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Abstract— The musculoskeletal humanoid is difficult to mod-
elize due to the flexibility and redundancy of its body, whose
state can change over time, and so balance control of its legs is
challenging. There are some cases where ordinary PID controls
may cause instability. In this study, to solve these problems,
we propose a method of learning a correlation model among
the joint angle, muscle tension, and muscle length of the ankle
and the zero moment point to perform balance control. In
addition, information on the changing body state is embedded
in the model using parametric bias, and the model estimates and
adapts to the current body state by learning this information
online. This makes it possible to adapt to changes in upper
body posture that are not directly taken into account in the
model, since it is difficult to learn the complete dynamics of the
whole body considering the amount of data and computation.
The model can also adapt to changes in body state, such as
the change in footwear and change in the joint origin due to
recalibration. The effectiveness of this method is verified by a
simulation and by using an actual musculoskeletal humanoid,
Musashi.

I. INTRODUCTION

A variety of musculoskeletal humanoids have been devel-
oped so far [1]–[3]. Due to the flexibility and redundancy of
their bodies, all of them are very difficult to control in the
same way as ordinary axis-driven robots. Various learning-
based control methods have been proposed for them. In [4],
a pedaling operation is acquired by self-repetitive learning.
[5] proposes to control the upper body reaching motion
using reinforcement learning. In [6], for a relatively simple
system with one or two joints, the relationship among joints,
muscles, and tasks is trained, and a robot is controlled using
the trained neural network. In [7], [8], for a more complex
system, the relationship among joint angle, muscle tension,
and muscle length is modelized by a neural network, which
is trained and applied mainly to upper body control and state
estimation. [9] has succeeded in recognizing grasped objects
and stabilizing tool grasping by learning the dynamics of a
musculoskeletal hand. These methods have made it possible
for complex musculoskeletal robots to acquire the ability to
control themselves autonomously.

On the other hand, the balance control of these robots is
still difficult. In the case of balance control, data collection
itself is difficult, because data must be acquired while the
robot is in a balanced state. Therefore, none of the studies
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• Collect Data
• Learn Balance Model
• Consider Body States

• body posture
• origin of joints
• footwear
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Fig. 1. The concept of this study.

described so far deals with balancing. Although a simple
balance control using PID has been implemented [10], it is
difficult to say that its balance has improved because the con-
vergence of zero moment point has not been evaluated, and
the success rate of the step-out experiment is extremely low.
In addition, there is usually a strong human parameterization
according to the structure of the robot, and the robot does
not acquire the balance control autonomously. Exempting
musculoskeletal humanoids, methods to solve this problem
have been developed by using real2sim [11] and sim2real
[12] to perform reinforcement learning in simulation envi-
ronments. A safe learning with dynamics balancing models
[13] and locomotion generation with learning by cheating
[14] has also been developed. In addition, for quadruped
robots, where balance is relatively easy to handle, running
motion is generated only by learning on the actual robot [15].
On the other hand, it is very difficult to construct a model of
a complex body such as the musculoskeletal humanoid in a
simulation, and also it is challenging for the actual bipedal
robot to collect data for model learning while maintaining
balance. Even if we can construct a simulation, it is difficult
to transfer the simulation model to the actual robot because
of the large differences in muscle elongation, friction, muscle
paths, etc. Therefore, it is desirable to acquire balance control
autonomously by learning the relationships among various
sensor values only in the actual robot. Also, it is necessary
to solve the problem of the difficult data collection in the
actual robot.

In addition, there is a problem that there are many changes
in dynamics of the body that cannot be directly represented in
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Fig. 2. The overall system of balance control for musculoskeletal humanoids using a deep predictive model with parametric bias.

