.

Definition 1. For a functionF : Zq1 → R
q2 , q1, q2 ≥ 1 the

forward difference is

∆nF(x) , F(x+ n · 1q1)− F (x), ∀x ∈ Z
q1 , n ∈ Z \ {0}.

By abuse of notation, we will simply use∆F(x) to denote
∆1F(x).

The forward difference is convenient for characterizing
convexity using the following definition [17].

Definition 2. A discrete functionF : Z → R is strictly convex
iff x → ∆F (x) is increasing.

Furthermore, for a class of functions of interest we can
establish the following.

Lemma 3. Let F : Z → R decreasing and strictly convex,
x ∈ Z andn ∈ Z \ {0} we have

∆nF (x) > n∆F (x). (11)

Proof:
We first show that∀x, y ∈ Z such thaty > x, the following

holds

∆nF (y) > ∆nF (x) if n > 0, (12)

∆nF (y) < ∆nF (x) if n < 0. (13)

For n > 0 we can use Def. 2 to obtain

∆nF (y) =

n−1
∑

i=0

[F (y + i+ 1)− F (y + i)] =

n−1
∑

i=0

∆F (y + i)

>

n−1
∑

i=0

∆F (x+ i) = ∆nF (x), (14)

which proves (12).
For n < 0 algebraic manipulation of the definition of the

forward difference and (14) gives

∆nF (y) = −∆|n|F (y− |n|) < −∆|n|F (x− |n|) = ∆nF (x),

which proves (13). To prove (11) forn > 0, observe that,
thanks to Def. 2, each of then terms of the last summation
in (12) is lower bounded by∆F (x). For n < 0 via algebraic
manipulation we obtain

∆nF (x) = −

|n|
∑

i=1

∆F (x−i) > −

|n|
∑

i=1

∆F (x) = −|n|·∆F (x),

which proves (11) as|n| = −n.
Since SDCP generates virtual configurations whose compo-

nents are not necessarily integer, we have to extend the discrete
functionsLp to real numbers. Thanks to Theor. 2.2 of [18],
we have the following existence result.

Lemma 4. Given a discrete decreasing and strictly convex
function F : Z → R, there exists a continuous and strictly
convex functionF̄ : R → R that extendsF , i.e., F (x) =
F̄ (x), ∀x ∈ Z. We call F̄ the interpolantof F .

Finally, we formulate an important property of the Euclidean
projectionϕ.

Lemma 5. There is a unique functionϕ satisfying (10).
Furthermore,ϕ satisfies

‖ϕ(θ)− θ
′‖ ≤ ‖θ− θ

′‖, ∀θ ∈ C,θ′ ∈ C ∩R
P
≥0, (15)

i.e., ϕ(θ) is no farther from any allocation vector thanθ.

Proof: Observe thatC∩RP
≥0 is a simplex, and thus closed

and convex. Hence, the Euclidean projectionϕ is the unique
solution of (10) [19]. Furthermore, the Euclidean projection is
non-expansive (see, e.g., Fact 1.5 in [20]), i.e., forθ,θ′ ∈ C
it satisfies‖ϕ(θ) − ϕ(θ′)‖ ≤ ‖θ − θ

′‖. Observing that if
θ
′ ∈ C ∩ R

P
≥0 thenϕ(θ′) = θ

′ proves the result.

B. Consistency

We first have to prove that during each time slot the
configurations−θ(k),+ θ

(k) that SDCP imposes on the cache
are feasible. This is non-trivial, as the operators used in
computing the allocations are defined on proper subsets ofR

p.
The following lemma establishes that the allocations computed
by SDCP always fall into these subsets.

Lemma 6. The allocationsθ(k) are consistent in every time
slot, as they satisfy

(a) θ
(k) − akĝ

(k) ∈ C,
(b) θ

(k+1) ∈ C ∩ R
P
≥0,

(c) +θ
(k),− θ

(k) ∈ Θ.

