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Abstract— The harvest yield in vineyards can vary signifi-
cantly from year to year and also spatially within plots due
to variations in climate, soil conditions and pests. Fine grained
knowledge of crop yields would allow viticulturists to better
manage their vineyards. The current industry practice for yield
prediction is destructive, expensive and spatially sparse — small
samples are taken from the vineyards during the growing season
and extrapolated to determine overall yield. We present an
automated method that uses computer vision to identify and
count grape berries. These counts are used to generate per
vine estimates of crop yield. Both shape and visual texture
are used to detect berries. We demonstrate detection of green
berries against a green leaf background. We present crop yield

estimation results, with the actual harvest yield as groundtruth  rig 1. Example camera image of Gerwurztraminer wine grapesitpt
for 200 vines (over 450 meters) of two different grape varieties. at veraison. Automatically detecting the grape crop within imggaich as
We calibrate our berry count to yield and find that we can this is difficult because of issues caused by the lighting straows, and
predict yield to within 9.8% of actual crop weight. the lack of contrast to the leaf background.

I. INTRODUCTION

Predicting the eventual weight of the harvest yield in 3 o . .
. . . ecause it is fixed from fruit-set all the way until harvest,
vineyard enables vineyard managers to make adjustments I

the vines to reach their yield and quality goals. The currenutr?“ke cluster weight for which a multiplier must be guessed

industry practice for predicting harvest yield is laboreimt an‘?haepsrlsﬁén es in visually detecting arape berries is their
sive, expensive, inaccurate, spatially sparse, desteuetid ges in visually INg grap 1€s | !

riddled with subjective inputs. Typically, the processyald varying appearance under different lighting, the lack déco

prediction is for workers to sample a certain percentage f? ntrast to the background, which is often similarly cotbre

the vineyard and extrapolate these measurements to the enVIStigleeng‘Ee;;;nqdlzlsoc; ?ﬁglléis;f?:jtf;uzlpgi;?;ﬁ" gre"f:sesi;o b
vineyard. The weight of the clusters is constantly incregsi ’ P y o

until harvest, so the vineyard manager must guess at w {fiPe crop can be seen in Fig. 1. The few existing methods

percentage of the final weight is the current measurement or detecting crop in vineyards, have been restricted to the

a subjective input which leads to inaccurate predictiof®e T laboratory [4] or have relied on color contrast [3] and are

manual sampling practice scales poorly to large commercig]erefore not applicable for detecting crop over a simarl

vineyards and the industry is searching for an alternative. _colored ba_lckground of Ieave_s. Lack (.)f color contr_as_t IS an
important issue that occurs in the white-grape varieties an

Here we report results of an approach to automaticall o . P
P P %’I the grape varieties prior toevaison (the onset of color

detect and count grapes to forecast yield with precision a evelopment). We specifically address the issues of lightin
accuracy. Our approach is to take conventional visibletligh P ) P y adt 9
Qd lack of color contrast, by using shape and texture cues

cameras through a vineyard to image the vines and de’u.?%r detection

the crop and predict yield. Traditional manual yield estiesa The i ) ; luSi - ible d q

look to sample the average number of grape clusters per-vine ' '¢ 'ﬁsge Of occlusion m?_'ans it Is not p(;)sm e etfect an

the average number of grape berries per-cluster and aver é”_‘t ail berries on a vine. O\r/]veverr], our etectlonfo gr];af)e

berry weight. Our approach is to estimate the total number MEs IS precise, ensunng_t att ere are very tew faise
positives. The result of precise detection is that our berry

berries, essentially combining clusters per-vine andi&®rr ; , ) )
y g p qunt is a reliable measurement of yield, despite the fact

per cluster in the one measurement. Clusters per vine a :
berries per cluster account for 60% and 30% of variation i at our algorithm only counts a percentage of all the grape
erries on a vine. We calibrate our berry count measurement

yield per vine respectively, therefore 90% of the variation h iold f £ Vi q v thi llorati
yield is accounted with accurate berry counts. FurthermorIa0 arvest yield from a set of vines, and apply this caliorati
other vines not included in the calibration set, pointiag