the model due to changes in the current body state. First, as it
is difficult to learn the dynamics of all the sensor values of the
whole body since it requires a huge amount of data, we will
learn only some of the dynamics. In other words, if we learn
the dynamics model among the ankle joints, muscles, and
zero moment point, the changes in dynamics caused by the
changes in upper body posture, etc., which are not included
in the model, cannot be taken into account. Second, changes
in the origin of muscles and joints due to irreproducible cali-
bration, which is characteristic to musculoskeletal structures
that usually do not have joint angle sensors, cannot be taken
into account. In addition, if the shoes worn by the humanoid
change, the dynamics will change significantly, which must
also be taken into account. These changes in dynamics
should be handled as disturbances or embedded as some low-
dimensional parameters, and the balance control should be
adapted to them. However, the former method that handles
dynamics changes as disturbances usually requires accurate
body models and prior knowledge of the distribution of
disturbances. Also, since humans do not treat changes in the
shoes that they are wearing as disturbances, but rather their
walking style changes in response to the shoes, we believe
that a new control method that incorporates this phenomenon
is important. In this study, we apply the mechanism of
parametric bias [16] to this problem. Parametric bias is a
bias parameter that allows multiple attractor dynamics to
be implicitly embedded in a neural network, and has been
mainly used in the context of imitation learning. In this study,
we use this variable to learn a predictive model of various
sensors for body balance, and embed the information of the
changes in body state described so far in parametric bias. By
learning this predictive model and estimating the changes in
body state online, it is possible to perform balance control
while adapting to the current body state (Fig. 1). Note that,
although parametric bias is also used in [9], [17], this study
examines data collection methods and application to changes
in body state including wearing shoes for balance control of
a flexible body.

The purpose of this study is to develop a balance control
system for humanoids with complex and flexible bodies that
are difficult to modelize and whose body states change over
time. Therefore, we develop a balance control system for
musculoskeletal humanoids using a Deep Predictive Model
with Parametric Bias (DPMPB). This enables not only
autonomous learning of balance control but also adaptive
control to changes in upper body posture and shoes, which

are not directly included in the model. The contributions of
this study are summarized as follows.
• Data collection for balance control in the actual muscu-

loskeletal humanoid
• Embedding of changes in body state including wearing

shoes into the model using parametric bias
• Online adaptation to the current body state and balance

control using DPMPB
This method is applied to a simulation and an actual mus-
culoskeletal humanoid, Musashi [3], to confirm its effective-
ness.

II. Balance Control ofMusculoskeletal Humanoids Using
Deep PredictiveModel with Parametric Bias

The overall system of balance control using DPMPB is
shown in Fig. 2.

A. Network Structure of DPMPB

The network structure of DPMPB is shown below,

st+1 = h(st,ut,p) (1)

where t is the current time step, s is the sensor state, u is
the control input, p is parametric bias, and h is the network
of DPMPB. In this study, for the balance control in the
musculoskeletal humanoid, we directly deal with the state
of joints and muscles related to the ankles, while the posture
of the upper body is implicitly handled by parametric bias.
Therefore, we set s =

(
zT fT lT

)T
and u = θre f . Here,

z is zero moment point (ZMP), {f , l} is {muscle tension,
muscle length} regarding the ankles of both legs, and θre f

is the target joint angle of the ankles. Note that z is 2-
dimensional (zx for x-direction and zy for y-direction), and
the dimension of {f , l} depends on the robot configuration.
Although θre f can have roll and pitch angles for both legs,
we assume the angles for both legs to be the same and θre f

to be 1-dimensional only for the pitch axis in this study,
for simplicity. Parametric bias p is an input variable that can
embed implicit differences in dynamics, and in this study, by
collecting data while changing the body states (the posture
of the upper body, calibration, shoes, etc.), this information
is self-organized in p. h is a predictive model that represents
the state transition of s by u, and the dynamics of the model
can be modified by changing p.

In this study, DPMPB has 10 layers, which consist of four
FC layers (fully-connected layers), two LSTM layers (long
short-term memory layers), and four FC layers. The number



of units is set to {Ns + Nu + Np, 200, 100, 30, 30 (number
of units in LSTM), 30 (number of units in LSTM), 30, 100,
200, Ns} (where N{s,u,p} is the dimensionality of {s,u,p}).
The activation function is hyperbolic tangent and the update
rule is Adam [18]. We also set p to be two-dimensional and
the execution period of Eq. 1 is 5 Hz. The dimension of
p should be slightly smaller than the expected changes in
the body state, because too small a dimensionality will not
represent the change in dynamics properly, and too large a
dimensionality will make self-organization of p difficult.

