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Abstract— Movement primitives are trainable parametric
models that reproduce robotic movements starting from a
limited set of demonstrations. Previous works proposed simple
linear models that exhibited high sample efficiency and gen-
eralization power by allowing temporal modulation of move-
ments (reproducing movements faster or slower), blending
(merging two movements into one), via-point conditioning
(constraining a movement to meet some particular via-points)
and context conditioning (generation of movements based on
an observed variable, e.g., position of an object). Previous
works have proposed neural network-based motor primitive
models, having demonstrated their capacity to perform tasks
with some forms of input conditioning or time-modulation
representations. However, there has not been a single unified
deep movement primitive’s model proposed that is capable of
all previous operations, limiting neural movement primitive’s
potential applications. This paper proposes a deep movement
primitive architecture that encodes all the operations above and
uses a Bayesian context aggregator that allows a more sound
context conditioning and blending. Our results demonstrate
our approach can scale to reproduce complex motions on a
larger variety of input choices compared to baselines while
maintaining operations of linear movement primitives provide.

I. INTRODUCTION

Learning from demonstration (LfD) is a technique that
enables robots to acquire complex and adaptive skills by
observing and reproducing human demonstrations [1], [20],
[19], [28]. A key challenge in LfD is how to represent and
generalize demonstrated motions in a robust and flexible
way. Movement primitives (MPs) are a popular approach
to address this challenge. MPs are parametric models that
capture the essential features of a motion while allowing
for variations and modifications according to different situa-
tions. The possibility of modifying the motion according to
different needs is crucial to obtain an efficient mechanism to
extrapolate new movements from scarce data.

This generalization has previously been achieved by using
probabilistic models to represent motor skills. Treating motor
skills as probabilistic models captures the uncertainty in
demonstration data that deterministic models would other-
wise assume are fixed. Probabilistic models further enable
variable conditioning in which predictions can be refined
through new observations. These allow movement primitives
to adapt to new information during a motion.

Probabilistic movement primitives (ProMPs) were one
of the first frameworks to use probabilistic modeling to
learn motor skills from human demonstrations. ProMPs are
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Fig. 1. Barret WAM preparing to perform rhythmic motions encoded with
our deep probabilistic movement primitives to shake a Mojito.

composed of a linear-Gaussian model, providing high math-
ematical tractability and allowing various operations, such
as via-point and context conditioning, blending, temporal
modulation, and rhythmic movements [17], [18]. Via-point
conditioning allows sampling motions that pass through
some desired robot configurations, whereas context condi-
tioning generates motions based on some external variables
(e.g., the position of an object in the scene). Blending
generates an unseen movement by interpolating two learned
ones. Temporal modulation allows the modification of the
velocity profile of a given movement. Rhythmic movements
enable a continuous repetition of the learned movement.

However, Gaussian-linear models are limited to unimodal
distributions and cannot represent rich, multimodal datasets
or deal with high-dimensional variables like images [6], [24].
Recent approaches overcome these limitations with deep
learning techniques. Some researchers have proposed autore-
gressive neural-networks-based movement primitives [15],
[23], [22], [9], [16]. These models are time-discrete, which
leads to performance degradation with high frequencies [3].
Other research proposes continuous-time approaches that
use a deep model to generate the parameters of movement
primitive models [3], [2], but the fundamental movements
are still implemented with a linear model.

The pivotal work of Seker et al. [21] overcomes the
limitations of previous work by proposing a continuous-
time, non-linear representation of motor skills. These mo-
tor primitives utilizes Conditional Neural Processes (CNPs)
[7], [8], an encoder-decoder model that allows aggregating
multiple input-output pairs to form a latent representation
of a function. In their framework, called Conditional Neural
Movement Primitives (CNMPs), Seker et al. utilize time as
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the input variable and joint configurations as the output of
CNPs. The aggregation of multiple time-joint-configuration
pairs forms a latent representation of the desired motion.
The latent representation is then used by a non-linear model
to produce the continuous-time association between the two
variables.