the number of berries per-vine is a good measure to obta . ) 7
P g tﬁe fact that percentage of berries not detected is relative
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automated yield measurements. The size of the experiment is3) Berry size (10% of the yield variation)
significant, including roughly 450m of vines, including two These three components combine to describe all the variatio
different grape varieties, where the total harvest weight an harvest yield. Current practice is to take samples of each
the vines totaled over 2000kg. Our method calculates yielgk these components to compute an average and compute
within 9.8% of ground truth. the final yield. We take an approach to estimate the first
two of these items together in one measurement — that of
the number of berries per vine. The reason being that it
Current practices to forecast yield are inaccurate becauge gifficult, especially late in the season, to delineate the
of sampling approaches that tend to adjust towards hisliorigyoundaries of clusters within images. However, it is pdesib
yields and include subjective inputs (Clingeleffer et @l)[ {0 count the total number of berries seen, hence combining
The calculation of final cluster weight from weights atthe two components — number of clusters per vine and berries
véraison use fixed multipliers from historic measurementer cluster — into one measurement: berries per vine. An
Wolpert and Vilas [11]. Unfortunately, multipliers are b&l  interesting observation can be drawn that humans are better
towards healthier vines thus discriminating against misi 4t counting clusters per vine and weighing individual clus-
or weak vines and multipliers for cluster weights vary widel ters, whereas conversely it seems robotic sensing strsigmle
by vineyard, season and variety. accurately count mature grape clusters. Instead it is re@sie
Sensor-based yield estimation in vineyards has been gfse robotic sensing to count the number of berries on vine, a
tempted with trellis tension monitors, multispectral SESS measure which would not be possible for a human to directly
terahertz-wave imaging and visible-light image processin produce.
A dynamic yield estimation system based on trellis tension oyr approach does not attempt to measure berry weight.
monitors has been demonstrated (Blom and Tarara [1]) butifowever, we account for 90% of the harvest yield variation
requires permanent infrastructure to be installed. Infdfom  \yith berries per vine ([2]). Furthermore, instead of taking
obtained from multiSpeCtral images has been used to fmecﬁsma” Samp'e and extrapo'aﬁng, we aim to estimate non-
yields with good results but is limited to vineyards with uni gestructively the specific yield at high resolution acrdss t
formity requirements (Martinez-Casasnovas and Bordgs [8kntire vineyard. Hence, we will not introduce sampling sro
A proof of concept study by Federici et al. [4] has shown thahto the process.

terahertz imaging can detect the curved surfaces of grapesoyr algorithm to detect the berries in imagery has three
and also has the potential to detect these through occludiggtinct stages:

thin canopy. The challenge for this approach is to achieve 1) Detecting potential berry locations with a radial sym-
fast scan rates to be able to deploy the scanner on a mobile metry transform (Section I11-A)

platform. _ o . _ 2) Identifying the potential locations that have similar
Small scale yield estimation based on simple image color appearance to grape berries (Section I1I-B)

discrimination has been developed by Dunn and Martin [3]. 3y Group neighboring berries into clusters (Section 1I-C)
This approach was attempted on Shiraz p@&stison (i.e.

after color development, very close to harvest) in shoA. Detecting Potential Berry Locations with a Radial Sym-

row segments. The method would not be applicable for th&etry Transform

majority of real world examples where the fruit appears over The first step of our algorithm is to find points with a high
a background of similarly-colored leaves, as is the case lgvel of radial symmetry as these points are potential eente
white grape varieties and in all varieties beforéraison. for grape berries, see Fig. 2(a). To find these points, we
More complex crop detection based on computer visioose the radial symmetry transform of Loy and Zelinsky [7].
methods using color pixel classification or shape analysithe algorithm is robust to the issues of lighting and low
has been attempted on various fruit types — Jimenez et al. [gdlor contrast, which cause problems for the existing crop
provides a summary of fruit detection work, Singh et al. [9Hetection techniques that rely on simple color discrimorat
present a method for detecting and classifying fruit in eppl(Jimenez et al. [5], Dunn and Martin [3]). The approach
orchards and Swanson et al. [10] use the shading on thetects the centers of berries of all colors, even those that
curved surfaces of oranges as a cue for detection. are similarly colored to the background leaves.