B. Data Collection

In order to learn balance control, some technique is needed
in the method of data collection. If we simply move the
ankles randomly, the robot will quickly fall down and it is
difficult to collect useful data for balance control. In this
study, θre f is varied by repeating the following process at
each step,

c← c + 1 (2)
d ← d +Cdi f f (3)

θre f ← θre f + | sin(π
c

Ncnt
)|Random(−d, d) (4)

θre f ← max(θmin,min(θre f , θmax)) (5)

where c is the time count (starting from c = 0), d is the
maximum displacement of θre f (starting from d = Cinit

di f f ),
and Random(a, b) is a random value in the range of [a, b].
Also, θ{min,max} is {minimum, maximum} value of θre f , and
{Ncnt,Cdi f f ,Cinit

di f f } is a constant that determines the behavior
of data collection. It collects data while gradually increasing
the maximum value of the displacement of θre f with d. This
is important because if the displacement is too large at the
beginning, it will quickly fall down and we will not be
able to collect data for a long time. Also, by periodically
decreasing or increasing the change of θre f with c, we can
collect various data. Since the best state for balance control
is a stable stationary state, if we do not collect data for
stationary states where the displacement of θre f is small,
oscillatory motions will be generated during balance control.
Finally, θre f is clipped by the set minimum and maximum
values.

In the experiments, in addition to the data collection by
Eq. 4 (Proposed Collection), the following two types of data
collection are compared,

θre f ← θre f + Random(−d, d) (6)

θre f ← θre f + Random(−1.0, 1.0) (7)

where we call Eq. 6 Gradual Collection and Eq. 7 Random
Collection. Gradual Collection is a collection method exclud-
ing the periodic change of θre f from Proposed Collection,
and Random Collection is a collection method excluding the
gradual increase of θre f from Gradual Collection.

In this study, we set Ncnt = 50, Cdi f f = 0.002 [rad], Cinit
di f f =

0.1 [rad], θmin = −1.0 [rad], and θmax = 1.0 [rad]. Since the
body is very difficult to modelize, some experimental tuning
of these coefficients is necessary.

C. Training of DPMPB

Using the obtained data D, DPMPB is trained. In this
process, we can implicitly embed the information of body
state into parametric bias by collecting data while changing
the body state. In order to allow each time-series data tran-
sition with different dynamics to be represented by a single
model, the differences in the dynamics is self-organized in a
low-dimensional space of p. It can be regarded as a weakly
supervised learning, in which only weak labels are given,
i.e., whether or not the body state is the same for each data.

The data collected in the same body state k is represented
as Dk = {(s1,u1), (s2,u2), · · · , (sTk ,uTk )} (1 ≤ k ≤ K,
where K is the total number of body states and Tk is the
number of motion steps for the body state k), and the data
used for training Dtrain = {(D1,p1), (D2,p2), · · · , (DK ,pK)} is
constructed. Here, pk is the parametric bias that represents
the dynamics in the body state k, which is a common variable
for that state and a different variable for another state. We use
Dtrain to train the DPMPB. In an ordinary learning process,
only the network weight W is updated, but here, W and pk

for each state are updated simultaneously. In this way, pk

embeds the difference of dynamics in each body state. In
the learning process, the mean squared error is used as the
loss function, and pk is optimized with all initial values set
to 0.

D. Online Update of Parametric Bias

Using the data D obtained in the current body state, we
update parametric bias online. If the network weight W is
updated, DPMPB may overfit to the data, but if only the
low-dimensional parametric bias p is updated, no overfitting
occurs and life-long update is possible. Note that it has been
experimented in [19] that fine tuning of only W without using
p cannot deal with various body states, though this is a study
on a static motion model. This online learning allows us to
obtain a model that is always adapted to the current body
state.

Let the number of data obtained be Nonline
data , and start online

learning when the number of data exceeds Nonline
thre . For each

new data, we fix W and update only p by setting the number
of batches as Nonline

batch , the number of epochs as Nonline
epoch , and

the update rule as MomentumSGD. Data exceeding Nonline
max

are deleted from the oldest ones.
In this study, we set Nonline

{thre,max} = 50, Nonline
batch = Nonline

max , and
Nonline

epoch = 1.