However, CNMPs have several limitations: 1) CNMPs
use a deterministic latent variable z. The stochasticity is
only provided by a Gaussian output, which is well suited
to capture a unimodal aleatoric uncertainty; but cannot
represent multimodal distributions. 2) The authors do not
discuss how to provide motion blending, temporal modula-
tion, and rhythmic movements. 3) CNMPs can still produce
trajectories that are far from the desired via-points.

In this paper, we aim to mitigate these weaknesses and
propose a deep probabilistic movement framework that ex-
poses all the operations of classic ProMPs while enabling
working with high-dimensional variables and maintaining
high precision. Our deep probabilistic movement primitives
(DeepProMPs) replace the CNMP deterministic mean ag-
gregator with a Bayesian aggregator (BA) which has been
shown to have superior predictive performance [26]. We
demonstrate this formulation provides a natural means to
perform motion blending directly in the latent space. We
assume our latent variable is independent when conditioned
on either via-points or context variables. This enables flex-
ibility when predicting motor skills and can be learned via
auxiliary task learning. We further show how to implement
both temporal modulation and rhythmic movement while
maintaining high accuracy through state-of-the-art machine
learning techniques, such as iterative optimization [27] to im-
prove via-point conditioning accuracy, and utilization input
representations similar to positional encoding [25].

In summary, our paper proposes a complete probabilistic
deep-learning extension to ProMPs. Our model allows via-
point and context conditioning, motion blending, tempo-
ral modulation, and rhythmic movements. Unlike ProMPs,
our model can work with multimodal datasets and high-
dimensional inputs. We exhaustively compare our model with
ProMPs and CNMPs in virtual environments and on real
robots. Our results suggest that compared to CNMP alterna-
tives, our model is better at reconstructing demonstrations
across variations of specified input data, including high-
dimensional data like images. Even when CNMP variants
are trained to mimic these aspects, we find our model is
superior in motor skill prediction.

II. PROBLEM STATEMENT

In this paper, we consider the problem of learning robotic
movements from human demonstrations. A human demon-
stration can be summarized as a set of via-points A = {ai =
(xi,yi)}ni=1, where via-points ai indicate the configuration
yi ∈ Rd of the robot at the normalized time xi

1. Further-
more, each demonstration is accompanied by a variable num-

1We denote the time variable x with bold characters since rhythmic
movements (Section III) have a time variable that is formed by two
components.

ber m of context variables C = {ci}mi=1 that describe some
features of the environment (e.g., the pose of an object in the
scene) or some desired goals (e.g., the amount of liquid to
be poured in a glass). MPs aim to learn the relation between
the time variable x and the joint configuration y by imitating
the user’s behavior in relation to the context variables c.
ProMPs provide a full probabilistic view on the matter where
z,y and c are treated as stochastic variables [17], [18]. The
probabilistic model allows both to sample movements similar
to the one provided by the demonstration and to condition
movements based on via-points and context variables, i.e.,
p(y|x,A, C) =

∫
p(y|z,x)p(z|A, C)dz. Usually, the number

of conditioning variables n and m during deployment is
much lower than the one in the dataset. ProMPs implement a
linear-Gaussian model that allows mathematical tractability
to solve the integrals in the closed form at the cost of lower
expressivity. Due to their simple structure, ProMPs cannot
represent complex data distributions. In the state-of-the-art
literature, this limitation is overcome by using deep neural
networks.

A. Conditional Neural Movement Primitives

CNMPs aim to provide a neural-network architecture to
represent movement primitives and allow via-point and con-
text conditioning. In CMNPs, each trajectory is associated
with a latent variable z that represents the motion. CNMPs
are, therefore, composed of two main modules: a deter-
ministic mean aggregation encoder z = 1

n (
∑n

i=1 ϕ(ai, ci),
where ϕ is a neural network, and a movement generator
(decoder) p(y|z,x). The encoder associates a set of via-
points a1, . . . ,an and context variables c1, . . . , cm with a
deterministic latent representation of the movement z. The
encoder takes as input the time variable x and the latent
motion representation z and outputs a Gaussian distribution
over robot configurations y. CNMPs can be trained with
classic gradient descent techniques and allow conditioning
with high-dimensional variables (e.g., {ci} can be images).
However, they can only learn unimodal uncertainty since y
is Gaussian.