The radial symmetry transform requires us to know the
radii of the berries as seen in the image ahead of time. The
We deploy a sideways-facing camera and lighting on Berry radii (in pixels) are dependent on the focal lengtthef t
small vineyard utility vehicle. The images capture the 8inecamera, actual berry size and the distance from the camera.
and are processed with our algorithm to detect and coumhe focal length is kept fixed in our tests and the vehicle
the crop. In traditional vineyard yield estimation the cropmaintains a relatively constant distance from the vinegr&h
components that are measured to derive a final estimate gestill variation in the radius the berries appear in thegma
1) Number of clusters per vine (60% of the yield variafrom differing berry sizes and also some variation in |omati

tion) within the vine. We account for this variation by searching
2) Number of berries per cluster (30% of the yield varifor radially symmetric points over a range of possible radii
ation) N. Individual radii are denoted as.

II. RELATED WORK

Ill. BERRY DETECTION



The transform first computes the locally normalized gra€. Group Neighboring Berries into Clusters
dient g with magnitude and orientation information at each e . .
image pixel. An example gradient image from the Sobel After cIasgl_flcatmr_l of thellnterest points, a smgl_l number
transform is depicted in Fig. 3(a). In a Hough Transforn® fg!se p03|t|\{es sl remain. Mo;t of the remaining false
like setup, each edge pixel, with a gradient value above positive detections are isolated while grape berries a#yur

a thresholdT" votes for possible points of radial symmetryo.ccur in clusters so we apply.c_ontextual constramts_ th‘f’“
p.(p) given by: dictate that there should be a minimum number of berries in

a cluster. We cycle through each classified berry, computing
(p)=p£n g(p) @ the distance to every other berry, and remove berries that
PsiP) =P do not have at least 5 other berries within their immediate

llg(p)ll
neighborhood, which we define as a radius of 150 pixels.

for each radiusn, these votes from the edge pixels arel_he rocess results in the clustered berries. which are the
counted in a vote imagé’, which is then smoothed out P ults n 1r u . 1es, whi
output of our entire algorithm, see Fig. 2(c).

with A,,, a 2D Gaussian filter, to produc,, the radial filter

response at radius. These filter responses at different radii
are then combined to form the overall radial filter responsef
S which is given by.

S, =F,x A, (2)
S = max .S, (3
neN

We compute local maxima in the response ima&jwith a *
non-maximal suppression, and threshold to find the pofentia’
centers. We choose the threshold to ensure as many ber

centers are detected as possible, at the expense of mar}%, 4? 3 ;
false positive detections. We use the following stages én th == -~ e A W SR
algorithm to filter out the false positives. (a) Detect Berry Locations with Radial Symmetry Transform

1 = ’f; e — 8 B |

B. Classifying Interest Points Appearing Smilar to Berries

The next stage in our algorithm is to classify the detected
points which appear most like grapes, see Fig. 2(b). We
first take a patch in the image around each detected cent
The patch size has a radius defined by the previous radi
symmetry detector step. We then compute features from tha
image patch. The features we use are a combination of colo
and texture filters, which combine to form a 34 dimensional £Z:%
feature vector. We use the three RGB channels, the thre% ¢
L*a*b color channels and Gabor filters with 4 scales and : ‘ -

6 orientations. The features are not chosen specifically for (b) Identify Locations with Similar Appearance to Grape Besr
the grape detection task — we use generic low-level image i FFE==S gl S i i
features.

We take a small number of training samples from our f
datasets, by selecting a random subset of images and man|
ally define in the images which regions have grape berries
We compute our features in these regions which correspon
to the positive examples of the appearance of berries. Fo=
negative examples we compute features at radially symenetri
interest points outside of our defined crop areas. ;

Given an input image we take each radially symmetric% ¢
interest point, compute the feature vector, and apply the’ s v
k-Nearest Neighbors algorithm. The k-Nearest Neighbors (c) Group Neighborhoods of Berries into Clusters
alg_omhm compqtes the distance Ir_l feature space to eVZ%. 2. Example images showing the functioning of our visuainbe
point in the training set and determines whether the nearagkection algorithm on a Gerwurztraminer vine. Input imageséen in
neighbors are positive berry examples or negative. If thEg 1. (a) potential berry locations in the image that havenbeetected
K closest posiiive examples are closer than Hhelosest o= 124" 1 syrnety. () ponts marked bl heve heeaitit o=
negative examples, that interest point is classified as @.berother classified berries are clustered together.

