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ABSTRACT

In real-time listening enhancement applications, such as hearing aid
signal processing, sounds must be processed with no more than a
few milliseconds of delay to sound natural to the listener. Listening
devices can achieve better performance with lower delay by using
microphone arrays to filter acoustic signals in both space and time.
Here, we analyze the tradeoff between delay and squared-error per-
formance of causal multichannel Wiener filters for microphone ar-
ray noise reduction. We compute exact expressions for the delay-
error curves in two special cases and present experimental results
from real-world microphone array recordings. We find that delay-
performance characteristics are determined by both the spatial and
temporal correlation structures of the signals.

Index Terms— Microphone arrays, audio enhancement, audio
source separation, hearing aids, noise reduction, beamforming

1. INTRODUCTION

Listening enhancement applications, such as hearing aid process-
ing [1] and audio augmented reality [2], differ from other audio en-
hancement applications, like teleconferencing and speech recogni-
tion, in part because of their strict delay constraints. Since users
hear both live and processed signals simultaneously, these systems
must process sound with no more than a few milliseconds of delay.
Discerning listeners can notice delays as low as 3 ms and are dis-
turbed by delays greater than 10 ms [3]. Listeners with hearing loss
can tolerate greater delay, around 20 ms for closed-fitting hearing
aids [4] and 6 ms for open-fitting hearing aids [5]. Delays longer
than about 30 ms can impair the user’s ability to speak [6].

This delay requirement limits the performance of audio enhance-
ment systems. In single-channel systems, the frequency resolution
of a frequency-selective filter generally improves with longer delay.
Modern single-microphone audio enhancement algorithms [7], such
as those employing time-frequency masks [8] and non-negative ma-
trix factorization [9], often process speech using short-time Fourier
transform (STFT) frames of 60 ms or longer to maximize time-
frequency sparsity [8]. These algorithms are effective in many ap-
plications, but their delay is too large for listening enhancement.

Multichannel audio enhancement systems use microphone ar-
rays to spatially separate signals [10–12]. Many multichannel meth-
ods are also applied in the STFT domain to more easily model rever-
beration [12, 13]. In principle, however, spatial processing should
require minimal delay: for example, a linear array can enhance a
source at broadside with zero delay by simply summing its inputs.
Whereas the frequency resolution of a temporal filter depends on its
duration, the spatial resolution of an array is determined by its spa-
tial extent. Multichannel listening systems can use both spatial and
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spectral diversity to separate signals. It is natural to ask, therefore,
whether devices with large arrays can enhance audio with lower de-
lay than those with small arrays. That is, can we use array process-
ing to trade space for time?

There is a large body of literature on array processing for lis-
tening devices, e.g. [14, 15], and causal multichannel filters have
been studied in the contexts of dereverberation [16–19] and noise
and echo control [20]. In [21], the authors considered the minimum
filter delay required to cover the full aperture of an array. There have
also been several proposed low-delay single-microphone filtering
and source separation techniques [22–24]. However, to the best of
our knowledge, there has been no prior study of delay-performance
tradeoffs in array processing.

Here we approach audio enhancement as a stationary linear es-
timation problem: given an observed signal from the infinite past to
time t, what is the linear minimum mean square error (MSE) esti-
mate of a desired signal at time t − α? Positive values of α corre-
spond to delay and negative values to prediction. Such problems are
well understood in the scalar case: for certain signals, we can use
spectral factorization to compute exact expressions for the MSE as
a function of α [25–27]. For example, Figure 1 shows delay-error
curves for separating several spectrally distinct speechlike sounds,
which will be described in Section 3. As α increases, the MSE
decreases from the variance of the target signal to the MSE of a
noncausal Wiener filter. We can apply similar theoretical tools in
the multivariate case [28,29] to analyze delay-performance tradeoffs
for causal multichannel Wiener filters (CMWF) in terms of the spa-
tial and temporal correlation structures of the source signals. In this
work, we will derive a general expression for the MSE performance
of a CMWF as a function of α, find exact expressions for idealized
mixing models, and present experimental results from wearable and
distributed microphone arrays in a real room.