B. Bayesian Context Aggregator

Bayesian aggregation is a probabilistic aggregation tech-
nique that addresses the mean aggregator’s inability to
represent uncertainty. For example, the latent variable z
should have a higher variance when only a few samples
are provided, while it should have less variance when more
samples are provided. With the mean aggregator, CNMPs
postpone the problem of quantifying the uncertainty to the
last layer with the neural network, which is unaware of how
many conditioning variables have been presented. Therefore
it cannot make a good prediction of the epistemic uncertainty.
The Bayesian aggregator overcomes this issue by applying
Bayesian inference directly to the latent variable.

We assume a prior distribution p0(z) = N (z|µ0, σ
2
0)

2, and

2The mean µ0 has the same dimension of the vector z and σ2
0 as a vector

of variances (i.e., all dimensions are independent). We keep this convention
through the rest of the paper.



a model p(ai|z) = N (ϕ(ai)|z, σ2(a)) where ϕ is a deter-
ministic mapping that project a in the same dimension of z.
BA uses the Bayesian rule to infer pi+1(z) = p(z|ai+1) ∝
p(ai+1|z)pi(z). This process results in p(z|a1,a2,· · · ,an) =
p0(z)

∏n
i=1 p(ai|z), which is computable in closed-form

for normal distributions. Notice that the latent distribu-
tion can be equivalently rewritten as (z|a1,a2,· · · ,an) =
p0(z)

∏n
i=1 p(z|ai), since, due to the symmetry of the Gaus-

sian distribution, N (ϕ(ai)|z, σ2(a)) = N (z|ϕ(ai), σ2(a)).
Unlike the classic mean estimator, BA builds a probabilistic
model of the latent variable based on the conditioning
variable. In particular, conditioning variables that carry less
information will have a lower impact on predicting the latent
variable without lowering its uncertainty. In comparison,
context variables that carry more information will tend to
decrease model uncertainty and have a higher impact on the
prediction. The latent space induced by BA is processed by
subsequent nonlinear mappings and is trainable via varia-
tional inference.

III. MODEL ARCHITECTURE AND TRAINING

An essential function of ProMPs is to learn a model of
the distribution of motions (trajectories) shown by a human
demonstrator. Once trained, the model can be used to sample
comparable trajectories to the demonstrations. However, in
most applications, one does not want only to replicate the
distribution of observed movements but condition them on
certain variables such as via-points and context variables.

The primary idea of this work is to use a Bayesian
aggregator to model the latent space and to use variational
inference to train the model similarly to variational au-
toencoders (VAEs) [13], [14]. This enables DeepProMPs
to exploit the probabilistic model of the latent space to
produce a multimodal profile of the epistemic uncertainty and
learn the relation between a variable number of conditioning
variables and movements.

A. Model Architecture

Our model is mainly composed of two elements: the en-
coder, which consists of a Bayesian aggregator that processes
a variable number of via-points and context variables and
builds the latent distribution of z, and the decoder, a neural
network that implements p(y|z,x), where x is a normalized
time (or phase), z is the latent representation of the motion,
and y is the desired robot configuration. Therefore, the
encoder processes two different typologies of inputs: the set
of via-points, denoted with A = {ai}ni=1 and the set of
context variables, denoted with C = {ci}mi=1. As described
in Section II-B, the latent distribution is

q(z|A, C) ∝ p0(z)

n∏
i=1

q(z|ai)
m∏
i=1

q(z|ci), (1)

where p0(z) = N (z|0, I), q(z|ai) = N (z|µa(ai), σ
2
a(ai)),

and q(z|ci) = N (z|µc(ci), σ
2
c (ci)) where µa, µc, σa, σc

are nonlinear projections encoded by neural networks. In

practice, the mean and the variance of the latent distribution
are computed by:

µz(A, C) = σ2
z(A, C)

(
n∑

i=1

µa(ai)

σ2
a(ai)

+

m∑
i=1

µc(ci)

σ2
c (ci)

)
,

σ2
z(A, C) =

(
1 +

n∑
i=1

σ2
a(ai)

−1 +

m∑
i=1

σ2
c (ci)

−1

)−1

.

