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Abstract— In classic reinforcement learning algorithms,
agents make decisions at discrete and fixed time intervals. The
duration between decisions becomes a crucial hyperparameter,
as setting it too short may increase the problem’s difficulty by
requiring the agent to make numerous decisions to achieve
its goal while setting it too long can result in the agent
losing control over the system. However, physical systems
do not necessarily require a constant control frequency, and
for learning agents, it is often preferable to operate with
a low frequency when possible and a high frequency when
necessary. We propose a framework called Continuous-Time
Continuous-Options (CTCO), where the agent chooses options
as sub-policies of variable durations. These options are time-
continuous and can interact with the system at any desired
frequency providing a smooth change of actions. We demon-
strate the effectiveness of CTCO by comparing its performance
to classical RL and temporal-abstraction RL methods on simu-
lated continuous control tasks with various action-cycle times.
We show that our algorithm’s performance is not affected by
the choice of environment interaction frequency. Furthermore,
we demonstrate the efficacy of CTCO in facilitating exploration
in a real-world visual reaching task for a 7 DOF robotic arm
with sparse rewards.

I. INTRODUCTION

Reinforcement Learning (RL) has become an effective
strategy for solving complex control tasks, including continu-
ous control and robotic manipulation, as shown by its success
in recent years [1], [2], [3], [4]. Although these tasks are
typically formulated using discrete-time Markov Decision
Processes (MDPs) [5], which assumes that control signals
are issued at specific time intervals, real-world problems
are often better defined in the continuous-time domain.
Despite some studies on RL in continuous-time MDPs, the
majority of research has been concentrated on the discrete-
time formulation, which serves as a useful approximation but
may not be optimal for all problems [6], [7].

RL agents typically select actions at discrete time intervals.
This approach has some drawbacks. As the time interleaving
two consecutive actions approaches zero, the effect of each
action on the environment becomes negligible, making it
difficult for the agent to determine the optimal action [8], [9].
Furthermore, high-frequency decision-making increases the
effective time horizon of the problem (i.e., more decisions are
needed to reach the goal state) resulting in high sample com-
plexity and challenging exploration, especially in goal-based
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tasks or sparse rewards settings [10], [11]. In contrast, low-
frequency decision-making often exhibits better exploration
but hinders the controllability of the environment. These
challenges raise the question of what the agent’s decision
frequency should be. In this paper, we argue that the decision
frequency does not necessarily need to be fixed. Typically,
the decision frequency should be higher when the system
is hard to control, while it can be lower otherwise [12].
A good example is the swing-up pendulum task. During
the “swinging phase”, the system is simple to control, and
one can decide to swing left or right with low frequency
until the pendulum is upright. In the stabilization phase,
however, the system is unstable, and one needs to apply
frequent small torques in different directions to compensate
for perturbations. In other words, the learning algorithm can
be more efficient by allowing the agent to make decisions
less frequently when possible and more frequently when
necessary.

In RL, control tasks are typically represented as MDPs
with fixed action duration. The concept of explicitly choosing
the duration of extended actions has been studied in a body
of works for adapting the control frequency, which is known
as action repetition RL (ARRL) methods [13], [14], [15]. In
ARRL, the action space is extended with a discrete variable
that indicates the number of steps with which an action must
be repeated. ARRL provides a naı̈ve temporal abstraction
that increases sample efficiency. However, ARRL comes
with some limitations. The discrete formulation of the action
length does not scale in the high-frequency domain, where
the action must be extended with a considerable number of
discrete time steps to allow temporal abstraction. As we will
show in the empirical analysis, ARRL does not perform well
when the control frequency is high. The critical concept we
develop in this paper is that time-continuous systems should
be modeled with a continuous-time duration of actions.
Furthermore, policies based on repeating an action are lim-
ited in representational power and exploration, especially in
continuous control tasks where a smoothly changing control
signal may be desirable. In real-world tasks, we often want
to change the controller continuously to allow less aggressive
and more energy-efficient controllers. As an example, recall
the swing-up pendulum experiment: the pendulum could be
swung upwards by applying the same action repeatedly, but
a more energy-efficient solution would be to decrease the
applied torque as the pendulum approaches the goal position.

