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ABSTRACT 
Regenerating codes based on the approach of interference alignment for wireless interference 
channel achieve the cut-set bound for distributed storage systems. These codes provide data 
reliability, and perform efficient exact node repair when some node fails. Interference alignment 
as a concept is especially important to improve the repair efficiency of a failed node in a minimum 
storage regenerating (MSR) code. In addition it can improve the stored data security in presence 
of passive intruders. In this paper we construct a new code resilient against a threat model where 
a passive eavesdropper can access the data stored on a subset of nodes and the downloaded 
data during the repair process of a subset of failed nodes. We achieve an optimal secrecy capacity 
for the new explicit construction of MSR interference alignment code. Hence, we show that the 
eavesdropper obtains zero information from the original message stored across the distributed 
storage, and that we achieve a perfect secrecy.  
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1 INTRODUCTION 
 
Distributed storage systems (DSS) allow distributed storage of data file (message) in all new 
generation applications and provide more possibilities to improve its reliability and security. The 
data is stored in a decentralized manner across several unreliable distributed servers (nodes) in 
the system. The data distribution principle of the current storage systems is a simple scheme of 
triple replication of each file piece stored on some node. The replication of each piece must be 
placed in a node different from the node where the original file is stored. This practice is 
necessary, since one of the most common challenges in DSS, is the so called  repair process, 
which happens when some nodes in the system fail and lose data. In that case, some of the 
replication data files of the failed original piece are used to recover the lost data. Note that this 
method is suboptimal in terms of bandwidth. In (Dimakis, 2010), Dimakis et al. (2010) found a 
new way of introducing error correcting codes to achieve better efficiency in the storage 
networks. They called these codes  regenerating codes. They are efficient with respect to the 
storage utilization and the amount downloaded for repair. Different coding techniques could be 
combined to achieve various goals, such as minimizing the storage in each node, or minimizing 
the amount of downloaded data needed to repair the failed data. These two goals cannot be 



achieved at the same time, so one has to make a compromise between these two points called 
the minimum storage regeneration (MSR) point and the minimum bandwidth regeneration 
(MBR) point, respectively. The description of the region of achievable rates bounded by MSR and 
MBR was studied extensively in the previous years (Rashmi, 2012; Wu, 2007; Dimakis, 2006; 
Shah, 2010; Cadambe, 2011). 
Let B  be the size of the message that needs to be stored in the system. This message is divided 
into pieces and stored in all n  nodes in the network. The size of each piece of the message 

stored in a single node is 
k

B
= . Here, k  )<( nk  is the number of nodes that are going to be 

contacted by the data collector (user) for reconstructing the original message. Another 
parameter is   )<(  , the amount of downloaded data from a single node during the repair 

process. The number of contacted nodes for accomplishing the repair process for recovering the 
lost data is d  )<( ndk  . 

The parameters in such a regenerating code that aims to reliably store the file of a maximum size 
B  and achieve the cut-set bound in DSS, examined in (Dimakis, 2010), must satisfy the following 
condition  

   .,min
1

0=

 idB
k

i




 (1) 

Based on the tradeoff between   and  d=  the two extreme points can be obtained as 

presented in (Wu, 2007). The paper describes minimization of both   and   parameters. 

Minimizing   results in a minimum storage solution, while minimizing   (for fixed d ) 

results in a storage solution that minimizes repair bandwidth. From (1) can be concluded that is 
not possible to minimize both   and   simultaneously and that there is tradeoff between 

the parameters   and  . Thus, in the reconstruction case when the storage per node   

achieves its minimum 
k

B
, the coding scheme achieves the extreme point MSR, and it is given by  
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Otherwise, in the case when the repair bandwidth d  is equal to  , is achieved the extreme 

point MBR, given by the pair  

   .
12

2
,

12

2
=, 









 kd

d

k

B

kd

d

k

B
BB   (3) 

In this paper we focus on the MSR point. The used concept includes the Interference Alignment 
method that is widely used for improving the capacity in the wireless communication [and 
JafarCadambe and Jafar2008], and here is adapted to adjust for the DSS and to perform very 
efficient repair process when some node fail (Shah, 2012). 
Besides the reliability and the availability in storage networks, the security appears to be an 
additional challenge. A distributed data storage system is formed by many nodes widely spread 
across the Internet. So, each node in such a peer-to-peer network is vulnerable and a potential 
point of attack. The attackers can eavesdrop the nodes and possibly modify their data. The 
storage systems distinguish two types of passive attacks or observations. In the first type of 
attack, the eavesdropper observes the data stored on a subset of nodes in the system, and in the 



second type of attack the eavesdropper observes all the downloaded data during the repair 
process of a subset of the new nodes. This work aims at providing an explicit construction of a 
regenerating code that uses the interference alignment method, which achieves perfect secrecy. 
The paper is organized as follows. In Section 2, we describe the use of the interference alignment 
method in the distributed storage context. In Section 3, we give the general approach for 
providing security of the code construction. Section 4 proves the perfect secrecy of the new 
secure code construction together with some performance analysis and the paper concludes in 
Section 5. 