Proof: Recall thatθ0 ∈ C ∩ R
P
≥0. To show (a) observe

that

ĝ(k) · 1P =

P
∑

j=1

δy(k)p ·D(k)
p −

P
∑

j=1

δy(k)p ·D(k)
p = 0, (16)

and thus ifθ(k) ∈ C, thenθ(k) − a(k)ĝ(k) ∈ C. The definition
of the Euclidean projection (10) and (a) together imply (b).
Finally, observe that

1 ·+ θ
(k) = 1 · ⌊θ⌋+

P

2
≤ 1 ·θ+

P

2
≤ K ′ +

P

2
= K, (17)

which proves (c). Note that the above motivates the choice of
K ′ in the definition of the set of virtual allocationsC, as if
K ′ > K − P

2 then+θ
(k),− θ

(k) ∈ Θ may be violated due to
the use of the mappingγ andD(k) in (9).

C. Convergence

To prove convergence of SDCP, we first consider the
relationship between the measured miss rates+y

(k)
p and−y

(k)
p

and the expected miss intensitiesLp(
+θ

(k)
p ) and Lp(

−θ
(k)
p ),

respectively. We define the measurement noise

+ε(k) ,+ ~y(k) − ~L(+θ(k)),
−ε(k) ,− ~y(k) − ~L(−θ(k))

(18)

and the corresponding differences

δε(k) , +ε(k) −− ε(k),

δ~L(k) , ~L(+θ(k))− ~L(−θ(k)).
(19)
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Observe thatD(k), +~y(k) and −~y(k) are random variables
and form a stochastic process. Using these definitions we can
formulate the following statement about the measured miss
rates.

Lemma 7. The conditional expectation of the measurement
noise and its difference satisfy

E[δε(k)|θ(k)] = 0p. (20)

Proof: Observe that due to the stationarity of the re-
quest arrival processes we haveE[+ε(k)|θ(k)] = 0 and
E[−ε(k)|θ(k)] = 0, which due to the additive law of expecta-
tion yields the result.

Intuitively, this is equivalent to saying that the sample
averages provide an unbiased estimator of the miss rates. In
what follows we establish an analogous result for the update
vector ĝ(k) with respect to a subgradient of the interpolant
L̄ of the expected miss intensityL, which itself is a discrete
function. We define and characterizeL̄ in the following lemma,
which recalls known results from convex optimization.

Lemma 8. Given the interpolants̄Lp of the expected miss
intensitiesLp of the CPs and defining the interpolant ofL as
L̄(θ) ,

∑P

p=1 L̄p(θp), ∀θ ∈ R
P
≥0, L̄ is strictly convex and

admits a unique minimizerθ∗ in C ∩ R
P
≥0.

Proof: Recall that each interpolant̄Lp of Lp is strictly
convex as shown in Lemma 4. The strict convexity ofL̄
can then be obtained applying Theor. 1.17 of [21]. Then,
we observe thatθ∗ is the solution to a convex optimization
problem with a strictly convex objective function, which is
unique (Sec. 4.2.1 of [22].

For completeness, let us recall the definition of a subgradient
of a function from (see, e.g., [23]).

Definition 9. Given a functionL̄ : Rp → R, a functionḡ :
C ⊆ R

P → R
P is a subgradient of̄L over C iff

L̄(θ′)− L̄(θ) ≥ ḡ(θ)T · (θ′ − θ), ∀θ,θ′ ∈ C.

We are now ready to introduce a subgradientḡ(θ) for the
interpolant of the expected cache miss intensityL̄.

Lemma 10. The function

ḡ(θ) , ∆~L(k)(⌊θ⌋)−
1

P
·∆L(⌊θ⌋) · 1P (21)

is a subgradient of̄L over C ∩ R
P
≥0.

Proof: Observe that forθ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(⌊θ⌋)T · (θ′ − θ)

−
1

P
·∆L(⌊θ⌋) ·

[

1T
P · (θ′ − θ)

]

.

At the same time, forθ,θ′ ∈ C we have

1T
P · (θ′ − θ) = (1T

P · θ′ − 1T
P · θ) = K ′ −K ′ = 0.