Hierarchical RL (HRL) provides a more sophisticated
abstraction mechanism, where a high-level policy selects op-
tions containing lower-level policies, that elapse for multiple
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numbers of time-steps [16], [17], [18]. HRL exhibits better
exploration compared to ARRL and enables gradual changes
in the action while still allowing temporal abstraction. HRL,
however, is typically hard to train due to its complex for-
mulation and redundancy (as the optimal policy can always
be expressed by one option, making the usage of more
options redundant) [19]. Furthermore, HRL is still inherently
discrete-time and exhibits performance degradation when
applied to high-frequency control settings.

To overcome the aforementioned issues, in this paper,
we propose Continous-Time Continuous-Options (CTCO),
a novel temporal abstraction mechanism based on a
continuous-time architecture for reinforcement learning that
allows a continuous, smooth change of action. Our algorithm
recalls the options framework introduced by Sutton et al.
in 1999 [16] as it uses optionfs; however, in our work,
such options have continuous-time open-loop policies that
are applied to the environment for a duration decided by
the agent’s policy. Open-loop policies avoid the redundancy
problem of classic HRL. Although a single open-loop con-
troller may not solve the task, the agent’s policy can switch
between different open-loop controllers when needed. The
continuous-time duration of our controllers contrasts with
ARRL methods, which select action duration from a discrete,
finite set. The choice of continuous option durations is not
sensitive to the environment’s control frequency making the
algorithm robust w.r.t. this hyper-parameter.

To summarize, CTCO is defined in continuous time to
allow scalability across different interaction frequencies. It
allows a temporal mechanism to be seen as a hybrid between
HRL and ARRL. Similarly to HRL, our algorithm is based
on options, but unlike the classic options framework (and
similarly to ARRL), such options have open-loop policies,
decreasing the system redundancy. Our implementation of
CTCO is based on the soft actor-critic (SAC) [3]. We analyze
the robustness of our framework w.r.t. different interaction
frequencies and compare it against classical, hierarchical, and
action repetition RL methods. We find that, while the consid-
ered baselines exhibit performance degradation when tested
with high interaction frequencies, CTCO is not subject to any
performance degradation. Furthermore, we test CTCO on a
real-world robotic task without any sim-to-real pertaining,
showing that the higher sample efficiency and the use of
smooth open-loop controllers in CTCO are particularly well
suited for real-world robotics.

II. BACKGROUND

Discrete-Time Decision-Making is formalized using
Markov decision processes (MDPs) ⟨S,A, p, r, γ, µ0⟩, where
S is the set of states; A is the set of actions; p(s′|s,a) is
the probability of visiting s′ ∈ S after the application of
action a ∈ A to state s ∈ S; r(s,a) is the reward signal in
state s and action a, γ is the discount factor and µ0 is the
distribution of starting states. Decisions are often encoded
with a stochastic parametric model a ∼ πθ(s) where θ is
the set of parameters. The goal of reinforcement learning is
to find the set of parameters that maximizes the discounted

objective

Jγ
π (θ) := Eπ

[ ∞∑
t=0

γtr(st,at)

]
.

In discrete time decision-making, there is no notion of
physical time: the time elapsed between two consecutive state
observations is not considered. However, when implemented
on the real system, the designer needs to decide when
the system needs to observe the environment and make
decisions. Since the physical time is not considered in this
mathematical mode, the time interleaving two observations
(or decisions) is usually kept constant. The time interleaving
two consecutive decisions determines the learning agent’s
frequency, and it heavily impacts the performances [20].