E. Balance Control using DPMPB

We describe a control method using DPMPB. Here, we
consider optimizing u from the loss function for s and u.
First, we give the initial value uinit

seq for the time-series control
input useq = u[t:t+Nstep−1] (Nstep represents the number of
DPMPB expansions, or control horizon). Let uopt

seq be u to be
optimized, and repeat the following calculation at the time
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Fig. 3. The muscle arrangement of the musculoskeletal humanoid Musashi.

step t to obtain the optimal uopt
t ,

spred
seq = hexpand(st,u

opt
seq) (8)

L = hloss(s
pred
seq ,u

opt
seq) (9)

uopt
seq ← uopt

seq − γ∂L/∂u
opt
seq (10)

where spred
seq is the predicted s[t+1:t+Nstep], hexpand is the func-

tion of h expanded Nstep times, hloss is the loss function, and
γ is the learning rate. Thus, the future s is predicted from
the current sensor state st by uopt

seq, and uopt
seq is optimized by

using the backpropagation and gradient descent methods to
minimize the loss function.

In this process, we set uinit
seq as uprev

{t+1,··· ,t+Nstep−1,t+Nstep−1} by
using uprev

[t:t+Nstep−1], which is useq optimized in the previous
step, shifting the time by one, and replicating the last term.
By using the previous optimization result, faster convergence
can be obtained. For γ, we prepare Ncontrol

batch number of γ,
which are exponentially divided [0, γmax], and after running
Eq. 10 on each γ, we calculate Eq. 9 and select the uopt

seq with
the lowest loss, repeating the process Ncontrol

epoch times. Faster
convergence can be obtained by trying various γ and always
choosing the best learning rate.

Here, we consider the loss function. In this study, we set
hloss as follows,

hloss(s
pred
seq ,u

opt
seq) = ||zpred

seq − z
re f
seq ||2

+C f ||f
pred
[3:Nstep] − f

pred
[2:Nstep−1]||2

+Cl||l
pred
[3:Nstep] − l

pred
[2:Nstep−1]||2

+Cu||u
opt
seq||2 (11)

where {z,f , l}pred
seq is the value of {z,f , l} in spred

seq , zre f
seq is

the value obtained by arranging Nstep target values of z, and
C{ f ,l,u} is the constant weight for each loss. Thus, the loss is
a summary of the realization of the target value for z, the
minimization of the change in f , the minimization of the
change in l, and the minimization of u. Note that C{ f ,l,u} is
varied for each experiment.

In this study, we set Nstep = 6, Ncontrol
batch = 10, Ncontrol

epoch = 3,
and γmax = 0.1.

III. Experiments

A. Experimental Setup

In this study, we conduct experiments using the mus-
culoskeletal humanoid Musashi (Fig. 1) [3]. Musashi has
redundant 74 muscles including 4 polyarticular muscles in
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Fig. 4. Simulation experiment: the transition of θre f and zx when
conducting Random, Gradual, and Proposed Collections.

its body and 34 over-actuated joints excluding fingers. In this
study, Musashi basically moves only the pitch joint of the
ankle and controls balance in an upright posture except for
in some upper body postures. As shown in Fig. 3, there are
six muscles for each ankle joint, and the dimensionality of
{f , l} for both legs is 12. ZMP is calculated from 12 loadcells
distributed in the foot. [20] is used to convert the target joint
angle to target muscle length, assuming the target muscle
tension to be constant at 100 [N]. Note that the learning of
[20] does not perfectly realize the target joint angle, and there
are some errors due to muscle friction and other factors. For
simulation, we use Mujoco [21].