Notice that we assume a unique pair of functions (i.e.,
neural networks) to process the mean µc and the variance
σ2
c associated with the context variables. However, in some

settings, we want to have different kinds of context variables
(e.g., raw images, and low-dimensional poses extracted from
a motion capture), and we, therefore, employ different neural
networks for the different types of input data. The decoder
p(y|z,x) is implemented using a Gaussian distribution, i.e.,

p(y|z,x) = N
(
y
∣∣µy(z,x), σ

2
y

)
,

where µy is a nonlinear projection encoded with a neural
network and σy is an hyper-parameter. At this point, the
probability of a robotic configuration y at time x given a set
of via-points and conditioning variables is

p(y|x,A, C) =
∫

p(y|x, z)p(z|A, C)dz. (2)

Unfortunately, (2) is not solvable in closed form, and we
need to resort to variational inference to train the model.

B. Training the Model via Variational Inference

Similar to classical variational autoencoders (VAEs) [13],
[14], our model is composed of three entities: model like-
lihood p(y|z,x), variational posterior q(z|A, C), and prior
distribution p0(z). The model likelihood can be rewritten
using the reparameterization trick,

y = µy(z, x) + ϵσy with ϵ ∼ N (0, I), (3)

to allow gradient training. The evidence lowerbound (ELBO)
is

L(A, C) = E
z∼q(·|A,C)

[
n∑

i=1

log p(yi|z, xi)− log
q(z|A, C)
p0(z)

]
.

Plugging in the definition in 1, we rewrite the ELBO as

L(A, C) = E
z∼q(·|A,C)

[
n∑

i=1

log p(yi|z, xi)

]

− E
z∼q(·|A,C)

[
n∑

i=1

log
q(z|ai)
p0(z)

+

m∑
i=1

log
q(z|ci)
p0(z)

]
.

Notice that the additional KL divergence between the vari-
ational posteriors q(z|ai), q(z|ci) and the prior p0(z) are
meant to satisfy the prior assumption, i.e., Ea[p(z|ai)] =
Ec[p(z|ci)] = p0(z). To train the neural network we maxi-
mize the ELBO with respect to the parameters of µa, σa, µc,
σc, and µy . Variational inference suffers from problems like
posterior collapse [5] and aliasing from a mismatch of the
posterior and prior distributions [4]. The former negatively



impacts our movement primitives’ ability to replicate the
data accurately due to the over-regularizing effects of the
KL divergence. The latter can lead to the model generating
potentially undesirable demonstrations outside the training
distribution. We address the former problem with KL-
annealing and adjusting the weighting of the KL divergence.
The latter can be addressed with learnable prior distributions,
but we do not consider it in this work.

C. Operations

Generation of Movements. DeepProMPs are a deep-
learning variant of ProMPs that can depict complex move-
ment distributions. To build a trajectory it is sufficient to
sample z from the prior distribution z ∼ p0(z) and then
use the model in Equation 3 to predict y at the appropriate
normalized time x, y = µy(z,x) without including the noise
ϵ. Note that to get a smooth motion, we do not resample z
during trajectory generation. The variable z remains constant
over the life of a trajectory.

Via-Points and Context Conditioning. Once our model
is learned, we want to use it to predict new trajectories
that pass through a set of via-points Ã ≡ {ãi} and is
conditioned on a set of external variables C̃. Notice that
one of the two sets can be empty (if they are both empty,
we are using our model purely as generative). We use the
variational posterior as in Equation 1 to sample z, and then
we use Equation 3 to generate the whole trajectory. However,
occasionally, it might be useful to weight some via-points
or some external variables differently. Taking inspiration
from ProMPs, we rewrite the variational posterior, including
importance weights ωA

i , ωC
i ,

q(z|Ã, C̃,ωA,ωC) =

n∏
i=1

qA(z|ãi)ω
A
i

m∏
i=1

qC(z|c̃i)ω
C
i (4)

obtaining a Gaussian distribution again. This reweighting
can be useful as the size of via-points conditioning and con-
text conditioning are usually unbalanced, and the reweight-
ing can help correct this bias. Notice that this importance
reweighting is not possible with the mean aggregator.