 

2 INTERFFERENCE ALIGNMENT METHOD IN DSS 
 

Code construction for data storage in distributed systems is based on the principle of interference 
alignment (IA) method. The code construction is for a regenerating code that achieves the cut-
set bound. The idea of IA comes from wireless communications, aimed to design the signals of 
multiple users in such a way that at every receiver, signals from all the unintended users occupy 
a subspace of the given space, leaving the remainder of the space free for the signal of the 
intended user, as explained in (Cadambe & Jafar, 2008). This improves the degree of freedom 
that represent the rate of growth of network capacity with the log of the signal to noise ratio 
(SNR). 
In the distributed storage context, the IA method is applied during the exact repair process of a 
failed node in a minimum storage regenerating (MSR) code. The construction by using this 
method is done by considering a ),( kn  systematic code, where the first k  nodes are an 

systematic and, thus, they store k  (uncoded) independent symbols. The remaining )( kn   

nodes are parity nodes. Linear combinations of the k  symbols, where the combinations are 
defined by the code generation matrix, are stored in these nodes. When there is a failed node, 
the newcomer (new node) downloads a certain linear combination of the information stored at 
each of the 1)( n  surviving nodes. The goal is to recover the lost data from the failed node 

using that set of linear combinations. Assuming that a systematic node has failed, from the 
1)( k  surviving nodes the newcomer receives the uncoded independent symbols. The 

information from the failed node is stored in the )( kn   parity nodes, noting that the 

information is mixed with the remaining 1)( k  symbols from the 1)( k  systematic nodes. 

These 1)( k  symbols which are not required by the new node, but arrive in the linear 

combinations downloaded from the parity nodes, due to the fact they are mixed with the failed 
symbols, are analogous to the interference in the wireless communication systems. The coding 
matrices used for making the combinations in the parity nodes, are analogous to the channel 
matrices in the wireless communications that perform the same function. In the repair process, 
the downloaded combinations by the newcomer are analogous to the beamforming vectors in 
wireless communications, elaborated in (Suh & Ramchandran, 2010). In the context of wireless 
communications, interference alignment reduces the footprint of the interference at the receiver 
and enables a greater number of dimensions for the desired signal. In the context of repair, 
interference alignment reduces the footprint of the interfering symbols at the newcomer, which 
means a smaller number of units to be downloaded to cancel the interference. However, one 
important note is that the channel matrices in wireless communications are given by nature and 



cannot be controlled, while in the storage systems, the coding matrices are a design choice. 
In (Shah, 2012), the construction of an MSR code by using the interference alignment method is 
explained, where the Cauchy matrix is used as a coding matrix. A detailed explanation is given 
regarding the repair process, when the failed nodes are only the systematic nodes, only the parity 
nodes, and a combination of the two, and of the data reconstruction process. By our point of 
view we are investigating the level of security that can be achieved in the distributed storage 
systems using this way of data distribution. 

 

3 APPROACH FOR PROVING SECRECY 
 

Security is quite important aspect in a distributed storage network. The threat model is such that 
the eavesdropper may gain access to the data stored in a subset of the storage nodes, and also, 
to the data downloaded during the repair process of some other subset of nodes. Explicit 
construction of regenerating codes that achieve information-theoretic secrecy is provided in 
(Shah, 2011; Rawat, 2014). The principle of enabling security is based on the Wiretap channel II 
described in (Ozarow & Wyner, 1985). The main goal is to construct secure ],,[ dkn  code to 

achieve MSR using interference alignment code given in (Shah, 2012). We denote the number of 

message symbols that can be securely stored in a distributed system as )(sB . As an input to the 
MSR interference alignment code, when there is no secrecy, we need to choose a set of message 
symbols that will be replaced with random symbols R  chosen uniformly and independently 
from the finite field qF  over which the code is defined, where  

 .= )(sBBR   

The secure code will be identical with the original code, if we treat the random symbols as 
message symbols. To prove secrecy in this code construction we first need to consider the worst 

case scenario, the threat model, where the eavesdropper has access to 1l  (data stored on a 

subset of nodes), where the set of eavesdropped indices is denoted by 1E  and 2l  (data 

downloaded during repair of 2l  nodes) nodes, where the set of eavesdropped indices is 

denoted by 2E . The total number of compromised nodes in the distributed system can not be 

greater than k , or klll <)=( 21  . Moreover, 1l  and 2l  are disjunctive nodes. The proof of 

the information-theoretic secrecy of this code is established as follows:   

 Step 1: Show that given the collection of the )(sB  secure message symbols U  as 
side information, the eavesdropper can recover all R  random symbols i.e., 

0)=,|( URH  . ( R  denotes a collection of )(= sBBR   random symbols, and   

is a collection of symbols that the eavesdropper gains access to).  

 Step 2: Show that all but R  of the symbols obtained by the eavesdropper are 
functions of these R  symbols, i.e., )()( RHH  .  

 Step 3: Show that the two conditions in steps 1 and 2 necessarily imply that the 
mutual information between the message symbols U  and the symbols obtained 
by the eavesdropper  , is zero, i.e., 0=);( UI .  

 

4 INFORMATION-THEORETIC SECRECY IN INTERFERENCE ALIGENMENT METHOD IN DSS 
 



Pawar et al. in (Pawar, 2010) provide an upper bound on )(sB , given by  
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The interpretation of the bound in (4) is that out of k  nodes to which a data collector connects, 
the first l  of these nodes are compromised. Thus, by the assumption that the secrecy goals 
have been met, these l  nodes will not provide any information about the message symbols. 
Only the remaining )( lk   nodes may provide useful information. 