Continuous-Time Decision-Making assumes a continu-
ous evolution of states, actions, and rewards defined with a
time-independent dynamical system [21]

ṡt = f(st,at). (1)

For simplicity, Equation 1 does not consider stochastic-
ity, which can be formalized with a more rigorous set
of assumptions. Informally, such assumptions ensure that
the probability of observing a state st after a continuous
sequence of actions a0:t starting from a given state st is
Markovian, i.e.,

p(st+d|st,at:t+d) = p(st+d|st,a0:t+d).

where d > 0 denotes the duration of the sequence. Further-
more, the system is time-invariant, i.e.,

p(st1+d|st1 ,at1:t1+d) = p(st2+d|st2 ,at2:t2+d)

∀t1, t2 ≥ 0 s.t st1 = st2,at1:t1+d = at2:t2+d.

In infinite-horizon problems, the discounted objective be-
comes

Jτ
π (a0:∞) = E

[∫ ∞

0

e−τtr(st,at)dt

]
. (2)

A Unified View. The continuous system described can be
viewed as a discrete system too [11]. This second view is
more convenient because it allows using existing tools for
discrete processes to optimize the continuous systems. Con-
sider the following modified MDPs, ⟨S,A∞, P,R, τ, µ0⟩,
where A∞ is the set of continuous action sequences, (in-
formally, A∞ ≡ P({at:t+∆t : ∀t,∆t > 0}) where P(x)
is the power set of x), and τ > 0 a time-constant. In this
system, the reward becomes

R(st,at:t+d) =

∫ t+d

t

e−τ(κ−t)r(sκ,aκ)dκ,

the transition becomes P (st+d|st,at:t+d) where st+d = st+∫ t+d

t
ṡxdx, and the discount factor becomes variable, i.e.,

γ(d) = e−τd.



By choosing a set of discretization points t1 < t2 < t3, . . . ,
the objective function from 2 can be rewritten as

Jτ
π (θ) = Eπ

 ∞∑
i=0

 i∏
j=0

γ(dj)

R(sti ,ati:ti+1
)

 , (3)

where di = ti+1− ti. Notice that Equation 3 is equivalent to
Equation 2. This discretization is well known, e.g., [11]. It
is interesting to notice that MDPs with variable discounting
have been introduced in [22] where the author aims to
provide a unified framework for RL. However, in White’s
work, the variable discount factor is treated as part of the
environment, and its effect is studied only on the value
estimation. In this work, as we will see, the discount factor
is, in practice, decided by the high-level policy (which is
devoted to choosing low-policy durations). We also study its
effect on the policy gradient update rule.

III. METHOD

Our framework, Continuous-Time Continuous-Options
(CTCO), comprises a policy π, and a set of options encoded
as a parametric model Ω(ω). The policy π selects options
with variable durations and decides which option to execute
only after the termination of the current option, allowing
the system to dynamically determine the decision frequency.
However, different option durations may have the same effect
on the environment (e.g., an option that outputs action a = 1
for 3 seconds is equivalent to three options that output action
a = 1 for one second each). Since longer durations are
preferable for the learner in case of ambiguity ( it requires
less number of decisions), we introduced a regularization
factor that favors longer durations. We implemented the
update rule of our framework by taking inspiration from soft
actor-critic (SAC) algorithm, a state-of-the-art policy gradi-
ent method that includes entropy regularization to achieve
efficient exploration [3].

A. The Options

In Section II, we saw that continuous time (time-
independent) dynamical systems can be seen as particular
MDPs where actions are replaced with continuous sequences
of actions (i.e, at:t+d), and the discount factor becomes
variable. However, it is impossible to represent continuous
sequences with a finite memory. One way to mitigate this
issue is to parameterize these sequences as

at = Ω(st,ω, t, d) : t ∈ [0, d],

where the option Ω can be implemented with any formula,
neural network, or program that depends on a vector of
parameters ω, the current state st, time t, and duration
variable d. Motivated to obtain a simple model with few
parameters that can be computed fast (which is ideal for
real-time computations), we encoded options using a linear
parametric model without state dependency

at = Ω(ω, t, d) = ϕ⊺(t/d)ω : t ∈ [0, d]. (4)

Inspired by work on movement primitives, we opt to encode
the features ϕ with normalized radial basis functions (RBFs),
ensuring that the sequence of actions is smooth and produces
movements that contain low jerkiness and are ideal for
robotic applications. The number of RBFs determines the
complexity of the movement. With one RBF, we obtain
a constant action output (similar to ARRL), while with
more RBFs, we obtain a more complicated output. We
designed option policies without the dependency on the state
st opting for open-loop controllers. However, the policy π,
compensates for the lack of feedback since it selects options
by observing the current state of the environment st.