2. DELAY-CONSTRAINED MULTICHANNEL FILTERING

Consider a mixture of N sources captured by M microphones.
Let the sources s(t) = [s1(t), . . . , sN (t)]T and additive noise
z(t) = [z1(t), . . . , zM (t)]T be wide-sense stationary continuous-
time random processes that are uncorrelated with each other. Let
am,n(t), m = 1, . . . ,M , n = 1, . . . , N be known causal im-
pulse responses and let wT

α(t) = [wα,1(t), . . . , wα,M (t)] be fil-
ter impulse responses. Denote the observed signals by x(t) =

[x1(t), . . . , xM (t)]T and the system output by yα(t), where

xm(t) =

N∑
n=1

(am,n ∗ sn)(t) + zm(t), m = 1, . . . ,M, and (1)

yα(t) =

M∑
m=1

(wα,m ∗ xm) (t), (2)
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Fig. 1. Relative MSE as a function of delay for isolating one source
from a mixture ofN synthetic speechlike sounds (see Section 3) and
uncorrelated noise using single-channel Wiener filters.

and ∗ denotes linear convolution. We define the desired output signal
dα(t) to be the first source as captured by the first microphone—for
example, a target talker reproduced at the microphone nearest the
listener’s ear—and delayed by time α:

dα(t) = (a11 ∗ s1) (t− α). (3)

To understand fundamental tradeoffs in performance, we re-
strict our attention to the best-case scenario in which all signals
are stationary in both space and time and have known statis-
tics. Let A(ω) be the M × N frequency response matrix cor-
responding to the am,n(t)’s. Let rs(t), rz(t), rd(t), and rx(t)
be the autocorrelation sequences of the corresponding random
variables and let Rs(ω), Rz(ω), Rd(ω) = |A1,1(ω)|2Rs1(ω),
and Rx(ω) = A(ω)Rs(ω)AH(ω) + Rz(ω) be their respective
Fourier transforms. To ensure that the CMWF is well defined,
we assume that Rx(ω) is positive definite for all ω of interest.
Let rxd(t) be the cross-correlation of x(t) with d0(t) and let
Rxd(ω) = A1(ω)Rs1(ω)A∗1,1(ω) be its Fourier transform, where
A1(ω) is the column of A(ω) corresponding to the target source.
Let W T

α(ω) be the Fourier transform of wT
α(t).

2.1. Causal filter performance

The CMWF wT
α(t) must satisfy the Wiener-Hopf equation [25],

rTxd(t− α) =

∫ ∞
0

wT
α(u)rx(t− u) du, 0 < t <∞. (4)

The MSE between yα(t) and dα(t) is

E(α) = rd(0)−
∫ ∞
−∞

wT
α(t)rxd(t− α) dt. (5)

The noncausal (α −→ ∞) solution to (4) and its error power are
readily expressed in the frequency domain:

W T
nc(ω) = RH

xd(ω)R−1
x (ω) (6)

Enc =

∫ ∞
−∞

[
Rd(ω)−RH

xd(ω)R−1
x (ω)Rxd(ω)

] dω

2π
. (7)

For finite α, we can solve (4) by first decomposing Rx(ω) into
its spectral factors [28],

Rx(ω) = G(ω)GH(ω), (8)

where G(ω) and its inverse are both causal. We proceed by decorre-
lating x(t) using G−1(ω) and then solving (4) for the decorrelated
signals [29] to find the causal filter

W T
α(ω) =

[
e−jωαRH

xd(ω)(GH(ω))−1
]
+
G−1(ω), (9)

where [·]+ denotes the causal part of the argument, that is, time-

domain truncation from t = 0. Let R̃
T

(ω) = RH
xd(ω)(GH(ω))−1.