Therefore, for anyθ,θ′ ∈ C

ḡ(θ)T · (θ′ − θ) = ∆~L(k)(⌊θ⌋) · (θ′ − θ). (22)

Thus, according to Def. 9, in order to show thatḡ is a
subgradient of̄L it suffices to show that

P
∑

p=1

[

L̄p(θ
′
p)− L̄p(θp)

]

≥

P
∑

p=1

∆Lp(⌊θj⌋) · (θ
′
p − θp). (23)

We now show that this holds component-wise. If
⌊θ′p⌋ − ⌊θp⌋ = 0, then the above clearly holds. Otherwise,
if n = ⌊θ′p⌋ − ⌊θp⌋ 6= 0 we apply a well known property of
convex functions (Theor. 1.3.1 of [24]) to obtain:

L̄p(⌊θ
′
p⌋)− L̄p(⌊θp⌋)

(⌊θ′p⌋ − ⌊θp⌋)
≤

L̄p(θ
′
p)− L̄p(θp)

(θ′p − θp)

≤
L̄p(⌊θ

′
p⌋+ 1)− L̄p(⌊θp⌋+ 1)

(⌊θ′p⌋+ 1− (⌊θp⌋+ 1))
,

which, by Def. 1, can be rewritten as:

∆nLj(⌊θj⌋)

n
≤

L̄p(θ
′
p)− L̄p(θp)

θ′p − θp
≤

∆nLj(⌊θj + 1⌋)

n
. (24)

Forn > 0 we can use the first inequality of (24) and Lemma 3
to obtain

L̄p(θ
′
p)− L̄p(θp) ≥ ∆Lj(⌊θj⌋) · (θ

′
p − θp). (25)

For n < 0 we can use the second inequality of (24) and
Lemma 3 to obtain

L̄p(θ
′
p)− L̄p(θp)

θ′p − θp
≤ ∆Lj(⌊θj + 1⌋) ≤ ∆Lj(⌊θj⌋) (26)

and by multiplying the first and the second term of (26) by
θ′p− θp (which is negative sincen = ⌊θ′p⌋− ⌊θp⌋ is negative),
we obtain the result.

The subgradient̄g will be central to proving the conver-
gence of SDCP, but it cannot be measured directly. The next
proposition establishes a link between the update vectorĝ(k),
which we compute in every time slot, and the subgradientḡ.

Proposition 11. The update vector̂g(k) is composed of the
subgradient̄g plus a component due to the noise,

ĝ(k) = ḡ(θ(k)) + δε(k) ◦D(k) −
1

P
·
[

δε(k)
T
·D(k)

]

1P .

Proof: We first apply (19) to obtain

ĝ(k) = δ~L(k) ◦D(k) −
1

P
· (δ~L(k)T ·D(k))1P (27)

+ δε(k) ◦D(k) −
1

P
· (δε(k)

T
·D(k))1P .

Consider now a particular realization of the random variable
D(k). We can express componentp of δ~L(k) ◦ D(k) =
[

~L(+θ(k))− ~L(−θ(k))
]

◦D(k) as

[

Lp

(

Π
(

θ(k)p

)

+
1

2
D(k)

p

)

− Lp

(

Π
(

θ(k)p

)

−
1

2
D(k)

p

)]

·D(k)
p

=

[

Lp

(

Π
(

θ(k)p

)

+
1

2

)

− Lp

(

Π
(

θ(k)p

)

−
1

2

)]
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=
[

Lp

(

⌊θ(k)p ⌋+ 1
)

− Lp

(

⌊θ(k)p ⌋
)]

,

where the first equality can be easily verified assuming that
D

(k)
p = −1 and then assuming that it isD(k)

p = 1. We thus
obtain

δ~L(k) ◦D(k) = ∆~L(⌊θ(k)⌋)

and in scalar form

δ~L(k)T ·D(k) = ∆L(⌊θ(k)⌋).