B. Simulation Experiment

1) Training of DPMPB: In this experiment, we handle the
pitch angle of the spine joint θs−p, and the offset of the pitch
angle of the ankle joint θo f f set

a−p representing irreproducible
calibration. First, we collect data while changing the body
state to nine combinations of θs−p = {−5.0, 0.0, 5.0} [deg] and
θ

o f f set
a−p = {−5.0, 0.0, 5.0} [deg]. For each body state, we obtain

data for 300 time steps. Here, the transitions of zx and θre f are
shown in Fig. 4 when using Proposed, Gradual, or Random
Collection in Section II-B. In Random Collection, zx and
θre f continue to change significantly. In Gradual Collection,
the range of change in zx and θre f gradually increases. On
the other hand, in Proposed Collection, in addition to the
characteristics of Gradual Collection, θre f alternates between
violent and slow motions, and a variety of data is collected.
We train DPMPB using the data of 2700 time steps. For
each data collection method, the obtained parametric bias
is converted by Principle Component Analysis (PCA) and
plotted on a two-dimensional plane as shown in Fig. 5. In
Proposed Collection, we can see that the space of PB is self-
organized according to the size of the body state parameters,
though the parameters related to the body state are not
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parametric bias trained at (θs−p, θ

o f f set
a−p ) = {(−5.0,−0.5), (5.0, 0.5)}.

directly given as data. In other words, even in the case where
the parameters of the body state are not directly available,
such as in the recalibration of the actual robot, it is possible
to structure the information in the space of PB. On the other
hand, Gradual Collection shows a more distorted space of
PBs than Proposed Collection. As for Random Collection,
the space of PB is even more distorted than that of Gradual
Collection.

2) Online Update of Parametric Bias: Starting from the
state of p = 0, we examine how p transitions when the
online update of PB is performed at the same time as when
the body is moved the same way as in the data collection. The

trajectory of p when (θs−p, θ
o f f set
a−p ) = {(−5.0, 0.5), (5.0,−0.5)}

is shown in Fig. 5. Note that the trajectories for 45 online
learning steps are shown. It can be seen that the current p is
gradually approaching the p previously trained in the same
body state as the current state. In other words, it is possible
to correctly recognize the body state by searching the space
of p. In addition, the accuracy of the recognition increases
in the order of Random < Gradual < Proposed Collection.

3) Balance Control Using DPMPB: In this experiment,
we set (θs−p, θ

o f f set
a−p ) = (0.0, 0.0), and the transition of zx after

applying an external force of 30N to the waist link for 0.2
seconds is examined five times for 6 seconds each. For zx,
offsets are removed to align the origins of the plots, and the
average of the sum of |zx| for 6 seconds (30 steps) is shown
as Ez. Unless otherwise stated, the constant weight for the
loss function is set to (C f ,Cl,Cu) = (0, 30, 3), and PB is the
value obtained when (θs−p, θ

o f f set
a−p ) = (0.0, 0.0).

First, we show the results for the cases of balance control
using the models obtained for Random, Gradual, and Pro-
posed Collections, no control (None), and PD control (PD),
in Fig. 6. As examples of PD controls, we show the cases
of (KP,KD) = (0.1, 0.1) (PD1) and (KP,KD) = (0.03, 0.1)
(PD2), though any PD setting would have worked to prevent
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Fig. 8. Simulation experiment: the transitions of zx and ||∆ f ||2 when running the proposed balance control with (C f ,Cu) = {(0, 3), (0, 10), (1, 3)} after
external force of 30 N is applied to the chest link for 0.2 seconds.

the convergence of zx (K{P,D} is the gain for PD control). Note
that PD2 is the best controller tuned manually but it cannot
be denied that tuning methods such as [22] may somewhat
improve the results. It can be seen that the models using
Random Collection and Gradual Collection do not change
E f significantly compared to the model using Proposed
Collection, but zx becomes oscillatory. In the case of None,
Ez is larger than when using the control of this study, and
xz swings once in the positive direction and then again in
the negative direction. On the other hand, in the case of our
control, Ez does not swing much in the negative direction
and converges faster. In the case of PD, even if the gain is
changed, the convergence becomes worse than None in most
cases.

Next, the results for the case where the model obtained
in Proposed Collection is used and PB is the value obtained
when (θs−p, θ

o f f set
a−p ) = {(−5.0,−0.5), (5.0, 0.5)} are shown in

Fig. 7. For both cases, we can see that the error is much
larger than that when using the correct PB obtained at
(θs−p, θ

o f f set
a−p ) = (0.0, 0.0).