For the listening enhancement application, this vector can be written

R̃
T

(ω) = A1,1(ω)Rs1(ω)AH
1 (ω)(GH(ω))−1. (10)

Let r̃T (t) be the inverse Fourier transform of R̃
T

(ω). Substi-
tuting wT

α from (9) into (5), using the spectral factorization (8) and
Parseval’s identity, and rearranging terms [27], we can show that

E(α) = Enc +

∫ −α
−∞

r̃T (t)r̃(t) dt. (11)

Thus, the error penalty due to causality is the energy in r̃(t) for
t < −α. Our goal is to understand how E(α) depends on the spatial
and spectral characteristics of the source signals. While multivariate
spectral factorizations are often difficult to compute in practice [30],
we can find exact expressions for certain special cases that provide
insight about the delay-constrained array processing problem.

2.2. Uniform linear array

First, consider a plane wave incident upon a uniform linear array of
M sensors with the reference at one end. Let τ be the time difference
of arrival (TDOA) between adjacent microphones, let Rs(ω) = 1
and let Rz(ω) = σ2I , so that

RH
xd =

[
1 e+jωτ · · · e+jω(M−1)τ

]
and (12)

Rx(ω)=


σ2+1 e+jωτ · · · e+jω(M−1)τ

e−jωτ σ2+1 e+jω(M−2)τ

...
. . .

...
e−jω(M−1)τ e−jω(M−2)τ · · · σ2+1

 . (13)

A convenient spectral factor is the lower triangular matrix

G(ω)=


b1(σ2+1) 0 · · · 0
b1e
−jωτ b2(σ2+2) 0
...

. . .
...

b1e
−jω(M−1)τ b2e

−jω(M−2)τ · · · bM (σ2+M)


(14)

where bm =
√
σ2/((σ2+m)(σ2+m−1)). Applying (10) and tak-

ing the inverse Fourier transform, we have

r̃T (t) =
[
b1 b2δ(t+τ) · · · bMδ(t+(M−1)τ)

]
. (15)

Finally, from (11), the MSE is

E(α) =
σ2

σ2+M
+

M−1∑
m=0

b2m+1u (mτ−α) (16)

=
σ2

σ2+
∑M−1
m=0 ū(α−mτ)

, (17)

where u(t) = 1 if t > 0 and ū(t) = 1 if t ≥ 0. Thus, the error
is reduced for each microphone that the source reaches within time
α of reaching the reference. The delay-error curve is a piecewise
constant function with steps of width |τ | and decreasing heights that
depend on σ2.
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Fig. 2. Delay-error curves for two plane wave sources and two sen-
sors with |τ1| = 1 ms, |τ2| =0.6 ms, and σ2 = −20 dB. The legend
indicates the placement of the target/interference sources with re-
spect to the reference.

2.3. Two-source, two-microphone separation

We can follow a similar procedure with multiple sources. Consider
a scenario with two plane wave sources and two microphones. Let
τ1 and τ2 6= τ1 be the TDOAs of the sources, let Rs(ω) = I and let
Rz(ω) = σ2I with σ2 > 0, so that

RH
xd(ω) =

[
1 e+jωτ1

]
, and (18)

Rx(ω) =

[
2+σ2 e+jωτ1 +e+jωτ2

e−jωτ1 +e−jωτ2 2+σ2

]
. (19)

The determinant of Rx(ω) can be written

detRx(ω) = γ−1
∣∣∣1−γe−jω(τ1−τ2)∣∣∣2 , (20)

where γ is a scalar that depends only on σ2. The spectral factor-
ization of Rx(ω) takes different forms depending on the signs of
τ1 and τ2, but R̃

T
(ω) always includes a term of the form (1−

γe+jω|τ1−τ2|)−1, which results in an infinite-duration r̃T (t). Ap-
plying (11), we find that

E(α) =

{
Enc+

u(t0−α)+c21γu(t1−|τ1−τ2|−α)+c
2
2f(t1)

σ2+2
, if τ1τ2 > 0

Enc+
√
γu(t0−α)+f(t0−|τ1|)+γf(t1), if τ1τ2 ≤ 0

(21)
where t0 = min(0, τ1), t1 = max(0, τ1, τ2, τ1−τ2),

f(t) = γ1+2max(0,b(α−t)/|τ2−τ1|c+1)/(1−γ2), and (22)

?