B. The Policy

The policy π is responsible for choosing the parameters
ω and the duration d of the options. In particular, the policy
receives as input the current state of the systems s and
determines the probability density of the parameter vector
and the duration independently, i.e.,

ω, d ∼ πθ(., .|s).

The probability density function of ω is modeled as a
multidimensional Gaussian distribution while the density
function of d is a transformation of Gaussian distribution to a
pdf over positive numbers by applying an invertible function;
we choose the sigmoid function. We parameterize the policy
using a neural network that outputs µω

θ (st), σ
ω
θ (st) , µd

θ(st),
σd
θ (st) as mean and variance of the Gaussian distributions to

sample the parameters vector ω and the duration d given
observation of state st. To sample ω and d, and compute the
gradients of the objective (eq. 3) w.r.t. the policy parameters
we use the reparametrization trick,

ω = fω
θ (s; ϵ) := µω

θ (s) + ϵσω
θ (s),

d = fd
θ(s; ϵ) := dmaxsigm(µd

θ(s) + ϵσd
θ (s)),

with ϵ, ϵ ∼ N (0, I). Here d is limited to continuous values in
(0, dmax). In what follows the evaluation and improvement
of the parameterized policy is described.

C. A Soft Actor-Critic Framework

From the perspective of the discretized MDP introduced
in Section II, (ω, d) represents the continuous sequence of
actions at:t+d, therefore, can be considered as the action in
the discretized MDP. Taking into account this consideration,
the reward definition in Section II and the option policy
definition in (4), we obtain the reward that depends on state,
option parameters, and option duration,

R(st,ω, d) =

∫ t+d

t

e−τ(κ−t)r(sκ,Ω(ω, κ, d))dκ. (5)

Notice that R(s,ω, d) cannot, in general, be computed
in closed-form, but it can be approximated via numerical
integration. In this MDP, the overall objective becomes

Jτ
π (θ) = Eπ

 ∞∑
i=0

i−1∏
j=0

γ(dj)Ri

 ,



Algorithm 1 Continuous-Time Continuous-Option

Require: a policy π with a set of parameters θ, θ′, critic
parameters χ, χ′, option model Ω, learning-rates λq, λp,
replay buffer B
i = 0, ti = 0, observe s0
while True do

ωi, di ∼ πθ(sti) ▷ sample option and duration
Execute Ω(ωi, κ, di) for κ = 0 to di seconds
i← i+ 1
ti = ti−1 + di−1

Observe sti and compute Ri−1 with (5)
Store sti−1

,ωi−1, di−1, Ri−1, sti in B
Sample s,ω, d, R, s′ from B
χ← χ− λq∇χLQ(χ, s,ω, d, R, s′) ▷ critic update
θ ← θ − λp∇θLπ(θ, s,ω, d) ▷ actor update
Perform soft-update of χ′ and θ′

end while

where Ri = R(sti ,ωi, di), ti =
∑i

0 di, di are option
durations chosen by the policy π, and sti are the observed
states.