The generated motions can arbitrarily violate the desired
via-points. To mitigate this issue, we propose to perform a
further optimization stage to adjust the distribution of gener-
ated motions to minimize the error for specified via-points.
This optimization stage, carried out at deployment time,
minimizes the distance between the generated trajectories
and the target via-points while avoiding variance collapsing,
i.e.,

min
µ̃z,σ̃z

n∑
i=1

∥∥∥yi −
1

k

k∑
j=i

µy(zj ,xi)
∥∥∥2
2
+ ∥σ∗ − σ̃z∥22 , (5)

where zj=1,...,k ∼ N (µ̃z, σ̃z), k is the number of Monte-
Carlo samples and σ∗ is the target variance. We solve (5) by
improving the initial solution µ̃z = µz(A) and σ̃z = σz(A)
via gradient descent (Fig. 2). Further details are in Appendix.

Blending. As proposed in ProMPs, the blending of motions
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Fig. 2. Results of the deployment-time via-point error minimization on one
of the joints from our real-robot data. In green is the predicted distribution
from our model; in blue is the distribution refined with gradient descent.
Benefits are more pronounced with fewer via-points, while more via-points
improve the overall quality of the prediction. The bottom-right plot shows
the distribution of the training data.

(a) A Few Via-Points (b) Many Via-Points

(c) Conflicting Via-Points (d) Blending

Fig. 3. DeepProMPs used in different situations. (a) Distribution of
trajectories using 3 via-points conditioning. (b) With more via-points, the
variance of the distribution decreases. (c) With inconsistent via-points, the
model chooses to violate one of them staying close to the given dataset
and avoiding unseen behavior. Note the ability of our model to generate a
bi-modal distribution. (d) Generalization can be enhanced using blending.

consists of smoothly transitioning from one movement to
another. Consider a time-varying weight ω(x) ∈ [0, 1] and
two movement distributions q(z|A1, C1) and q(z|A2, C2); we
derive the blending of the two movements

qb(z|A1,A2, C1, C2,x) = q(z|A1, C1)ω(x)q(z|A2, C2)1−ω(x).
(6)

using the exponential weighting introduced by ProMPs.
Observe that the distribution is now dependent on time. This
appears to be a problem, as sampling z at different periods
x will result in a jerky motion. Using the reparametriza-
tion trick, however, we can resolve this issue by consider-
ing the mean µb(A1,A2, C1, C2,x) and standard deviation
σb(A1,A2, C1, C2,x) of the blended latent representation of
the motion (6). By first sampling a standard noise ϵ ∼
N (0, I) and then computing

z(x) = µb(A1,A2, C1, C2,x) + ϵ · σb(A1,A2, C1, C2,x),



(a) (b)

(c) (d)

Fig. 4. (a), (b), (c): Close box, pour water, and reach from RLBench. (d)
A top view of our testing setup: The robot should grab the object and place
in the designated square. Positions are encoded with 2D context variables.

where · is the element-wise product, we obtain a smooth
transition of z.

Time Modulation. Time modulation is a crucial com-
ponent for movement primitives. During training, time is
always normalised between 0 and 1, therefore, a time modu-
lation function τ(t) : [0, T ] → [0, 1] can be used to translate
the real-time t ∈ [0, T ] to the phase space x ∈ [0, 1]. In
our implementations, we employ the linear time modulation
τ = t/T , where T is the whole duration of the movement.
This linear modulation provides a straightforward method
for achieving proportional velocity profiles with faster or
slower movement. In general, a monotonic τ can arbitrarily
accelerate or decelerate a movement during its execution. If
τ is non-monotonic, it can revert the desired motions.