Finally, for the case of the model obtained in Proposed
Collection, Cl = 30 is fixed and the parameters of the balance
control are varied as (C f ,Cu) = {(0, 3), (1, 3), (0, 10)}. The
results are shown in Fig. 8. The transition of the norm ||∆f ||2
of the time variation of the muscle tension from the previous
step is also shown here, and the root mean square of the
values is denoted by E f . The upper left figure of Fig. 8 is
the same graph as Proposed Collection of Fig. 6. It can be
seen that changing Cu from 3 to 10 suppresses the movement
of u = θre f , so that the movement of zx approaches None
in Fig. 6. It can also be seen that when C f is changed from
0 to 1, the peak of ||∆f ||2 subsides and E f becomes 0.674,
which is smaller than in the case of C f = 0.

C. Actual Robot Experiment

1) Training of DPMPB: In this experiment, we handle
changes in the body state, such as which shoes to wear
among Fig. 9 {Hard-Bare, Hard-White, Soft-Pink, Soft-
Navy}, and the posture of the upper body {M, Z, P, U} (M
is at θs−p = −5, Z is at θs−p = 0, P is at θs−p = 5, and U

Soft-NavyHard-Bare

Soft-PinkHard-White

Fig. 9. Various shoes used for the actual robot experiment as temporal
body changes.

is at θe−p = −60 [deg], where θs−p is the pitch angle of the
spine joint and θe−p is the pitch angle of the elbow joint).
First, we collect the data while changing the body state into
12 different types, by changing shoes to {Hard-Bare, Soft-
Pink, Soft-Navy} and upper body posture to {M, Z, P, U}
(referred to as Hard-Bare/U or Soft-Navy/Z). For each body
state, we obtain data for 300 steps. Here, we only collect
data by Eq. 4, and the trained balance control is denoted
as Proposed, while the case without any control is denoted
as None. Parametric bias obtained by training DPMPB with
these data is plotted on a two-dimensional plane by applying
PCA to it, as shown in Fig. 10. We can see that the space of
PB is roughly structured for Soft-Navy, Soft-Pink, and Hard-
Bare. It can also be seen that the upper body postures of P
and U have similar dynamics in the sense that the robot leans
forward, and that the PBs of P and U are relatively close to
each other. For this model, fine tuning from DPMPB trained
in simulation does not reduce the loss much because the
dynamics is very different.

2) Online Update of Parametric Bias: We start with p
in Hard-Bare/U and examine how p transitions when the
online update of PB is executed at the same time as the
body is moved as in the data collection. The trajectories of p
when the current body states are Soft-Pink/U, Soft-Navy/Z,
and Hard-White/Z are shown in Fig. 10. For Soft-Pink/U
and Soft-Navy/Z, we can see that the current p gradually
approaches the p trained in the same body state as the current
one. Thus, it is possible to correctly recognize the body state
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Fig. 11. Actual robot experiment: the transitions of zx when 15 N (for
Hard-Bare) or 10 N (for Soft-Pink) of external force is applied to the chest
link and released, while the balance control using DPMPB is performed
(Proposed), or while no control is performed (None).

by searching the space of p. Although Hard-White is not
included in the training data, it is placed near the upper
part of Hard-Bare as a result of online learning. Shoes have
various parameters such as shape, friction, and softness, but
the soles of Hard-White and Hard-Bare, Soft-Pink and Soft-
Navy are similar in hardness.

3) Balance Control Using DPMPB: In this experiment,
the upper body posture is Z, and the transition of zx after
applying a certain force to the waist link (15 N for Hard-Bare
and 10 N for Soft-Pink) and then releasing it is examined five
times for 6 seconds. The results of the balance control for
Proposed and None are shown in Fig. 11. For zx, offsets are
removed to align the origins of the plots, and the average
of the sum of |zx| for 6 seconds (30 steps) is shown as
Ez. For PB, we use the values obtained while training for
each body state (Hard-Bare/Z or Soft-Pink/Z). For Hard-
Bare/Z, we set (C f ,Cl,Cu) = (0, 30, 3), and for Soft-Pink/Z,

(C f ,Cl,Cu) = (0, 3, 1). Although the effect is not as large
as in the simulation, it can be seen that the convergence
after the external force is faster in Proposed than in None.
In fact, for Hard-Bare, Ez = 0.349 for None and Ez = 0.296
for Proposed, and for Soft-Pink, Ez = 0.322 for None and
Ez = 0.246 for Proposed, indicating that Proposed has less
error.