We use a value of three fd¢, which empirically seems to
function appropriately.




TABLE |
BERRY DETECTION STATISTICS. BERRY COUNT— THE NUMBER OF BERRIES REPORTED BY THE ALGORITHMTRUE POSITIVES— THE NUMBER OF
BERRIES DETECTED THAT WERE ACTUAL BERRIESFALSE POSITIVES— THE NUMBER OF FALSE BERRY DETECTIONSFALSE POSITIVES— THE
NUMBER OF BERRIES VISIBLE IN THE IMAGE THAT WERE NOT DETECTEDRECALL — PERCENTAGE OF VISIBLE BERRIES DETECTEDPRECISION—
PERCENTAGE OF DETECTIONS THAT WERE BERRIES

[ Variety [[ Berry Count[ True Positives| False Positives] False Negativeg] Recall [ Precision ]|
Gerwurztraminer 1073 1055 18 354 || 74.9% 98.3%
Traminette 1116 1096 20 658 || 62.8% 98.2%
Riesling 784 762 22 657 || 53.7% 97.2%
Overall 2973 2913 60 1659 || 63.7% 98.0%

IV. RESULTS improve the lighting of the fruit-zone, which is often in
the dark shadows of the canopy. The camera vehicle is
driven along the rows in the vineyard capturing images at
The results generated in this paper are from three differeapproximately 0.5m/s.
grape varieties — Gewurztraminer, Traminette and Riesling
The Gerwurztraminer dataset was collected just befom. Berry Detection Performance

véraison, before color development, and the berries were ) i
green in color, see Fig. 1. The Gerwurztraminer dataset We first evaluate the performance of our berry detection

was collected from a commercial vineyard and therefore W%!gorithm, by selecting five ima}ges from_each of thg three
did not have access to the harvest crop weights. Only @fferent datasets; Gerwurztraminer, Traminette andiRgs
vines were included in the dataset and we used it pureWe processed the images with the berry detection algorithm
for developing the berry detection algorithm and also manually counted detection statistics, presgntin
The Riesling and Traminette datasets were collected fromese results in Table.I.IThe shows that our algor.lthm '.’“.*Sta."
an approximately one acre plot of the¥is vinifera vari- enly detgcts only a minimal number pf_false berrle_s, g|ymg !
eties. The Riesling cultivar is a ‘White Rieslingftis vinifera avery high precision rate. However, it is conservativepisl

and the Traminette is an intraspecific hybrid. We used fOL[LOt _detect a sizeable percentage _Of berries that are visible
rows of Traminette vines and four rows of Riesling varietiest e images and therefore has a high false negative count and

224 vines in total. The Traminette were at 8ft spacing anﬁ]ereforg a moderate recgll rate. .
Riesling were at 6ft spacing, which totaled 450m of vines. 10 9ain an understanding of what part of the algorithm

The vines in this acre plot were vertically shoot positioned'® T?t resp;]onsflblle for the false negz;tlvei detections W‘:
and basal leaf removal was performed in the cluster zonBr€ax-down the false negatives Into the three stages o
e algorithm; False detections that are not detected by

a practice performed by vineyard owners to expose the fr il . h h
to the sun to change the flavor characteristics of the grapége radial-symmetry detector (Section lll-A), those thet a

The basal leaf removal also makes yield estimation feasibTBiSCIaSSiﬁed (Section I11-B) and those that are not clester

towards the end of the growing season because the Occludﬁq?neighbori_ng berries (Section I1I-C). Table Il preserite t
canopy is removed from the fruit-zone. On the Traminettli,ii S€ nehgatlve brgak—gown tl)ly qlgogtl:njm stgge. The table q
vines the basal leaf removal was performed just on the EqatoWs that around 60% of all missed detections are cause

facing side of the row and on both sides of the Rieslin y the radial symmetry transform, around 30% are classified
vines. Our tests captured images from the East side of t non-berry and only 10% of the false negatives are to be

rows. Despite not all of the crop being visible from the ond@Med on the clustering. We show in the following section
side, we calibrate our measurements from a portion of tH3at €ven with these false negatives, we can still acquire
harvest data, which takes into account the percentage of tRgcUrate yield prediction because of the high precisioa. rat
grapes that were not visible. Howgv_er, to furthe_r improve performance we gould look at
The Traminette and Riesling vines vines are white grap'g'c’d'fylng the .radllal symmetry ftransform tp 'mprove the
varieties, the images of the crop were collected p@saison, number of bern_es it can detect without drastically inchegs
and even at this late stage the fruit still had similar coigri the false detections.
to the background of leaves. The similarly colored fruit and
leaves demonstrating the ability of our shape and texture
approach to detect the crop amongst the canopy. :
For our experiments we use a Canon SX200IS, mounteld__Variety