60cm 120cm

Target source

Fig. 3. Left: Recording setup. Circles are microphones and squares
are loudspeakers. Right: Hat-mounted microphone array.

(c1, c2) =


(0, 0), if |τ1| = |τ2|(
σ2+1, γ+γσ2−1

)
, if |τ1| < |τ2|(

1, σ2+1−γ
)
, if |τ1| > |τ2|.

(23)

This delay-error curve is also piecewise constant, but has a geomet-
ric “tail” that decays with a rate of roughly γ2/|τ2−τ1|. The height
of the steps is determined by σ2 and the width is determined by
|τ2−τ1|, which depends on the distance between the sources. For
large positive α, E(α) approaches Enc.

Figure 2(a) shows E(α) for four combinations of source place-
ment. The causality penalty takes a different form depending on
the relative placement of sources and microphones. For example,
if both the target and interference source are closer to microphone 1
than microphone 2 (near/near), then the second microphone does not
contribute any information at α = 0. If the sources are on opposite
sides, then the difference in TDOAs, |τ1−τ2| is larger, and therefore
E(α) decays more slowly.

2.4. Temporally correlated signals

The expressions above were derived for uncorrelated source and
noise processes. In many applications, however, the signals of in-
terest are correlated and can therefore be separated spectrally as
well as spatially. It is difficult in general to predict the effects of
signal correlation on the delay-error curve. However, if the entries of
Rx(ω) share a common spectral factor—for example, if the sources
are identically distributed and are recorded by identical micro-
phones—then we can write Rx(ω) = H(ω)Ĝ(ω)Ĝ

H
(ω)H∗(ω)

and RH
xd(ω) = H(ω)R̂

H

xd(ω)H∗(ω), where H(ω)H∗(ω) is the
scalar spectral factorization of the common factor. Then we have

RH
xd(ω)(GH(ω))−1 = H(ω)R̂

H

xd(ω)(Ĝ
H

(ω))−1 (24)

r̃T (t) = (h∗ˆ̃rT )(t). (25)

Since h(t) is causal, it spreads the energy of r̃(t) forward in
time. Figure 2(b) shows the same scenario as in the previous section,
but with identically distributed speech-shaped sources. The error
is lower overall, the steps are smoother, and the filter can begin to
separate the signals even before they reach either microphone.

3. EXPERIMENTS

To evaluate delay-performance tradeoffs in realistic conditions, we
recorded audio mixtures using a wearable microphone array in a
cocktail party scenario at the Augmented Listening Laboratory at the
University of Illinois at Urbana-Champaign, which has a reverbera-
tion time of around T60 = 300 ms. The recording setup, shown in
Figure 3, consisted of twenty omnidirectional lavalier microphones:

3



−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

Delay α (ms)

R
el
a
ti
v
e
er
ro
r
E r

e
l(
α
)
(d

B
)

(a) Human speech

Two ears

Ears & hat
(30 cm)

Ears & stands
(60 cm)

Ears & stands
(120 cm)

−30 −20 −10 0 10 20 30
−20

−15

−10

−5

0

Delay α (ms)

R
el
a
ti
v
e
er
ro
r
E r

e
l(
α
)
(d

B
)

(b) Synthetic speechlike sounds

Fig. 4. Experimental delay-error results for isolating a single target
source from a mixture of four sources.

two at the left and right ears of a mannequin “listener,” six along
the perimiter of a hat with radius 30 cm, and twelve mounted on
stands at 60 cm and 120 cm distances from the listener. The refer-
ence microphone is that in the left ear. Source signals were produced
by loudspeakers two meters away from the listener. The acoustic
impulse responses between the loudspeakers and microphones were
measured using linear sweeps. All data was sampled at 16 kHz.