Until now, we have described a mathematical framework
that shows how a policy πθ interacts with a continuous envi-
ronment. Now we define how such policy can be improved.
Among many different options, we choose to implement our
algorithm following the soft actor-critic (SAC) architecture
[3]. To this end, we include an entropic regularization term
that encourages the exploration of different option parameters
ω and durations d. Furthermore, we include a new com-
ponent that penalizes short options. This additional regular-
izer, called high-frequency penalization is needed, since the
learner can find solutions that work well with arbirtarly high
frequency, but such high frequency is detrimental for training
performances [23]. The high-frequency penalization consists
of a constant term subtracted from the objective each time the
policy makes a decision. The overall objective incorporates
both the entropic and the frequency regularization terms,

Jτ
π (θ)=E

π

 ∞∑
i=0

i−1∏
j=0

γ(dj) (Ri+βEH(πθ(·, · |sti))−βh)


where βE and βh are respectively the entropic and the high-
frequency regularizers. In addition to these regularization
terms, following the SAC architecture, we introduce an
approximator for the Q-function Q̂χ, a target Q-function Q̂χ′

and a target policy πθ′ .
Policy Evaluation. The Q-function evaluates the policy at

any state-action pair. In CTCO, the Q-function is described
by the following Bellman equation,

Qπ(s,ω, d) = E
ω′,d′,s′

[
R(s,ω, d)− βh + γ(d)(Qπ(s′,ω′, d′)

− βE log πθ(ω
′, d′|s′))

]
(6)

where ω′, d′ ∼ πθ′(s′) and πθ′ is the target policy. Equa-
tion 6 cannot be solved in closed form. Popular methods
based on temporal difference introduce two function approx-
imators Q̂χ and Q̂χ′ that tabilize learning Q-function [24],
[25]. Similarly to SAC, our algorithm minimizes the mean
square Bellman error

LQ(χ, s,ω, d, R, s′) =
(
R− βh + γ(d)(Q̂χ′(s′,ω′, d′)

− βE log π(ω′, d′|s′))− Q̂χ(s,ω, d)
)2

and use a soft-update rule to update the parameters χ and χ′

(i.e., χ′ = (1− αχ)χ
′ + αχχ).

Policy improvement. The classic policy gradient theorem
does not consider situations where the policy changes the
action duration and the discount factor. Therefore we derived
the policy gradient with this new assumption,

∇θJ
τ
π (θ) ∝ E

µπ

[
∇ωQ

π(s,ω, d)∇θf
ω
θ (s, ϵ) +∇dQ

π(s,ω, d)

∇θf
d
θ (s, ϵ)− βE∇θ log πθ(ω, d|s)

∣∣∣
ω=fω

θ (s,ϵ),d=fd
θ (s,ϵ)

]
.

(7)

The proof of policy gradient derivation can be found in VIII-
A. The policy gradient in Equation 7 allows estimating the
gradient from samples, as in classic actor-critic frameworks.
Hence, one can minimize the following surrogate objective

Lπ(θ, s,ω, d) = ∇ωQ
π(s,ω, d)

∣∣
ω=fω

θ (s,ϵ)
∇θf

ω
θ (s, ϵ)+

∇dQ
π(s,ω, d)

∣∣
d=fd(s,ϵ)

∇θf
d
θ (s, ϵ)− βE∇θ log πθ(ω, d|s).

(8)

A scheme of CTCO is presented in Algorithm 1.

IV. EMPIRICAL ANALYSIS

In this section, we focus on answering two questions:
1) Is our algorithm robust w.r.t. high interaction frequency

with the environment?
2) How does our algorithm perform on a real-robotic

task?
Comparisons. We compare our algorithm against classic

RL by using soft actor-critic (SAC), ARRL by using fine-
grained action repetition (FiGAR-SAC) [15], and HRL by
using double actor-critic (DAC-PPO) [18]. The algorithms
are modified to simulate an asynchronous interaction with
the environment.