By substituting these in (27)

ĝ(k) = ∆~L(⌊θ(k)⌋)−
1

P
·∆L(⌊θ(k)⌋) · 1P

+δε(k) ◦D(k) −
1

P
· (δε(k)

T
·D(k))1P

and using (21), we obtain the result.
Furthermore, thanks to Lemma 7, the second term of (27),
which is due to the noise, is zero in expectation, which
provides the link between the update vectorĝ(k) and the
subgradient̄g(θ(k)).

Corollary 12. The conditional expectation of̂g(k) is
E[ĝ(k)|θ(k)] = ḡ(θ(k)) and thusĝ(k) is a stochastic subgra-
dient of L̄, i.e. E[ĝ(k)] = ḡ(θ(k)).

This leads us to the following theorem.

Theorem 13. The sequenceθ(k) generated by SDCP con-
verges in probability to the unique minimizerθ∗of L̄, i.e., for
arbitrary δ > 0

lim
k→∞

Pr{‖θ(k) − θ
∗‖ > δ} = 0.

Proof:
The proof of convergence is similar to (Theor. 46 in [23]),

with the difference that our proof holds for Euclidean
projection-based stochastic subgradients. Let us compute

‖θ(k+1) − θ
∗‖2 = ‖ϕ(θ(k) − a(k)ĝ(k))− θ

∗‖2

≤ ‖θ(k) − a(k)ĝ(k) − θ
∗‖2

= ‖θ(k) − θ
∗‖2 − 2a(k) · (ĝ(k))T · (θ(k) − θ

∗)

+(a(k))2 · ‖ĝ(k)‖2, (28)

where the first inequality is due to Lemma 5. Thanks to cor 12
and Def. 9
(

E[ĝ(k)|θ(k)]
)T

·(θ(k)−θ
∗) =

(

ḡ(θ(k))
)T

·(θ(k)−θ
∗) ≥ 0.

Recall that the number of arriving requests per time slotA(T )
is bounded, and thus‖ĝ(k)‖2 is bounded, i.e.,‖ĝ(k)‖2 ≤ c for
some0 < c < ∞. Hence, applying the expectation to (28)

E

[

‖θ(k+1) − θ
∗‖2

∣

∣

∣
θ
(k)

]

≤ ‖θ(k) − θ
∗‖2 + c(a(k))2. (29)

Defining the random variable

zk , ‖θ(k) − θ
∗‖2 + c

∑∞
s=k(a

(s))2,

it can be easily verified that (29) is equivalent to the inequality
E[zk+1|zk, . . . , z1] ≤ zk. Consequently,{zk}∞k=1 is a super-
martingale and converges almost surely to a limitz∗. Recalling
now one of the required properties of the step size sequence,

i.e., limk→∞

∑∞
s=k(a

(k))2 = 0, we have that the sequence
{‖θ(k) − θ

∗‖2} also converges toz∗ with probability one.
We now show by contradiction that the limitz∗ is equal

to zero. If this were not true, then one could findǫ > 0 and
δ > 0 such that, with probabilityδ > 0, ‖θ(k) − θ

∗‖ ≥ ǫ for
all sufficiently largek, and thus

∞
∑

k=0

a(k) · (E[ĝ(k)|θ(k)])T · (θ(k) − θ
∗) = +∞,

with probability δ, which would imply

E

[

∞
∑

k=0

a(k) ·
(

ḡ(θ(k))
)T

· (θ(k) − θ
∗)

]

= +∞.

However, this would contradict the following relation (which
is obtained by a recursion on (28) and then applying the
expectation)

E[‖θ(k+1) − θ
∗‖2] ≤

‖θ(0) − θ
∗‖2 − 2E

[

k
∑

s=0

a(s) · (ĝ(s))T · (θ(s) − θ
∗)

]

+

E

[

k
∑

s=0

a(s) · ‖ĝ(s))‖2

]

,

as the left hand side cannot be negative.

D. Optimality gap

It is worthwhile to note that the minimizerθ∗ of L̄ over
C ∩ R

P
≥0 may not coincide with its minimizerθOPT overΘ

for two reasons: i)K ′ < K and ii) θOPT is forced to have
integer components whileθ∗ is can be a real vector. In what
follows we show that the optimality gap‖θOPT − θ

∗‖∞ is
bounded by a small number, compared to the number of cache
slots available.