A. Datasets

TABLE I
BREAK-DOWN OF FALSE NEGATIVES

[[ Not-detected] Mis-classified [ Not-clustered]|

: : : : Gerwurztraminer 51.7% 31.9% 16.4%
fac_mg IS|deways at the same height of Fhe fru_|t zone, capr ~ raminette 73.9% 16.0% 10.0%
turing images of the crop. The camera is set in continuous Riesling 53.9% 40.2% 5.9%
capture mode, recording images at 3264 x 2448 resolution, Overall 61.1% 29.0% 9.7%

at approximately 0.8Hz. We mount halogen lamps facing
sideways, illuminating the field of view of the camera to



C. Multiple Flashes for Improved Interest Point Detection

We have begun investigating a method that can help
improve the recall performance of the radial symmetry trans
form, which was originally proposed by Raskar et al. [6]. The
approach is to use multiple flashes placed around the camera g
to detect the depth discontinuities in the image. The method
finds edges that correspond only to depth discontinuitiels an
ignores edges due to texture, Fig. 3(b).

The edge pixels found by an image gradient operator can
be due to actual depth discontinuities in the scene (which
we are interested in because they could be the contours of
grapes) or they can be due to texture in the scene (which &
can cause the radially symmetry detector to fire at places
that are not of interest), Fig. 3(a). Many points are detecte
with radial symmetry when using the image edges as input,
see Fig. 3(c). Whereas if we use the depth edges as input [
and replace the traditional image gradientjn Equation 1, j
we can isolate the grape berries using the radial symmetry @
transform, see Fig. 3(d).

From initial results it is obvious the method of Raskar et
al. [6], demonstrated in Fig 3, will improve the performance
of our algorithm, however, at the present moment we have
not had the chance to deploy the multiple lighting setup on
a large scale in a vineyard. Therefore, the yield estimation
results presented in the following section use conventiona
image edges.

D. Yield Estimation

For the yield estimation results, we compare our berry
counts against actual harvest weights collected from the
Traminette and the Riesling datasets. First, we register
images together, and assign registered images to specific
vines by defining the boundaries of the vines within the
images, cropping-out overlapping content to avoid double
counting. We conduct this process manually, but this could
be performed automatically if we had in place a localization
system, such as GPS and odometry system, which would
be able to register data based on the fixed spacing of the
vines. See Fig. 4 for examples of our automated bermig. 3. Using the multiple flash method of Raskar et al. [6] to iover
counts being compared to the harvest data, the row aRerformance of radial symmetry transform. Multiple flashes aeequl

. . around the camera and triggered sequentially. (a) Regulagameocessing
vine number, the harvest crop Welght, and the detected bertﬁyfind image edges/gradients finds contours in the objectfire as well
count are displayed over the images. Cluster counts a4 object boundaries. (b) Using the method of Raskar et ato[6pmpute

also displayed, however our automated cluster counts welfi§ depth-edges, the boundaries of the objects are isplateiiting the
bjects’ texture. (c) Radial symmetry detected in regular inadges. (d)

Inaccurate beC_ause of the difficulties determining Separa&%adial symmetry detected in depth discontinuity edges. Itbigicus the
clusters — late in the season clusters tend to grow over eaghiformance of the radial symmetry detection of grape bersemiich

other. We focus on the berry counts in this work becaug@Pproved using the depth edge approach.
they produce more accurate yield estimates.
Once registered to specific vines, we compare our au-
tomated berry counts with the harvest crop weights. Our
automatically generated berry counts produced a linear rereasurements achieve good correlation are first through the
lationship with actual harvest crop weights with corredati high precision of our detection algorithm which rarely ctsun
scorer? = 0.74. Fig. 5 shows the datapoints in the correlatiofelse positives and also because the occlusion level and the
and the distribution of measurements. percentage of visible berries that are missed has reasonabl
We saw in Table | that our recall rate is not high and weonstancy across the vineyard. Further improvements to the
also know that occlusions will cause further berries to ret bdetection algorithm, such as proposed in Section IV-C, and
counted by our algorithm — yet despite these issues we stiicorporating an estimate of any variations there may be in
get good correlation to the harvest weights. Reasons thrat aacclusion will only improve the correlation score.