Experimental Setup. When interacting with the real
world, the amount of computation that a learning algorithm
performs is independent of the task execution. While in
the simulation, we can perform a fixed number of updates
between two different step() calls on the simulator, in
the real-world, action signals and algorithm updates are
asynchronous [26]. In this section, we study how different
interaction frequencies impact the algorithms. To emulate
a realistic effect of different interaction frequencies, we
modified the simulated environments accordingly, and we
modified the algorithms to keep a fixed number of up-
dates per time unit. Furthermore, the discount factor of



Fig. 1: Frequency analysis plots. CTCO’s performance is not dampened by high interaction frequency with the environment.
Bars depict 95% confidence intervals.

the discrete-time baselines (SAC, FiGAR-SAC and DAC-
PPO) needs to be revised to keep a consistent performance
metric across different frequencies. This scaling is obtained
by setting γ = exp−τdt where τ = − log γbase/dtbase and
γbase = 0.98 is the chosen discount factor for a fixed time
interval dtbase = 0.05s. The algorithms are implemented
using PyTorch and NumPy. The structure of the actor
is kept identical across the different baselines, except for
the last layer, which needs to be adapted to the correct
output size for our algorithm. In detail, the actor neural
network has two hidden layers of 10 neurons. The critic
neural network, instead, has two hidden layers of 64 neurons.
The implementations are publicly available1.

A. Robustness to interaction frequencies

In classic RL, interaction and decision frequencies are the
same. Due to this design choice, high interaction frequen-
cies negatively impact performance. In this experiment, we
test SAC, FiGAR-SAC, DAC-PPO and our algorithm for
different interaction frequencies on three different environ-
ments: Point Mass, Cheetah and Ball in a Cup
from DeepMind control suit [27]. We hypothesize that in
continuous control, RL frameworks which choose an action
for each task time-step are not robust to high-frequency
interactions. One issue arises in terms of exploration that
is when the action-cycle time becomes small, the change
in the state vanishes and the agent cannot explore the task
state-space efficiently, given that the behaviour of the actor
in the first stages of learning is independently random in
each time-step. To examine this hypothesis, we set up the
tasks of Point Mass and Ball in a Cup with sparse
rewards, and Cheetah with dense rewards for different
action-cycle times and measure discounted returns. For each

1https://github.com/amir-karimi96/continuous-time-continuous-option-
policy-gradient

algorithm, we run 30 seeds for 400 minutes of task time. For
CTCO we use high-frequency penalty βh = 0.05 and options
with nRBF = 3 in all tasks. Fig. 1a shows that the perfor-
mance of SAC, FiGAR-SAC and DAC-PPO is influenced
by interaction frequency. However, Our algorithm maintains
almost constant performance across the range of different
frequencies. In Cheetah, it has sub-optimal performance,
suggesting that with dense reward, simpler algorithms like
SAC and FiGAR-SAC achieve higher performance.

B. Real-World performance analysis

To test the ability of CTCO to work in a real-world
scenario, we designed a sparse reward visual-reaching task.
Although target reaching can be efficiently solved by using
classic robotic techniques such as visual servoing, object
detection, and planning, it is still interesting to analyze how
an RL agent performs in such tasks. Learning from visual
inputs in real-world scenarios without any policy pretraining
is in fact very challenging. Visual inputs are subject to
noisy observations, and learning algorithms must be highly
efficient to learn the task in a reasonable time. For this task,
we use a 7 DoF Franka-Emika Panda manipulator shown in
Fig. 2a. We attach an RGB camera to the robot’s wrist. A
bean bag is randomly placed on the table, and the goal of
the robot is to get close enough to the bean bag while it
appears in the wrist camera image. The observation consists
of an 80×60 RGB image and joint configurations. The agent
controls the robot joint velocities (7 dimensions) at 50Hz.
Note that the image observation is sampled at 25 Hz from the
camera and upsampled to 50 Hz by repetition. Each episode
takes 8s to complete. The sparse reward R(s,a) is computed
as

R(s,a) =

{
1 if ρ(s) ≥ 0.015

0 otherwise

https://github.com/amir-karimi96/continuous-time-continuous-option-policy-gradient
https://github.com/amir-karimi96/continuous-time-continuous-option-policy-gradient


(a)

(b)

(c)

Fig. 2: Demonstration of visual reacher task in (a) and
learning performances versus task real time ( reset time is
excluded) in (b,c). CTCO reaches higher performances w.r.t
SAC in both easy and hard versions of visual reacher. Shaded
areas depict 95% confidence intervals.