Lemma 14. The gap between the optimal solutionθOPT

and the configurationθ∗ to which SDCP converges is‖θ∗ −
θ
OPT ‖∞ ≤ (3/2)P

Proof: We observe thatθ∗ is the optimal solution of
the continuous Simple Allocation Problem (SAP), expressed
as max

(

−
∑P

p=1 Lp(θp)
)

, subject to
∑P

p=1 θp ≤ K ′ with

θ ∈ R
P
≥0. K ′ usually referred to asvolumeand we denote

with SAPcont(K
′) the problem above. The integer version of

the SAP, which we denote by SAPint(K
′), is obtained from

the problem above with the additional constraintθ ∈ Z
p.

According to Cor. 4.3 of [25] there exists a solution̂θ of
SAPint(K

′) such that‖θ∗ − θ̂‖∞ ≤ P . The solution of
the integer SAP can be constructed via the greedy algorithm
presented in Sec. 2 of [25]. In our case, it consists of iteratively
adding storage slots, one by one, each time to the CP whose
miss intensity is decreased the most by using this additional
slot. Based on this, it is easy to verify that a solutionθ

OPT can
be obtained starting from̂θ and adding the remainingK−K ′

slots. Therefore,‖θOPT − θ̂‖∞ ≤ P/2, which implies

‖θOPT − θ
∗‖∞ ≤ ‖θ∗ − θ̂‖∞ + ‖θOPT − θ̂‖∞ ≤ (3/2)P.
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Algorithm 2: Conditional Step Size Sequence Computa-
tion

1 a = p

‖ĝ(1)‖1
· K′

p

2 b = a/10
3 if k ≤ kBS ; // Bootstrap Phase
4 then
5 a(k) = a
6 else if k ≤ M ; // Adaptive Phase
7 then
8 Compute the miss-ratiom(k) during the current iteration
9 Computem5th, i.e. the5th percentile of the previous miss

ratiosm(1), . . . ,m(k−1)

10 â(k) = a(k−1)/2

11 ã(k) = a(k−1) − a(k−1)−b

M−k+1

12 a(k) =

{
(

min(â(k), ã(k)), b
)

m(k) ≤ m5th

ã(k) otherwise
13 else

14 a(k) = a(k−1) ·

(

1− 1
(1+k)

) 1
2
+ǫ

; // Moderate Phase

15 end

V. PERFORMANCE EVALUATION

We evaluate the performance of SDCP through simulations
performed in Octave. We first describe the evaluation scenario
(Sec.V-A) and show how the convergence speed is impacted
by the choice of the step size sequence (Sec.V-B). We then
evaluate the sensitivity of SDCP to various system parameters
(Sec.V-C). Finally, recognizing that content catalogs arerarely
static in the real world, we investigate the expected perfor-
mance in the case of changing content catalogs (Sec.V-D).

A. Evaluation Scenario

We consider a content catalog of108 objects, in line with the
literature [26] and recent measurements [27]. We partitionthe
catalog in disjoint sub-catalogs, one per each CP. We assume
that the content popularity in each sub-catalog follows Zipf’s
law with exponentα = 0.8, as usually done in the litera-
ture [28]. We use a cache size ofK ∈ {104, 105, 106} objects
(which corresponds to cache/catalog ratios of10−4, 10−3 and
10−2 respectively). In practice, the request arrival rate may
depend on several factors such as the cache placement in the
network hierarchy, the level of aggregation, the time of day,
etc. Without loss of generality, we set the request arrival rate
to λ = 102req/s, according to recent measurements performed
on ISP access networks [27]. We compare the performance of
SDCP to that of the optimal allocationθOPT (Opt), and to that
of the naive solution in which the cache spaceK is equally
divided among all the CPs and is unchanged throughout the
simulation (Unif ).