Rhythmic Movements. Rhythmic movements can be seen
as a segment of movement that can be repeated indefinitely
many times. Rhythmic movements require these segments to
have the same initial and endpoint so that their repetition
does not cause jumps. To obtain this property, the time-
modulation function must have the same position and veloc-
ity at both t = 0 and t = T . This effect can be obtained by
using the phase x = [sin(2πt/T ), cos(2πt/T )]⊺ both during
training and deployment. We note this representation can be
viewed as positional encoding where we use the behavior of
the sinusoidal functions [25].

IV. EMPIRICAL ANALYSIS

In this section, we conduct several experiments to compare
DeepProMPs against alternative motor primitive models.
We compare each model’s reconstruction capabilities on
demonstrations provided from several simulation tasks and
a real robotic problem. We choose the Mean Square Error
as our metric of choice to highlight how well we can

recover demonstrations depending on the conditioning. We
also include experiments demonstrating the time-modulation
formulation for cyclical tasks on a real robot.

We choose ProMPs, CNMPs, and VAE-CNMPs as our
baselines. We include ProMPs because it is the foundational
framework that motivates our work. CNMP can be viewed
as a version of our model with fixed variance in the latent
distribution, but that predicts output variance σy(z,x) as
done in previous work [21]. VAE-CNMP is a variation of
our model without Bayesian aggregation, the via-point, and
context variable independence assumption, but still uses the
Isotropic Gaussian as the prior in the KL divergence regular-
ization. For both CNMPs and VAE-CNMPs, we use a single
encoder that concatenates all inputs (via points and context
variables) into a single input to the encoder. We also train a
version of CNMPs and VAE-CNMPs with zero-padding to
compare whether or not these models are as capable of the
optionality of inputs as DeeProMPs. For example, to simulate
inputting only via-points with our baselines, the variational
encoder’s input would be q(z|a, c0), where c0 =

−→
0 or

context only as q(z|a0, c) where a0 =
−→
0 for context only

inputs. We refer to these versions as CNMPs (Indep) and
VAE-CNMPs (Indep) in our results.

We conduct experiments with demonstrations collected
in three simulated tasks from RLBench [11], and two sets
of demonstrations performed on physical robotic manipu-
lators. The three simulation tasks we use are: (1) Reach,
a task where the manipulator goes to a designated target,
(2) Close Box, a task where the manipulator closes a
container, and (3) Pour Water, a task where the robot
must pick up and pour the water from a container. Our
real robot experiments include demonstrations of a pick-and-
place task where a Kinova Gen-3 lite moves a designated
object to a specified location. We refer to the Kinova pick-
and-place task as the Kinova task in this section. We use
the previous four tasks (three simulation and one real robot)
to compare reconstruction performance. The second robot
task uses a Barrett WAM® Arm to shake a container which
we use to verify training and execution of cyclical tasks. The
set-up for the latter simulation tasks and both real robot tasks
are featured in Figure 4.

In our reconstruction experiments, we vary the number
of trajectories used in each experiment. Our choices in the
simulation task were motivated by preliminary experiment
results and the complexity of the task. In the real robotics
experiments, we used kinesthetic demonstration to collect
the data. Respectively, we use 500 training examples for the
Reach task, 1000 demonstrations for the Close Box and Pour
Water task, and 100 demonstrations for the Kinova task. For
all simulation tasks, we select the best models using a set
of 100 validation examples and report results on 200 test
examples. In the Kinova experiments, we report the best
validation results using 10 demonstrations for all models.

For each reconstruction experiment, we train all models
to take via-points, low-dimensional context variables, and
images as inputs. The dimension of the low-dimensional
context varies for each task. In the Reach task, this is the



target location (3 dimensions); in Close Box, this includes
the angle of the box’s lid and box location (54 dimensions);
for Water Plants, this is the location of the watering can
and object to be watered (84 dimensions). In the Kinova
experiments, this is the normalized pixel location of objects
(2 dimensions) and one-hot encoding for the sub-task (pick
or place). In the simulation tasks, each trajectory is associated
with five images of the scene. We always use these images
together at deployment. For our Kinova data, we take a
picture of the object to be moved and augment this with
three additional pictures that contain markers on the desired
object. We found that this mitigated issues with the limited
training data used. Further investigation in addressing this
issue for deep motor primitives is potential future work, but
out-of-scope of this paper which focuses on proposing the
DeepProMPs framework generally.