From the MSR point of view the repair bandwidth is strictly greater than the per node storage 
and an eavesdropper potentially obtains more information when she has an access to the data 
downloaded during the node repair process. Therefore, for the MSR point of view from (4), the 
security upper bound becomes,  

 .)()( lkB s   (5) 

For the constructed code in this paper, the following result is stated: Assume code construction 

for kn 2=  and 1= nd , in the case of ),( 21 ll  eavesdropper model, where klll <)=( 21  , 

the MSR secure bound in (5), when interference alignment is used becomes  

 ).)((= 221
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Proof. This equality holds for all 1]=,,2=[ ndkkn  MSR codes, where kB = , 

 1)(=  kd , k=  and 1=  given in (Shah, 2011). The total number of symbols that 

can be stored in MSR distributed system is kB = . From these symbols we need to subtract all 
the compromised symbols. From the first type of observation total number of eavesdropped 

symbols is 1l , the observed 1l  nodes will not provide any useful information. Plus from the 

second type of observation there are 22)( lln   downloaded symbols during the repair process 

minus these already known from the first type of observation 21ll . Thus, the formulation of (6) 

is following,  
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Now we need to construct a secure MSR code based on the Interference Alignment concept, 

using the eavesdropper model ),( 21 ll  that will satisfy the equality (6). As described in (Shah, 

2012), the output codewords will be denoted by )(= muGC , where u  is the message of size 

B  and the secure MSR interference alignment code will be )()( = ms

n

s GuC , where s

nu  is new 

message consist of su  secure message of size )(sB  plus R  random symbols. The 
construction will be made for the case when 1= , kkd =1=  . The secure MSR 



interference alignment code need to be constructed from the modified original message s

nu , 

consisting of k  message symbols from which )(= sBBR   symbols will be replaced with 

random variables, and a generator matrix )(mG , for nm 1,...,= . )(mG  in (Shah, 2012) is defined 

as,  
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where km 1,...,=  are the systematic nodes, and nkm 1,...,=   are the parity nodes. The 

parity generator matrices include a Cauchy matrix (Bernstein, 2005), a matrix with special 
construction that efficiently performs the repair and reconstruction process. 

 

4.1 GENERAL SECURE CODE CONSTRUCTION 
 

In this subsection, we present the general construction of a coding scheme that is secure against 

an ),( 21 ll  eavesdropper when EEE  21 , for a given set E  with cardinality k|<| E , for all 

parameter values 1]=,,2=[ ndkkn  and 1= kd  , 1= . The code properties indicate 

that =k , which has the main role during the process of designing generator matrices for the 
parity nodes. This relation ensures that each node reserve k=  symbols with linearly 
independent global kernels used for repair of k  systematic nodes. The construction is based on 

MSR interference alignment code where the message content is modified by )(sBB  random 
symbols.  
The construction will depend based on the following properties associated with the repair 
process in a MSR interference alignment code: 

Lemma 1. Assume that an eavesdropper gains access to the data stored on 1= ll  nodes in an 

MSR interference alignment code. Then, the eavesdropper can only observe l  independent 
symbols. 
Proof. Since the size of the stored data on each node is k=  symbols by the construction of 
MSR interference alignment code the maximum number of independent symbols that the 
intruder can reveal is lk  if ][kE .   

Lemma 2. Assume that an eavesdropper has an access to the data stored on any 1l  nodes and 

observes the downloaded data from 2l  nodes that are in reparation process in an MSR 

interference alignment code. Then the ),( 21 ll  eavesdrooper can observe at most 

21221 )( llllnl    independent symbols. 

Proof. From Lemma 2 in an ),( 21 ll  eavesdrooper model, kll <)( 21   the intruder can only 

observe 1kl  independent symbols when it gains access in the data stored on 1l  nodes. Since in 

MSR interference alignment code the repair bandwidth is d , where 1= nd , 1= , i.e., a 

newcomer node can recover the lost symbols stored in the failed node by downloading a single 
symbol from any d  nodes, the maximum number of independent symbols that the intruder can 

reveal is 22)( lln   if NE 2 , N  )|(| kN  set of indices of systematic nodes, when it gains 

access the downloaded data of 2l  failed systematic nodes. Therefore, the maximum number of 



message symbols that the intruder can reveal if it can read-access the data stored in 
1l  nodes 

and read-access the downloaded data during the repair process of 
2l  failed systematic nodes is 

2121 )( lllnl   , where 
21ll  are already observed symbols from the first observation.   

Definition 1 (Cauchy Matrix (Bernstein, 2005)): An )( ts  Cauchy matrix   over a finite field 

qF  is matrix whose ),( ji -th element ),1( tjsia   equals 
)(

1

ii yx 
 where }{}{ ii yx   

is an injective sequence, i.e., a sequence with no repeated elements. 
For the construction of a )( ts  Cauchy matrix the minimum field size will be ts  . Thus by 

choosing   to be a Cauchy matrix, leads to  

 .knq   (7) 

For the concrete construction any finite field that satisfies this condition will be sufficient, since 
2 kn , and 4q . 

For constructing a new secure code based on an MSR interference alignment method we consider 

the secure message su  of size )(sB  over qF , i.e., ),...,,(= )
2

)(
21

(21 lllk

s aaau   . From there we 

take 22121 )()( lllkll    i.i.d. random symbols ),...,(=
2

)
21

()
21

(1 lllkllrrr    distributed 

uniformly at random over qF . The set of random symbols r  is appended to the secure message 

to obtain the general message q

ss

n uru F),(= , that will be encoded in the following manner: 

The design of the achivability scheme for MSR interference alignment code based on (Shah, 2012) 
is folowing:   

 Design of Systematic Generator Matrices: 
In an MSR interference alignment code the first k  nodes are systematic and the 
message symbols that are stored there are in uncoded form. Therefore, the generator 

matrices for those nodes )(
iG , ki 1 , of the  -th systematic node, k 1 , will 

consist of  
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• Design of Parity Generatior Matrices: 
For designing of the parity matrices it must be chosen matrix   with dimension 

)( kn   with entries drawn from qF  such that every submatrix of   has full rank. 