While we proved convergence of SDCP, the speed of
convergence is crucial to let the algorithm also be of practical
use: we thus consider three step size sequences, as follows.
In the Reciprocalscheme, the step size isa(k) = a/k, where
a = 1

‖ĝ(1)‖
· K′

p
. Observe that, with this choice, the Euclidean

norm of the first updatea(1) · ĝ(1) is K′

p
, which allows to

change this amount of slots in the allocation, thus obtaining a
broad exploration of the allocation space at the very beginning.
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Figure 1. Evolution of the allocation of cache slots across CPs, with cache
sizeK = 105 andConditionalstep sizes. The three bars on the right represent
the component-wise average of the allocated slots under SDCP allocation with
Conditional steps (Avg), the Optimal (Opt) and Uniform (Unif) allocations.

In the Moderate scheme, step sizes decrease slowly, to
avoid confining the exploration only to the beginning. We
resort to guidelines of [29], and define the step size as

a(k) = a(k−1) ·
(

1− 1
(1+M+k)

)
1
2+ǫ

, wherea is computed
as above andM, ǫ are positive constants, which can be tuned
to modify the decrease slope.

The third step size sequence, which we refer to asCondi-
tional, is defined in Alg. 2. It consists of aBootstrap phase
(up to iterationkBS) in which step sizes remain constant, thus
allowing broad exploration. Then anAdaptationphase follows,
up to iterationM , in which step sizes decrease, by default,
linearly from an initial valuea to a final valueb. This decrease
is steeper than linear when the miss ratio measured at the
current iteration is smaller than the5-th percentile of the miss
ratio values observed so far. In this case the step size is halved,
unless it already equalsb. The intuition behind this phase is
that we try to reduce the exploration extent every time we
encounter a “good” allocation, i.e., an allocation that shows a
small miss ratio compared to what we experienced so far. Note
that we do not start immediately with the Adaptation phase,
since we need to collect enough samples during the Bootstrap
phase in order to correctly evaluate the quality of the current
allocation. Finally, we continue with aModerate phase, in
which step sizes are updated as above and are asymptotically
vanishing, thus guaranteeing convergence.

After a preliminary evaluation, we setǫ = 1/100 as in [29]
and b = a/10. We setkBS andM , i.e., the duration of the
bootstrap and adaptive phases, to the number of iterations in 6
minutes and 1 hour, respectively. While the duration of these
phases is clearly tied to the arrival rate, and are expected to
require tuning when ported to a different scenario, we point
out that performance achieved with these choices remains
satisfying under the different scenarios we consider.

B. Convergence

We first consider a cache size ofK = 105 and 4 CPs,
receiving 13%, 75%, 2% and 10% of requests, respectively.
From Fig. 1, we can observe that, after a first exploration
phase, the algorithm converges to a stable allocation. It is
interesting to note that the average allocation (Avg), which
is obtained by averaging each component of the allocation
vector throughout the iterations, is very close to the optimal
one, unlike the naïve uniform allocation policy.
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Figure 2. Error and step size sequence with cache sizeK = 106.

Second, we consider a larger scenario with cache sizeK =
106 and p = 10 CPs, one of which we is a popular CP, to
which 70% of requests are directed, followed by a second one
receiving 24% of requests, other 6 CPs accounting for 1%
each and the remaining two CPs receiving no requests. Fig. 2
shows the step sizes and the inaccuracy of the algorithm, i.e.
the distance to the optimal allocation, measured as:

Error(θ) ,
‖θOPT − θ‖∞

K
=

maxj=1...p |θp − θOPT
p |

K
.

(30)
Observe thatReciprocal steps decrease too fast, which

immediately limits the adaptation of the allocation, signifi-
cantly slowing down convergence. Conversely,Moderatesteps
remain large for an overly long time, preventing the algorithm
to keep the allocation in regions that guarantee good perfor-
mance.Conditionalsteps show the best performance since in
the Adaptation phase the step sizes are sharply decreased if
the current allocation is providing a small miss ratio.