Task Reconstruction. We evaluate ProMPs, DeepProMPs,
CNMPs, VAE-CNMPs, CNMP (Indep), and VAE-CNMP
(Indep). We used the Adam optimizer [12] with all models
using a learning rate of 1e-4. We train each model for 8000
epochs in our simulation experiments and 10000 epochs for
our Kinova experiments, while always using mini-batches
of size 16. All models use two hidden layer multi-layer
perceptrons with ReLU activations for vector inputs (via-
points and low-dimensional context variables). Each layer
has 128 neurons. All models have a single decoder with two
hidden layers each with 128 neurons that take in the latent
variable and time-modulation variable as input. For images,
we use a Resnet-50 architecture [10] to embed images in the
latent space. We aggregate the representation for all images
associated with a trajectory using a mean operation. Both
CNMP and VAE-CNMP concatenate all context variable
types to each via point as inputs. When using DeepProMP,
all encoders share a single affine head to produce latent
distribution parameters. We use latent dimensions of 16 for
Reach and Kinova and 32 for Close Box and Pour water for
all models. During training, we sub-sample combinations of
input data for each model. For DeepPromp, CNMP (Indep),
and VAE-CNMP (Indep) this includes an added step of
choosing combinations of via-point, low-dimensional, and
image context variables as inputs. For example, training with
via-points and images on one update and via-points only
on another. Both CNMP and VAE-CNMP models always
receive a via-point and context variable combination as input
because of the concatenation operation. We report results
using models with the best validation error for each metric
reported and train 5 of each model which results are averaged
over. The one exception is ProMP, which has a deterministic
solution and we instead bootstrap results to average results.

We report the average performances with radar plots in
Figure 5. Smaller circles imply better performance across
all metrics. We show the log-scale Mean Square Error of
reconstructing demonstrations given different combinations
of inputs. For CNMP and VAE-CNMP variants we achieve
this with zero padding as previously described to mask out
the excluded inputs. Via Point refers to reconstructing the
trajectory without any context variables, Image uses only

images, Low Dim uses only the low dimensional context
variable, and Image + Low uses both context variables.
We also include Aggregate which is the average perfor-
mance across the previous four combinations of inputs. We
note that for each context variable input, we include the
initial robot position as well.

In via-point conditioning, we see that ProMP is supe-
rior across tasks. This result is expected because ProMP’s
analytic conditioning preserves all the information in the
trajectory. Due to compressing the representation in a latent
space, all deep models lose some information reconstructing
the model. We note that results could be improved with our
deployment optimization technique which was not used in
these experiments.

Interestingly, we see that the zero padding training is
crucial for improving baselines’ ability to do via-point con-
ditioning across tasks but is still worse than DeepProMPs.
This suggests that modularizing encoder representations to
data types is better than using a single module. One ad-
vantage DeepProMPs has is great capacity with independent
encoders for each data type. We trained several models with
double the neurons reported in the experiments for both
independent CNMP variants (256 neurons vs 128 neurons per
layer), but these yielded inconsistent performance gains and
losses across metrics despite having a comparable number of
parameters. This is a sensible result because all models are
bottle-necked by the dimensions of the latent space despite
the size of the encoders.

Our results suggest that despite the independence as-
sumptions in DeepProMP, the model provides competitive
results with different input combinations or else beats other
methods. We surprisingly find ProMP produces good results
on low dimension reconstruction across tasks but is not
as easy to extend to image data. We find that despite the
independence assumption, our model still performs com-
parably to CNMP and VAE-CNMP, which are trained to
always see all context information during training. In certain
cases, the zero-pad training seems to worsen performance in
scenarios we would not expect for baseline methods (see
Reach results using only images). Our conclusion is that
even when baselines are trained with techniques similar to
DeepProMPs they come with trade-offs across conditioning
choices whereas DeepProMPs do not.