IV. Discussion

We discuss the experimental results of this study. First, the
simulation results show that the parameters of the dynamics
not explicitly given as values are embedded in parametric
bias by learning the DPMPB. This arrangement of PB is
self-organized nicely as the collected data has more diverse
time-series changes, and PB can be updated online to adapt to
the current dynamics. In addition, it can be seen that learning
from data with various time series changes makes the balance
control more accurate and the convergence of the response
to external forces faster. In the case of no control or PID
control, the convergence may be slow or divergence may
occur, but our method enables the robot to stand upright
stably and immediately after external force. On the other
hand, when PB is not adapted to the current body state, the
balance control may not work well due to the difference
between the predicted dynamics and the actual dynamics.
By changing the weights in the loss function, this balance
control can simultaneously execute other objectives, such as
reducing the control input and suppressing the changes in
muscle length and tension.

Second, in the actual robot experiment, we handled the
difference in dynamics of shoes, which is difficult to be given
as values explicitly by humans. The trained PBs are grouped
according to the type of shoe, and it is possible to estimate
the type of shoe that the robot is currently wearing based on
the current motion and understand the dynamics. The space
of PB is constructed to reflect the nearness and remoteness of
the dynamics that could be generalized to shoes that are not
used for training. In addition, upper body postures such as
the elbow and hip angles can be treated in the same variable
of PB, in the form of changes in the dynamics of the lower
body. The balance control shows some performance, and the
convergence of the error is faster than the case without the
control. On the other hand, since it is difficult to align the
experimental conditions in the actual robot, it is inevitable
that the performance in the actual robot is lower than that
in the simulation, and there is room for improvement in the
future.

The limitation of this study is described below. First, there
is a problem that the speed of the iterative backpropagation
becomes a rate-limiting factor and the balance control cannot
be executed at a fast frequency. In this study, the limit is
about 15 Hz, and the results are not much different from
those of 5 Hz. It is found that if the period can be increased
to about 100 Hz, the response to disturbances becomes faster,
and the range of application will be expanded. On the other
hand, the prediction accuracy of a trained model is likely an
issue to be addressed in the future, since prediction errors



accumulate and a long control horizon is required for high
frequency.

Second, there is a problem of data collection. In this study,
we collected a variety of data by gradually shaking the body,
but in order to obtain more dynamic data, we need to devise
further ways of data collection, such as alternating between
learning and data collection. If data collection becomes more
efficient, it will be possible to handle not only simple balance
control, but also more complex tasks such as stepping for-
ward and walking, which require higher dimensional control
inputs. In the future, it would be desirable to develop a
curriculum learning method in which the robot learns to step
while using a handrail, and gradually releases its hands when
walking.

We describe some future developments. It would be
meaningful to practice scenarios in which the robot wears
different shoes depending on the task, such as shoes that are
easy to balance, shoes that allow fast movement, waterproof
shoes, and so on. In addition, we would like to consider the
environment as a part of the body, and work on walking
considering changes in the ground, using assitive tools, etc.

V. CONCLUSION
In this study, we proposed a deep predictive model learn-

ing method including parametric bias for balance control
of complex musculoskeletal humanoids with flexibility and
redundancy. For the task of balance control, it is difficult to
collect data for in the actual robot. We can construct a stable
balance control by collecting data while gradually increasing
the random displacement of the control input and periodically
changing its random width. In addition, the changes in
upper body posture, the origin of joints and muscles, and
footwear, which are not included in the dynamics model of
the ankle, can be embedded as implicit changes in dynam-
ics into parametric bias. Using the proposed DPMPB, the
musculoskeletal humanoid successfully controls its balance
according to various loss functions while adapting to changes
in the body state. In the future, we would like to explore a
method for autonomous learning of the foot-stepping motion
using only the actual robot with assistance such as a handrail.
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