In this construction, because kkn == ,   is a square matrix. The columns of   
are defined by  
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       where the m -th column is given by  
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The matrix   that is used for constructing parity matrices and meets the criteria for the 
repair process is the so-called Cauchy matrix (Shah, 2012).  
For better clarification a new notation is introduced, i.e., the j -th column of the )(    

matrix )(m

iG  is denoted as 
)(
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The Interference Alignment algorithm is designed such that each of the   parity nodes 
in a case of the repair process of the  -th systematic node will pass its  -th column. 
Regarding the above statement, for the parity nodes nmk 1 ,  ji,1 , we 

select  
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where   is an element from qF  so that 0  and 12   (needed during the 

reconstruction process). Note that   exists as long as 4q . This property is required 

to have a successful repair process in the DSS code construction.  

The design of this code is made to be in line with the properties and conditions of the wireless 
interference concept, which is particularly significant in the exact repair of the systematic nodes. 
Therefore, after the design of the generator matrices the new general secure Interference 

Alignment code construction is made by multiplication of the secure message su  and the 

generator matrix )(mG ,  

 .= )()( ms
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Using the newly constructed secure MSR interference alignment code, we are able to prove the 
properties that satisfy the reconstruction, repair and security processes. 

Theorem 1. (Reconstruction process): The data collector can reconstruct all )(sB  message 

symbols of the newly constructed )(sC  code by contacting any k  nodes in the system.  

Proof. The sketch of the proof is following, treating the random symbols as message symbols the 

secure MSR interference alignment code )(sC  becomes identical to the MSR interference 
alignment code C  given in (Shah, 2012). During the reconstruction process, the data collector 
contacts any k  nodes in the system by downloading   symbols from each of them. In total, 
the amount of information that it gets is k . In case of all connected nodes to be systematic, 
which are pure symbols, the obtaining of the original message is straight and easy. In a case of 
combination of them or all k  nodes to be parity, first it need to be cancelled all interfered 
symbols and after that is possible to be extracted the wanted message. The readers can check 
this part using (Shah, 2012).   

Theorem 2.  (Repair process): During the repair process, the newcomer can recover the failed 

data in the newly constructed )(sC  code by contacting d , number of contacted nodes for 
performing the repair process for recovering the lost data, nodes in the system. 
Proof. Same as for Theorem 1, for Theorem 2 we consider that the random variables can be seen 

as message symbols, and then the secure MSR interference alignment code )(sC  becomes 



identical to the MSR interference alignment code C  elaborated in (Shah, 2012), where repair 
processes is possible.The sketch of the proof is that when some node fail, a newcomer comes in 
the system and contacts any d  live nodes by downloading from them only a single symbol 
(component) of the stored   information. The total downloaded information is 

12=1=  knd , where =k , and we only need to repair the   lost data. For this reason, 
interference cancellation will be performed leaving only part of the downloaded data. After that 
the desired component is obtained by multiplying the rest of data with the appropriate inverse 
Cauchy submatrix. The proof given in (Shah, 2012) is adequate to be applied in the same manner 

by the new created secure MSR interference alignment code )(sC  in this paper. Because of 
preserving space and similarity of the proof, the readers can check this part using (Shah, 2012).  

Theorem 3. (Information-theoretic secrecy): In the code )(sC  designed to be secure against a 

threat model ),( 21 ll , where the eavesdropper has an access to the data stored in 
1l  nodes and 

downloaded data from 
2l  nodes, the eavesdropper is not able to obtain any information for the 

original message, i.e., );( UI =0. 

Proof. Let the eavesdropper in the first observation have access to kl1  stored data in the 

system, in our case =k . This means she has an access to klBeve

s 1(1) =  symbols from total 

kB = , forming the message ],0,,0,[= 11 kkk

eve

s rru   , in the )(sC  code. The eavesdropper, 

knowing the coding scheme, from the first observation will get the following construction, 
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s GuE  Additionally, another type of observation is accessing the downloaded data 

equal to 22(2) == dlldBeve

s   symbols during the repair process, where 1=  in our 

construction. Thus by Theorem 2 in (Shah, 2012), in the worst case scenario when a failed node 
is a systematic node, it can be exactly repaired. The same node can be accessed by the 
eavesdropper and she can download one symbol from each of the remaining nodes. If we 
consider that the systematic node   fails, each of the remaining 1= nd  nodes will pass its 
 -th column, so that the eavesdropper in the second observation obtains the following columns 
during the repair process,  
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where e  denotes the  -th unit vector of length   and 0  denotes a zero vector of length 

 . The element   from qF  is 0  and 12  , by Definition 1, which is necessary 

condition for performing the reconstruction process. 
Except for the  -th component in the matrix, every other component is aligned with the vector 

e , which will show that some   linear combinations of the columns above will give us a matrix 

whose  -th component equals the )(    identity matrix, and has zeros everywhere else. 