Real-Robot Make Mojito. This experiment aims to high-
light the ability of DeepProMPs to learn and replay cyclical
behaviors. To this end, we collect a small data set of cyclical
shaking motions and train DeepProMPs using the sinusoidal
phase modulation proposed in Section III. In Figure 6, we
report the most salient dimension of the learned motion,
corresponding to the robotic manipulator’s second joint. Our
model generalized the provided demonstration to perform
it in a smooth, cyclic pattern. We find that our model
realizes a smooth transition even if the gap between the
demonstration’s starting point and the endpoint is large.



Fig. 5. Radar plots comparing reconstruction performance across different
motor primitive models. Smaller circles are indicative of better performance
across potential data types. We consider conditioning on images, low-
dimensional context variables, the combination of both, the full trajectory
as via points and the average across the four former types of inputs.
Measurements are in log scale of the mean square error.
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Fig. 6. Demonstrated motion and learned cyclical behavior.

V. LIMITATIONS

Although DeepProMPs is a promising framework, they
do not come without limitations and trade-offs. Deep neu-
ral networks and variational inferences add sources of ap-
proximation, which were not present in original ProMPs.
Many quantities (like via-point and context conditioning)
that cannot be found in closed form require sub-sampling
training schemes before deployment to achieve these prop-
erties. Using an approximated posterior introduces a bias in
the parameter estimation. However, this is often the price
for obtaining a more flexible tool. As we chose to use
an isotropic Gaussian for our latent distributions, covariant
relations between latent dimensions may not be captured
by our model. This could limit the expressiveness of our

learned representations. Our model also requires Monte-
Carlo sampling in order to estimate the trajectory distribution
statistics, which can slow inference time. This Monte Carlo
sampling is used in our proposed iterative optimization to
improve via-point conditioning. There is potential room to
study alternative optimization approaches to perform this
trajectory post-processing step.

VI. CONCLUSION

This paper proposes Deep Probabilistic Motor Primitives
as a deep learning variant of ProMPs. Our model is capable
of both via-point and context conditioning independent of
each. DeepProMPs are more robust to this feature compared
to the baseline method trained with zero padding to achieve
the same behavior. Our model can also blend motor skills to-
gether because of the Bayesian aggregation we incorporated
in our model. We demonstrated DeepProMPs’ capability of
rhythmic motion modulation, which has otherwise been ig-
nored in previous works. Our work is a step towards improv-
ing deep motor primitive models for applications in robotics.
Future work could include incorporating other complex data
types in deep motor primitives like text, consider alternative
latent distribution choices to the Gaussian distribution in
our Bayesian aggregator, and deploying DeepProMPs in
downstream robotic applications.
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APPENDIX

In Section III-C, we explained that the trajectories pre-
dicted by the model are not necessarily compliant with
the desired via-point. For this reason, we provide a further
optimization step at deployment time, by applying gradient
descent on the parameters of the latent distribution (mean
and variance) to find a distribution of movements that best
matches the desired via points.

At this point one can question the role of model prediction,
since the parameters of the distribution can be found at
deployment time. The model prediction serves as a good
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Fig. 7. Post-processing optimization results for generating trajectories that
pass through via-points. We compare N = 1, 5, 50 context points. For
each setting we use fifty different examples and average performance over
200 iterations. We plot the standard-error bars to give confidence in the
mean performance. Posterior is the predicted parameters with the variational
posterior and Prior uses Isotropic Gaussian parameters and initialization.

initialization for the gradient descent optimization. In the
experiment in Fig 2 and 7, we trained DeepProMPs on
the Close Box task. We then queried our model to satisfy
N = {1, 5, 50} via points. For a small number of via points
(e.g., 1 and 5) our model does not predict good trajectories,
as it is also possible to observe in Fig. 2. Gradient descent
allows refining such prediction. If we initialize gradient
descent with the prior distribution N (0, I), the optimization
procedure will need many training steps to find trajectories
compliant with the via points. But when initialized with the
distribution predicted by the model, the gradient optimization
can find trajectories that meet the via-points with accuracy
ranging 10−6 − 10−8 radiants in only 200 steps, as shown
in Fig. 7.
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