with

ρ(s) =
1

w × h

∑
p∈red pixels

(0.5− |px|)(0.5− |py|)

where ρ(s) is a metric that shows how big and close to the
center the bean bag is in the image. w = 80, h = 60 are
image dimensions, and px, py ∈ [−0.5, 0.5] are normalized
coordinates of red pixels in the camera image. The robot has
the bean bag attached to its wrist by a string. This allows
the robot to set the position of the bean bag randomly on the
table at the beginning of each episode. The position of the
end-effector is bounded to a box of dimensions 30 × 50 ×
30 cm3. We have two versions of tasks, easy and hard with
the difference in the reset. In the easy version, the object
is placed uniformly over an area of 20 × 30 cm2, but the
reset in the hard version is not uniform and places the object
unpredictably.

In this experiment, we test SAC against CTCO with βh =
0.02, nRBF = 2 for easy and hard visual reacher. Both actor
and critics, which are identical for the two algorithms except
for the actor’s last layer, have a convolutional encoder as the
first layer followed by fully connected layers. Interactions
and agent updates happen in separate processes to allow real-
time control, similarly to [26]. Figure 2b and 2c show the
average and confidence interval of discounted returns over 5
runs. This result indicates that CTCO benefits from the tem-
poral exploration introduced by the continuous options, while
SAC fails due to ineffective exploration, especially when the
reset is not robust. In the video included in supplementary
material, we observe how our algorithm performs the visual
reaching using extended smooth actions.

V. LIMITATIONS

While removing the decision frequency hyper-parameter,
our algorithm suffers from two drawbacks: it introduces two
new hyper-parameters and has open-loop options. The two
new hyper-parameters define the number of RBFs composing
the options and the high-frequency penalization. The agent’s
performance can be sensitive to the choice of these hyperpa-
rameters for different reward scales and task complexity lev-
els. In our work, options have open-loop policies. Therefore,
they cannot adapt to unexpected state changes (stochastic
environments). For instance, we show in the accompanying
video that in the task of visual reaching with a moving
object, when running a policy pre-trained with static objects,
if the object location is changed too fast CTCO may fail
in tracking the object. Technically, the policy can counteract
this deficit by choosing low-duration options (thus increasing
the frequency of the feedback loop). However, lower-duration
policies are undesirable since they complicate learning. This
limitation can be compensated by using closed-loop sub-
policies or implementing termination policies as in [11].

VI. CONCLUSION AND FUTURE WORK

Most reinforcement learning algorithms are defined in
discrete time in which the system is agnostic of what
happens between one action and the next. Moreover, the



decision of which action to apply is taken at fixed time
intervals. When those intervals are too short, the learning
agent needs to make many consecutive decisions before
reaching its goal, making the problem harder to solve. In
contrast, when decisions are not frequent enough, the system
can become uncontrollable. In our paper, we propose a
reinforcement learning framework where the agent selects
new sub-policies as options with variable durations. This
approach enhances the algorithm’s robustness with respect
to the underlying interaction frequency and promotes high-
level, smooth exploration. Empirical results underpin this
robustness and show the effectiveness of our algorithm in
sparse reward settings and for robotic manipulation. As for
future work, we will include a termination mechanism that
allows the agent to select a new option before the natural
termination of the previous one to counteract unforeseen
events due to stochasticity in the environment.
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VIII. APPENDIX

A. Continuous time policy gradient theorem and proof

Assume parameterizing the policy by θ, According to the
bellman equation we have gradient of Q w.r.t to θ as:

∇θQ(s,ω, d) =

∇θ E
s′,ω′,d′

[
R(s,ω, d)− βh + γ(d)(Q(s′,ω′, d′)

+ βEH(πθ(., .|s′)))
]

= ∇θ E
s′,ω′,d′

[
R(s,ω, d)− βh + γ(d)(Q(s′,ω′, d′)

− βE log(πθ(ω
′, d′|s′)))

]
= E

s′,ϵ′

[
γ(d)

(
∇ωQ(s′,ω′, d′)∇θf

ω
θ (s′, ϵ′)+

∇dQ(s′,ω′, d′)∇θf
d
θ (s

′, ϵ′)

)
+ γ(d)∇θQ(s′,ω′, d′)

− γ(d)∇θβE log(πθ(ω
′, d′|s′))

]
.