C. Sensitivity Analysis

We next study how the performance of SDCP is affected
by the algorithm parameters and the scenario. We first focus
on the time slot durationT . On the one hand, a smallT
implies that only few requests are observed in each time slot,
which may result in a high noise+ε(k),− ε(k), and ultimately
affects the accuracy of the update. On the other hand, a large
T decreases the measurement noise, but allows updates to be
made less frequently, which possibly slows down convergence.

To evaluate the impact ofT , Fig. 3 shows the miss ratio
measured over1h for the default scenario. We consider SDCP
with the three step size sequences, and compare it to the Uni-
form and to the Optimal allocations as benchmarks. The figure
shows that SDCP with the Conditional step size sequence
enhances the cache efficiency significantly. We also observe
that an iteration duration ofT = 10s (corresponding to 100
samples on average per CP) represents a good compromise
between a more accurate miss ratio estimation based on more
samples (with largeT ) and a larger number of iterations at
the cost of lower accuracy (with smallT ).

Fig. 4 shows the cache miss rate measured over1h for
a time slot length ofT = 10s and for various cache sizes
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Figure 3. Impact of time-slot durationT on the average miss ratio (bars
represent the 95% confidence interval over 20 runs).
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Figure 4. Miss rate measured over 1h for various average request ratesλ
and cache sizesK.

K ∈ {104, 105, 106} and arrival ratesλ ∈ [1, 104]. The figure
confirms that the gains of SDCP hold for different cache
sizes, and shows that the gain increases for large caches. To
interpret the results for different arrival rates, recall that for any
given time slot durationT , the average request rate affects the
measurement noise. Fig. 4 confirms that the miss rate increases
when the measurement noise is higher, i.e., for lowerλ, but it
also shows a very limited impact: the number of time slots
in a relatively short time (in1h, there are360 time slots
of durationT = 10s) allows SDCP to converge to a good
cache configuration, in spite of the noise and the consequent
estimation errors.

D. Changing Content Popularity

Recent studies [30] have observed that the catalog statistics
vary over time. We show in this section that in order for SDCP
to be robust to these variations, it suffices to periodically
reinitialize the step sequence. To model changing content
popularity, we adopt the model of [30], in which each object is
characterized by a sequence of ON and OFF periods, with ex-
ponentially distributed durationTON andTOFF , respectively.
At each time instant, an object can be ON or OFF, and only
ON objects attract requests. As in [30], we set the catalog size
to 3.5 ·106 and the cache size toK = 104 objects. We set the
average ON and OFF duration to1 and9 days, respectively.
On average, we maintain the overall request rate of active
objects equal to our default valueλ = 100req/s.

In Fig. 5 we compareUnif and Conditional(τ ) that reini-
tialize the step sequence everyτ amount of time. We consider
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Figure 5. Miss ratio with varying content popularity. Step size sequences in
Conditional(τ ) are reset everyτ interval. On the left the first day is zoomed,
whereConditional(∞) and Conditional(1d) correspond, since none of them
have reinitialized the step sequence.

τ ∈ {3h, 1d,∞}, i.e., 8 reinitializations per day, daily reini-
tialization, or no-reinitialization, respectively. As expected,
reinitialization improves cache efficiency. Indeed, already after
3 hours of simulation, the evolution of the catalog misleads
Conditional and Conditional(1d) (that overlap in this time
interval) causing them to have performance worse than Unif.
This is expected, sinceConditional(∞) tries to converge to the
optimal allocation, which is problematic in a non-stationary
scenario. At the same time, it also shows that reinitializing
step sequences as inConditional(3h) is sufficient to respond
to the catalog dynamics.

VI. CONCLUSION

One of the main challenges of in-network caching nowa-
days is its incompatibility with encrypted content. Our work
represents a first step in solving this challenge by proposing
a simple and therefore appealing system design: Stochastic
Dynamic Cache Partitioning requires solely the knowledge
of aggregated cache miss-intensities, based on which it prov-
ably converges to an allocation with a small optimality gap.
Simulation results show the benefits of the proposed algorithm
under various scenarios, and results obtained under complex
content catalog dynamics further confirm the algorithm to be
applicable in scenarios of high practical relevance.
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