The signals were separated using the discrete-time, finite-length
version of the CMWF. Let x̄[k] =

[
xT [k], . . . ,xT [k−L+1]

]T
and w̄T

α =
[
wT
α [0], . . . ,wT

α [L−1]
]

be stacked vectors of the sam-
pled multichannel signals and the finite impulse response filter co-
efficients, respectively. Let yα[k] = w̄T

α x̄[k] be the filter output
sequence and let dα[k] be the desired output sequence. Let r̄x =
E
[
x̄[n]x̄T [n]

]
and r̄xd(α) = E [x̄[n]dα[n]], where E[·] is expecta-

tion. The linear minimum MSE filter coefficients are [10]

w̄T
α = r̄Txd(α)r̄−1

x . (26)

In our experiments, r̄x was computed using truncated impulse
response measurements. We applied diagonal loading compa-
rable to the source power to account for modeling errors and
ambient noise. We used discrete-time filters with length L =
2048 samples (128 ms). For each experiment we report the sam-
ple MSE relative to the source power, computed as Erel(α) =
10 log10

∑
k (yα[k]−dα[k])2 /

∑
k d

2
α[k].

Figure 4(a) shows delay-error curves for four simultaneous talk-
ers using arrays of up to eight microphones at varying distances.
The speech signals were twenty-second clips taken from the VCTK
dataset [31] and the filters were designed using a single approxi-
mate long-term average speech autocorrelation. Because we model

the signals as identically distributed, the filters must rely on spatial
rather than spectral diversity to separate the sources. As the radius
of the array increases, the curves move downward and to the left,
indicating that the larger-aperture arrays can achieve similar perfor-
mance with lower delay compared to the smaller-aperture arrays. In
fact, since the source signals reach the microphone stands several
milliseconds before they reach the listener, the system could operate
with negative delay.

The two-channel filter performs poorly in this experiment be-
cause it does not take advantage of the time-frequency sparsity of
speech signals, which many speech enhancement algorithms exploit.
To account for the benefits of sparsity within the stationary esti-
mation framework of this paper, we repeated the experiment with
four stationary speechlike sounds generated using the Vocaloid mu-
sic synthesis software. Each ten-second source signal represents a
different vowel sung in a different key. Although the signals are de-
terministic and periodic, the filters were designed based on 50 ms
von Hann-windowed autocorrelation sequences. Figure 1 shows the
delay-error curves for single-channel mixtures of these sources and
Figure 4(b) compares the separation performance of multichannel
filters with different array sizes. Because the sources are approxi-
mately disjoint in the frequency domain, a one- or two-channel filter
can separate them effectively, but requires a delay to do so. The
larger microphone arrays also benefit from longer delay, but perform
better for small α. For example, the performance of the hat-mounted
array with zero delay matches that of the binaural microphones with
about 10 ms delay, which would be perceptible to many listeners.

4. CONCLUSIONS

The theoretical and experimental results presented here suggest that
larger arrays can separate sound sources with lower delay and that
the delay-performance tradeoff depends on both the spatial and tem-
poral correlation structure of the observed signals. When micro-
phones are located between the listener and sound sources, those
sensors receive the signals before the listening device, shifting the
delay-performance curve to the left. Arrays also provide spatial
gain, which improves overall performance regardless of delay. When
signals are spectrally distinct, a single-channel filter could separate
them effectively given a long enough delay, but an array can achieve
the same performance with little or no delay.

Much remains to be understood about delay-constrained array
processing. For example, equations (10) and (11) tell us little in
general about the effects of reverberation and signal spectra on de-
lay. Furthermore, because many signals of interest are nonstationary,
we must also consider time-varying causal array processing. Finally,
to realize the benefits of spatial diversity in delay-constrained listen-
ing enhancement, listening devices must use larger microphone ar-
rays than they do today. Large wearable and distributed arrays could
allow us to apply stronger noise reduction while meeting the strict
delay constraints of real-time listening applications.
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