(By reparameterization trick)

We can recursively replace ∇θQ(s′,ω′, d′) and obtain

∇θQ(s,ω, d) = (9)

E
µπ

[ ∞∑
i=0

(

i∏
j=0

γ(dj))

(
∇ωQ(si+1,ωi+1, di+1)∇θf

ω
θ (si+1, ϵi+1)

+∇dQ(si+1,ωi+1, di+1)∇θf
d
θ (si+1, ϵi+1)

− βE∇θ log(πθ(ωi+1, di+1|si+1))

)
|ωi+1=fω

θ (si+1,ϵi+1),di+1=fd
θ (si+1,ϵi+1)

]
for s0 = s,ω0 = ω, d0 = d. (10)

Hence,
Theorem 1 (Continuous-Time Continuous-Option Policy Gradient):

Consider a CT-MDP and a sampling process for si,ωi, di
as described in Section III. The gradient of the objctive
w.r.t. to the policy parameter is

∇θJπ = E
µπ

[ ∞∑
i=0

i−1∏
j=0

γ(dj)

(
∇ωQ(si,ωi, di)∇θf

ω
θ (si, ϵi)

+∇dQ(si,ωi, di)∇θf
d
θ (si, ϵi))− βE∇θ log(πθ(ωi, di|si))

)
|ωi=fω

θ (si,ϵi),di=fd
θ (si,ϵi)

]
where γ(di) = e−τdi (note that

∏−1
j=0 γ(dj) = 1).

Since the sampling variables ωi, di, . . . are Markov, we can
assume that there is a discounted stationary distribution ζρ

from which we can sample them i.i.d. and obtain the same
result.

Proof:

Jπ = E
µπ

[ ∞∑
i=0

i−1∏
j=0

γ(dj)

 (R(si,ωi, di)− βh

+H(πθ(., .|si))
]

= E
s0,ω0,d0

[
Q(s0,ω0, d0)− log πθ(ω0, d0|s0))

]
.

Then

∇θJπ = ∇θ E
s0,ω0,d0

[
Q(s0,ω0, d0)− log πθ(ω0, d0|s0))

]
= E

s0,ϵ0

[
∇θQ(s0,ω0, d0) +∇ωQ(s0,ω0, d0)

∇θf
ω
θ (s0, ϵ0) +∇dQ(s0,ω0, d0)∇θf

d
θ (s0, ϵ0))

− βE∇θ log(πθ(ω0, d0|s0))
]
.

(By reparameterizaiton ω0 = fω
θ (s0, ϵ0), d0 = fd

θ (s0, ϵ0))

Replacing ∇θQ(s0,ω0, d0) using equation 10 results in:

∇θJπ = Eµπ

[ ∞∑
i=0

i−1∏
j=0

γ(dj)

(
∇ωQ(si,ωi, di)∇θf

ω
θ (si, ϵi)

+∇dQ(si,ωi, di)∇θf
d
θ (si, ϵi))

− βE∇θ log(πθ(ωi, di|si))
)
|ωi=fω

θ (si,ϵi),di=fd
θ (si,ϵi)

]
.

Discounting can be dropped to stochastically sample from
the discounted distribution, then we have

∇θJπ = Eµπ

[
∇ωQ(s,ω, d)∇θf

ω
θ (s, ϵ)

+∇dQ(s,ω, d)∇θf
d
θ (s, ϵ))

− βE∇θ log(πθ(ω, di|s))|ω=fω
θ (s,ϵ),d=fd

θ (s,ϵ)

]
.
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