This is a consequence of the interference alignment structure in combination with the linear 
independence of the   vectors in the desired component,  
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where the m -th column is given by  
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The eavesdropper after both constructions )(

1

sE  and )(

2

sE  can examine which symbols have 

been revealed. The symbols which are obtained by eavesdropping are gain from two different 
approaches, meaning that we can conclude that some of the symbols are repeated. The number 

of repeated symbols 
rh  should be subtracted from the total observed symbols, i.e., these 

symbols should not be taken into account. Regarding this, the total number of message symbols 
observed by the eavesdropper is obtained as the sum of the two types of observations explained 
above, and are given by  
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According to the Step 1 for proving information-theoretic secrecy, first we need to show that for 
given message symbols as a side information, the eavesdropper can decode all the random 

symbols. Therefore, for the first type of observation we generate a new message vector eve

su  of 

length k  consisting of only the symbols seen by the eavesdropper, and all other symbols 
zeros. This part of the side information is defined as,  
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where km 1,2,...,=  are the systematic nodes and nkm 1,...,=   are the parity nodes. 

Our construction is performed for the worst case scenario, or when 1== 21  klll , by the 

assumption that the number of affected nodes is always smaller then the number of systematic 

nodes kl < . Therefore, for 1l  observed nodes the new message will be 

],0,,0,[= 11 kkk

eve

s rru    and )(

1

~ sE  in the construction will have only information for these 

symbols. We are assuming that the eavesdropper knows the encoding scheme. 

For the second type of observation, we take the message s

nu  and define a new generator matrix 
)(m

eveG . The matrices )(m

eveG  for the km 1,...,= , systematic nodes, accordingly will have non zero 

elements on the places where the eavesdropper has access during the repair and zeros 

elsewhere. Similarly is done also the design of new generator matrix )(m

eveG  for the parity nodes 

nkm 1,...,=  , since we assume that the failed node is a systematic node that corresponds to 

the 2l  nodes in which the eavesdropper can access during the repair downloads. For this case, 

when node   fails the  -th column in every matrix except the failed one will have non zero 
element, and in the other columns zeros. This means that the Cauchy matrices in the generator 
matrix have nonzero columns only at the places where the eavesdropper has access (parts that 
will be downloaded during the repair according to which nodes have failed), so that the second 
part of the side information in our particular construction will be  
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Thus, the total side information will represent everything that will be achieved during the 

construction of )(

1

~ sE  and everything in the construction of )(

2

~ sE ,  
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So, the part of the R  random symbols from )(

1

~ sE  can be reconstructed in an identical way as 

the data reconstruction in the original MSR interference alignment code (Shah, 2012), and the 

part of the R  symbols from the failed node )(

2

~ sE , can be repaired in the same manner used for 

the repair process in the original MSR interference alignment code given in (Shah, 2012). Thus, 
this represents the first step of the information-theoretic secrecy proof for decoding all random 
symbols. 

The number of chosen random symbols is 22121

)( )()(== lllkllBBR s   . The number of 

observed symbols   can be calculated as the 1l  symbols obtained from the first observation 

plus the )( 2ln  symbols passed by each of the remaining 
2l  nodes during the repair process 

in the second observation. In the second observation we need to subtract the already known 

symbols from the first observation, which are 1l  symbols for each 2l  observation. Thus, the 

total number of observed symbols   is 21221 )( llllnl   . In our construction, for kn 2=  

and 1= nd , kkd =1=  , lll =21   and 1= , so the expression becomes 

22121 )()( lllkll   . We can say that the entropy of the random symbols and the entropy of 

the eavesdropped symbols are equal )(=)( RHH  . This claim proves the second condition for 

achieving security in the storage system and that )()( RHH  . 

Last part of the proof establishes that the eavesdropper obtains no information about the 
message. In other words, the mutual information between all message symbols U  and total 
observed symbols   is zero,  
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where )(a  follows from the result of Step 2, )()( RHH  ; )(b  follows since every symbol in 

the system is a function of U  and R  giving 0=),|( RUH  ; )(c  follows from the result in 

Step 1; and )(d  follows since the random symbols are independent of the message symbols.   

 

4.2  EXAMPLE OF SECURE CODE CONSTRUCTION 
 

In this subsection we give a concrete example of secure Interference Alignment code in a 

presence of 21= lll   eavesdroppers. With this example we prove the achievability of the 



general code construction and the level of security that is guaranteed with this scheme concept. 
For the example 5]=3,=6,=[ dkn  we have 3=1= kd , and 9== kB  (

},,,,,,,,{= 987654321 aaaaaaaaaU ). The eavesdropper model is (1,1)=),( 21 ll . Based on that, 

using (6), the number of secure message symbols is 2=)(sB . The number of random message 

symbols is 7=29== )(  sBBR . Regarding this, we must replace seven message symbols 

7654321 ,,,,,, aaaaaaa  with random symbols 7654321 ,,,,,, rrrrrrr , drawn uniformly and 

independently from 7F . After performing that, we are getting the new message with symbols 

987654321 ,,,,,,,, aarrrrrrr . For completing the process, we also need to define generator matrices. 

Because in our paper we are using the Interference Alignment concept, in this case we are 
distinguishing two types of generator matrices, which are explained in following.   

1. Design of Systematic Generator Matrices: 
Knowing that 3=k , the first k  nodes are systematic and the data stored on these nodes 
are uncoded. The generator matrices are given by,  
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     where 30  and 3I  are 3)(3  zero matrix and identity matrix respectively. 