(d) Radial Symmetry Detection from Depth-edges



Row 13. Vine 7.
Cluster count (hand)40. Crop-weight (hand) 13:5 Ibs:
Cluster.count (dgtected)?:ly. Berry count (detercgeduw.’ ‘

Row: 30. Vine 29.
Cluster count (hand).53. Crop weight (hand) 5.4 Ibs.
Cluster count (detected) 18. Berry count (detecggacl)

(b) Riesling
Fig. 4. Example showing berry detections for the TraminetteRiesling varieties used in the yield estimation experimBetected berries are highlighted
by a red contour. The row and vine number, the harvest crophielige cluster counts and the berry count are displayed ttxeeimages.

Finally, we evaluate the accuracy of our estimates in ternwurrent practices that are restricted to very coarse samgpli
of predicting harvest weight. We fit a function to a part of ouracross a vineyard.
dataset that provides a mapping from berry count to harvest
weight, and calibrates for the berries that are out of vied an V.. CONCLUSION AND FUTURE WORK
missed by the detection algorithm. We calibrate the fumctio
using two rows of data (either 48 vines for Traminette or 64 We have demonstrated that a computer vision method can

vines for Riesling), and apply the function to the other rowsProvide high resolution automated crop yield estimates for
berry counts. vineyard management. Our approach detects and counts crop

in images collected from a camera mounted facing sideways
Once we have functions calibrated from portions of oupn a vehicle driven along the rows in a vineyard. We combine
data we evaluate how accurate our berry counts are e traditional crop yield measurements of clusters pee vin
predicting the total weight of other rows of vines for whichand berries per cluster, with a single estimate of berries pe
we have not calibrated our measurements. Fig. 6 presenise. The number of berries on a vine is known to account
a graph of the predicted versus actual harvest weights flor 90% of the variation in harvest yield. We develop an
four rows of Traminette and four rows of Riesling vines. Thealgorithm to detect individual berries in camera images and
average error of these results is at 9.8% of the eventuahlactevaluate in actual vineyard conditions. Unlike other image
harvest weight. An estimate of harvest yield generatedntakeletection approaches, our approach is not reliant of color
from measurements at every single vine and achieving 9.8é6ntrast, and can detect berries of all colors, even thase th
accuracy for a row, already exceeds what is possible witre similarly colored to the background of leaves.
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Fig. 5. Correlation between our detected berry count andesarcrop

our approach. First is to find ways to improve the recall
rate of the current berry detection system, for example by
deploying the multiple flash technique discussed in this
paper. Another extension would be to augment the berry
counts with a method that measures berry size, which is
known to account for the remaining 10% of the variation in

final yield. In other ongoing work we hope to evaluate how
much the function correlating visible berry counts to yield

varies by variety, by trellis structure, by differing time$

the growing season, and from year to year. We also will look

to develop an approach to count grape clusters early in the
season, even before berries have formed, to give vineyard
managers information with maximum time before harvest to

weights gives a correlation score of = 0.74. The box-plot marks show make the necessary adjustments to their vines.

the distribution within the measurements, the green lineespits a linear

fit and each of the blue data points represents the measurefreenine, for
a total of 224 vines. By comparison, the typical yield predictapproach
would take a measurement at a small fraction of the vines andpmttte,
whereas we can measure every vine.
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Fig. 6. Graph showing our predictions of the harvest weightows in a
vineyard. Rows 1 to 4 have 24 Traminette vines each. Rows 5 w8 82
Riesling vines each. Predictions are generated from thetims mapping
berry count to crop weight that were calibrated on data fraheorows.
Our yield estimates have a mean error of 9.8% of the weight ofrdhe
Producing yield predictions at this accuracy at the resmiudf single row
surpasses the coarse sampling approaches currently usetkeyands.
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