 

2. Design of Parity Generator Matrices: 
The Cauchy matrix (Bernstein, 2005) is used for construction of the data that will be stored 
in the parity nodes, when interference alignment concept is employed. For this example, the 
matrix is a 3)(3  matrix, such that each of the submatrices is a full rank matrix,  
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The property of full rank is satisfied, because of the use of Cauchy matrix, that by its 
construction meets this property. The dimension of the matrix is 3  due to the number of 
parity nodes equal to 3=36=)(  kn . 

Based on that, the generator matrix of the parity nodes 4,5,6=m  is given by,  
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The generator matrix is designed regarding the functioning of the interference alignment 
method, with the necessary concern of performing the repair and the reconstruction 
process. An example of [6,3,5]  MSR code using the interference alignment method is given 

in Fig. 1, where the Cauchy matrix   is  
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Figure 1: Example of [6,3,5]  MSR code using interference alignment method, with seven 

message symbols replaced with random variables. 
   

The multiplication between the modified original message, with seven replaced symbols, 

][= 987654321 aarrrrrrru s

n  and the generator matrix )(mG  defines the secure interference 

alignment MSR code depicted in Fig. 1,  

 .= )()( ms

n

s GuC  

Using the newly constructed secure MSR interference alignment code, we are able to prove the 
properties for satisfying the reconstruction, repair and security processes. For the first two 
processes the proof is given in (Shah, 2012) as is explaned in Theorem 1 and 2. And for the 
security process the proof is elaborated in the following. To be more clearer, the threat model in 
our example can observe the symbols stored on Node 1 shown in Fig. 1 and symbols downloaded 
during the repair process of Node 3. Meaning we are stating that even the eavesdropper have 
access to those symbols, she can not reveal the entire message. 
In following the proof is given through an example with concrete numbers. Let the eavesdropper 

in the first observation have access to kl1  stored data in the system, or in our case access to 

Node 1, where 3==k . This means she has access to 3=31== 1(1) klBeve

s  symbols },,{ 321 rrr  

from total 9=33== kB , forming the message 0]00000[= 321 rrrueve

s , in the )(sC  

code. The eavesdropper, knowing the coding scheme, from the first observation will get the 
following construction,  
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Additionally, from the other type of observation is accessing the downloaded data equal to 

5=15=== 22(2) dlldBeve

s   symbols during the repair process of Node 3, where 1=  in our 

construction. By assuming that Node 3  fails in our example, each of the remaining 

5=1= nd  nodes will pass its third column, so that the eavesdropper in the second 

observation gains the },,,,{ 98763 aarrr  symbols and obtains the following columns during the 

repair process,  
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where 3e  denotes the third unit vector of length   and 0  denotes a zero vector of length 

 . The element   from qF  is 0  and 02  , by Definition 1 in (Shah, 2012) about 

Cauchy matrix, which is necessary condition for performing the reconstruction process. 
Except for the third component in the example, every other component is aligned with the vector 

3e , which will show that some 3=  linear combinations of the columns above will give us a 

matrix whose third component equals the 3)(3=)(   identity matrix, and has zeros 

everywhere else. This is a consequence of the interference alignment structure in combination 
with the linear independence of the 3=  vectors in the desired component,  
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where the 3 -th column is given by  
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The eavesdropper after both constructions can examine which symbols have revealed, they in 

this example are },,,,,,,{ 98763321 aarrrrrr . Based on the above given example we can conclude 

that some of the symbols are repeated, more specifically 3r  can be obtained either during the 

first or the second observation. Thus, the number of repeated symbols 1=rh  should be 

subtracted from the total observed symbols, i.e., these symbols should not be taken into account 

and become },,,,,,{ 9876321 aarrrrr . Regarding this, the total number of message symbols 

observed by the eavesdropper is obtained as the sum of the two types of observations explained 
above,  
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According to the Step 1 of proving the information-theoretic secrecy, we first need to show that 
for given message symbols as a side information, the eavesdropper can decode all the random 

symbols. Therefore, for the first type of observation we generate a new message vector eve

su  of 

length 9=k  consisting of only the symbols seen by the eavesdropper, and all other symbols 
zeros. This part of the side information is defined as,  
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where 1,2,3=m  are the systematic nodes and 4,5,6=m  are the parity nodes. 

In our example 1=1l , or more precise Node 1 is observed, meaning 0]00000[= 321 rrrueve

s  

and )(

1

~ sE  in the construction will have only information for these symbols. We are assuming 

that the eavesdropper knows the encoding scheme. 

For the second type of observation, we take the message ][= 987654321 aarrrrrrru s

n  and 

define a new generator matrix )(m

eveG . The matrices )(m

eveG  for 1,2,3=m , systematic nodes, 

accordingly will have non zero elements on the places where the eavesdropper has access during 
the repair. In our example, because Node 3 fails the third column in every matrix except the failed 

one will have non zero element, and in the other zeros. Similarly will be performed for )(m

eveG , 

4,5,6=m  (these are the parity nodes, since we assume that the failed node is a systematic node) 

that corresponds to the 
2l  nodes in which the eavesdropper can access the repair downloads. 

The Cauchy matrices in the generator matrix have nonzero columns only at the places where the 
eavesdropper has access (parts that will be downloaded during the repair according to which 
nodes have failed), or in our example all stored symbols consist in the third column so that the 
second part of the side information in the construction will be  
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From the above stated we can conclude that the total side information will represent everything 

that will be achieved during the construction )(

1

~ sE  and everything in the construction )(

2

~ sE , 
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Therefore, the part of the R  random symbols from )(

1

~ sE  can be reconstructed in an identical 

way as the data reconstruction in the original MSR interference alignment code (Shah, 2012). In 
this example, because Node 1 is affected, we will assume that the data collector will contact 

3=k  nodes, from which two systematic (Node 2 and Node 3) nodes and one parity (Node 4) 
node. In this case he can obtained all symbols stored in Node 2 and Node 3 in uncoded form and 
proceeds to subtract their effect from the symbols in Node 4. To reconstruct all message symbols 

he must decode the message symbols },,{ 321 rrr  that are encoded using the matrix (4)

1G  given 

by  
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Since the lower-triangular matrix is nonsingular all entries in a Cauchy matrix are nonzero and 

the message symbols },,{ 321 rrr  can be recovered by inverting (4)

1G . 

Moreover, the part of the R  symbols from the failed node )(

2

~ sE , can be repaired in the same 

manner used for the repair process in the original MSR interference alignment code given in 
(Shah, 2012). Because in our example we repair systematic node (Node 3), the process of 
recovering the lost data is explained. We know that each node stores k=  symbols. To repair 
the systematic node 3= , 3=3=1 k  , each of remaining nodes must pass their 
respective 3= -th symbol (column). Thus, from nodes 4, 5, and 6, the replacement node will 
obtain  
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It should be noted that the desired third components are scaled version of the respective 

columns of the Cauchy matrix 3 . The interference among the first and second components are 

aligned the vector t0]0[1 . Meaning that Node 1 and 2, which are systematic passes a single 

vector designed to cancel out the interference, or specifically pass the vectors  
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So, after interference cancellation, the replacement Node 3, has access to the columns  

 ,

2

0

0

3

3

3



















 

The desired component is the scaled Cauchy matrix 3 . The recovery of the lost symbols now 

can be made by multiplying this matrix on the right by 1

3
2

1   to obtain  
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This represents the first step of the information-theoretic secrecy proof for decoding all random 
symbols. 

The number of chosen random symbols is =)()(== 22121

)( lllkllBBR s  

7=1)11(31)3(1  . The number of observed symbols   can be calculated as the 3=1l  



symbols obtained from the first observation plus the 5=)( 2 ln  symbols passed by each of 

the remaining 1=2l  nodes during the repair process in the second observation. In the second 

observation we need to subtract the already known symbols from the first observation, which 

are 1=1l  symbols for each 1=2l  observation. Thus, the total number of observed symbols 

  is 7=11)1(63=)( 21221  llllnl  . In our construction, for 6=32=2= kn  and 

5=16=1= nd , 3=135==1=  kkd , lll =2=11=21   and 1= , so the 

expression becomes 7=1)11(31)3(1=)()( 22121  lllkll  . We can say that the 

entropy of the random symbols and the entropy of the eavesdropped symbols are equal 
)(=)( RHH  . This claim proves the second condition for achieving security in the storage 

system and that )()( RHH  . 

Last part of the proof establishes that the eavesdropper obtains no information about the 
message. In other words, the mutual information between all message symbols U  and total 
observed symbols   is zero, as is proved in subsection A. 

 

4.3  ANALYSIS OF THE REPAIR BANDWIDTH AND SECRECY CAPACITY IN THE MSR 
CODES AND MSR INTERFERENCE ALIGNMENT CODES 
 
In this subsection we are making analysis regarding the repair bandwidth and the secure message 
size that can be achieved when is used our code, MSR interference alignment, and the MSR 
regenerating code. 
The repair bandwidth, when some node fail, is better to be smaller in order faster recovering of 
the lost data. The advantage of the MSR interference alignment code (Shah, 2012) is the efficient 
functioning of the repair process. If we compare it with the repair bandwidth of the MSR 
regenerating codes, shown in Fig 2., we can conclude that the MSR intereference alignment code 
gives smaller bandwidth compare to the MSR codes. The amount of the repair bandwidth in case 
of MSR regenerating codes is given by (2). The repair bandwidth,  d= , of the MSR 

interference alignment code depends of the code construction given by, 1]=,,2=[ ndkkn , 

1= kd  , 1=  and =k .  

  



Figure 2: Comparison of the repair bandwidth in the MSR regenerating codes and MSR 
interference alignment code for different number of contacted nodes up to 30=k . 

   

The security capacity for our secure MSR interference alignment code in presence of passive 
eavesdroppers is given by (6). Additionally, we prove that our code is perfectly secure. The 
comparison between the secure MSR regenerating codes and the secure MSR interference 
alignment codes is shown in Fig 3. Here, we can notice that both lines are very close, but our code 
is slightly weaker. However, this small weakness can be compensated by the fact that our code 
gives better performance in the repair process and still is perfectly secure against the intruders.  

 

   
Figure 3: Comparison of the size of the message that can be securely stored in the MSR 

regenerating codes and MSR interference alignment code for 30=k  in presence of 1=1l  and 

1,...,30=2l  compromised nodes. 

   

For the MSR codes, where the eavesdropper has an access to 1l  nodes, and listens 2l  nodes 

that are in the reparation process Goparaju et al. in (Goparaju, 2013) have established an upper 
bound of the achievable secure file size. So the secrecy capacity in this case is given by,  

     .
1

1
1=

2

21 

l

s

kd
llkS 










  (14) 

Therefore, the comparison shown in the figure for the secrecy capacities is done by making 
calculation among the equations (6) and (14). 
 

5 CONCLUSION 
 

This paper considers the security problem of constructing MSR interference alignment code. The 
MSR interference alignment code in (Shah, 2012) achieves the cut-set bound of repair bandwidth. 
Besides the optimal exact repair of systematic nodes, this explicit code is capable of performing 
data reconstruction. The main idea is that the construction is based on the interference 
alignment concept. This approach is used in the interference channels in wireless 



communications, where the method of canceling the interference of the other users resembles 
the repair process in DSS. Besides the reconstruction and repair capabilities of this code, here we 
show how to construct a new secure code based on the same principle which is resistant to 
attacks. The threat model is such that the eavesdropper can observe the data stored in any subset 
of the nodes, and the downloaded data during repair of another subset of failed nodes. The 
secure code design ensures that it restricts the information available to the eavesdropper and 
that the eavesdropper is unable to reveal the entire original message. 

  

REFERENCES 
 

 

Bernstein, D. S. (2005). Matrix mathematics: Theory, facts, and formulas with application to 
linear system theory. USA: Princeton University Press. 
Cadambe, V. R., Huang, C., & Li, J. (2011). Permutation code: optimal exact-repair of a single 
failed node in mds code based distributed storage systems. Proc. of IEEE International 
Symposium on Inf. Theory (ISIT), (pp. 1225–1229). Saint-Petersburg, Russia. 
Cadambe, V. R., & Jafar, S. A. (2008). Interference alignment and the degree of freedom for k 
user interference channel. IEEE Trans. Inf. Theory, Vol. 54, No. 8, (pp. 3425–3441). 
Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J., & Ramchandran, K. (2010). Network 
coding for distributed storage systemsy. IEEE Trans. Inf. Theor, Vol. 56, No. 9, (pp. 4539–4551). 
Dimakis, A. G., Prabhakaran, V., & Ramchandran, K. (2006). Decentralized erasure codes for 
distributed networked storage. IEEE Trans. Inf. Theory, Vol. 52, No. 6, (pp. 2809–2816). 
Goparaju, S., El Rouayheb, S., Calderbank, R., & Poor, H. V. (2013). Data secrecy in distributed 
storage systems under exact repair. Proc. Symp. Netw. Coding. (pp. 1–6). 
Ozarow, L., & Wyner, A. (1985). Wire-tap channel II. Advances in Cryptology, Vol. 209, (pp. 33-
50). 
Pawar, S., El Rouayheb, S., & Ramchandran, K. (2010). On secure distributed data storage under 
repair dynamics. Proc. IEEE Int. Symp. Inf. Theory (ISIT), (pp. 2543-2547). 
Rashmi, K. V., Shah, N. B., Ramchandran, K., & Kumary, P. Y. (2012). Regenerating codes for 
errors and erasures in distributed storages. Proc. IEEE Int. Symp. Inf. Theory (ISIT). 
Rawat, A. S., Koyluoglu, O. O., Silberstein, N., & Vishwanath, S. (2014). Optimal locally 
repairable and secure codes for distributed storage systems. IEEE Trans. Inf. Theory, Vol. 60, No. 
1, (pp. 212–236). 
Shah, N. B., Rashmi, K. V., Kumar, P. V., & Ramchandran, K. (2012). Interference alignment in 
regenerating codes for distributed storage: Necessity and code constructions. IEEE Trans. Inf. 
Theory, Vol. 58, No. 4, (pp. 2134–2158). 
Shah, N. B., Rashmi, K. V., Kumar, P. V., & Ramchandran, K. (2012). Distributed storage codes 
with repair-by-transfer and non-achievability of interior points on the storage-bandwidth 
tradeoff. IEEE Transactions on Information Theory, Vol. 58, No. 3, (pp. 1837– 852). 
Shah, N. B., Rashmi, K. V., & Kumar, P. V. (2011). Information-theoretically secure regenerating 
codes for distributed storage. Global Telecommunications Conference (GLOBECOM 2011), (pp. 
212–236). 
Suh, C., & Ramchandran, K. (2010). On the existence of optimal repair exact-repair mds codes 
for distributed storage. (Tech. Rep. No. UCB/EECS-2010-46), California: Electrical Engineering 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18


and Computer Sciences University at Berkeley. 
Suh, C., & Ramchandran, K. (2010). Exact regeneration codes for distributed storage repair 
using interference alignmen. Info. Theo. Proc. (ISIT), 2010 IEEE Inter. Symp. 
Wu, Y., Dimakis, R., & Ramchandran, K. (2007, Sep.). Deterministic regenerating codes for 
distributed storage. Paper presented at The Allerton Con. Control, Computing and 
Communication, Urbana-Champaign, IL. 

 

 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5508195

	Improving the Secrecy of Distributed Storage Systems using Interference Alignment
	1 INTRODUCTION
	2 INTERFFERENCE ALIGNMENT METHOD IN DSS
	3 APPROACH FOR PROVING SECRECY
	4 INFORMATION-THEORETIC SECRECY IN INTERFERENCE ALIGENMENT METHOD IN DSS
	4.1 GENERAL SECURE CODE CONSTRUCTION
	4.2  EXAMPLE OF SECURE CODE CONSTRUCTION
	4.3  ANALYSIS OF THE REPAIR BANDWIDTH AND SECRECY CAPACITY IN THE MSR CODES AND MSR INTERFERENCE ALIGNMENT CODES

	5 CONCLUSION
	REFERENCES

