
Collaborative Control of Robot Motion: Robustness to Error ∗

Ken Goldberg and Billy Chen

IEOR and EECS Departments, UC Berkeley

We consider “collaborative control” systems, where
multiple sources share control of a single robot. These
sources could come from multiple sensors (sensor fusion),
multiple control processes (subsumption), or multiple hu-
man operators. Reports suggest that such systems are
highly fault tolerant, even with large numbers of sources.

In this paper we develop a formal model, modeling
sources with finite automata. A collaborative ensem-
ble of sources generates a single stream of incremental
steps to control the motion of a point robot moving in
the plane. We first analyze system performance with a
uniform ensemble of well-behaved deterministic sources.
We then model malfunctioning sources that go silent or
generate inverted control signals. We discover that per-
formance initially improves in the presence of malfunc-
tioning sources and remains robust even when a sizeable
fraction of sources malfunction. Initial tests suggest simi-
lar results with non-deterministic (random) sources. The
formal model may also provide insight into how humans
can share control of an online robot.

1 Introduction

In this paper we consider “collaborative control” systems,
where multiple sources share control of a single robot. In-
puts from each source are combined to generate a sin-
gle control stream for the robot. This definition is in-
tended to include systems where the sources are multiple
sensors (sensor fusion), multiple control processes (sub-
sumption), or multiple human operators. There is a large
body of research in this general area and many experi-
ments demonstrate robustness. When statistical averaging
is used to combine inputs, the resulting central tendencies
can be robust to noise. In this paper we propose a formal
model of collaborative control and study its behavior with
simulation.

Figure 1 illustrates a collaborative control architecture.
Can a group of n sources achieve anything resembling
coherent control?

For example, consider a large group of scientists work-
ing together to control a telerobot as it excavates an ar-
chaeological site. Each scientist monitors a different cam-
era or sensor and generates a motion control input ap-
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Figure 1: In a collaborative control system, an ensemble
of sources are aggregated into a single control signal.

propriate to that sensor. These inputs are aggregated to
produce a single control stream for the telerobot. If the
inputs can be put into vector form, one aggregation algo-
rithm is to compute the vector mean. Since each scientist
has access to a different noisy sensor, the Central Limit
Theorem suggests that the mean may yield a more effec-
tive control signal than that from any individual input (the
CLT assumes independence and zero-mean noise, which
are rarely satisfied in practice) [12].

Anecdotal evidence with Cinematrix [9, 21], an inter-
action system for human audiences, suggests that collabo-
rative motion control is not only possible but surprisingly
robust to deviations in individual behavior. In the early
1990’s, Loren and Rachel Carpenter performed a series of
experiments with this system. Each audience member is
given a plastic paddle, colored red on one side and green
on the other. By rotating his or her paddle each player
simultaneously provides input. Overhead cameras detect
which color is being presented by each participant in real
time. The camera output is used to drive a live display
projected onto the front screen of the theater. The aver-
age level of red or green conveyed by the group provides
an aggregate audience signal that is re-computed several
times a second.

The theater is divided down the central aisle and a cur-
sor is projected on the screen. Participants on the right
control the horizontal motion of the cursor, participants
on the left control the vertical motion. A large circle is
displayed on the screen and the audience is requested to
move the shared cursor to trace a path around the cir-
cle. Since each player only controls one small compo-
nent of the average signal, and the participants are a het-
erogeneous group with different personalities, one might
conjecture that the shared cursor motion would resemble
random Brownian motion.

But in repeated experiments, groups of participants
were quickly able to adapt their individual paddle sig-
nals to achieve coherent motion control of the shared cur-



sor. Groups were not only able to track given trajectories,
but to play competitive games such as Pong, and even to
collaboratively control an airplane flight simulator! Au-
diences ranged from 5000 graphics professionals at Sig-
graph 1991 to groups of unruly high school students in
Pittsburgh.

Although the number of sources is reduced, an ensem-
ble of independent processes in a Subsumption-based or
sensor-fusion robot control system resembles an ensemble
of human participants in the Cinematrix system. To gain
insight into the performance of such systems, we simulate
the performance of each source with a finite automaton:
each automaton takes as input the current position of the
robot or cursor, and each generates a desired motion in-
crement. The increments of the ensemble are averaged to
obtain a single motion increment that is executed by the
robot.

We start by simulating robot performance with an en-
semble of well-behaved deterministic sources. We then
model malfunctioning sources that go silent or gener-
ate inverted control signals, and simulate robot perfor-
mance as malfunctioning sources are introduced. In the
last section we describe preliminary results with non-
deterministic (random) sources.

2 Related Work

In conventional robotics and telerobotics, one source
(human or computer) controls a single robot. Most
autonomous and human-teleoperated robot systems are
characterized by a single feedback loop including sensors,
actuators, and the environment as illustrated in 2.
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Figure 2: Single source control architecture (based on
Brooks 1986 [4]).

Pirjanian studies how reliable robot behavior can be
produced from an ensemble of sources [19]. Drawing on
research in fault-tolerant software [16], Pirjanian consid-
ers systems with a number of homogenous sources (shar-
ing a common objective), and considers a variety of vot-
ing schemes. He shows that fault-tolerant behavior fusion
can be optimized using plurality voting [3] but does not
study the motion paths generated by specific malfunction-
ing modes.

McDonald, Small, Graves, and Cannon [18] describe
an Internet-based collaborative control system that al-
lows several users to assist in waste cleanup using Point-
and-Direct (PAD) commands [6]. In their system, col-
laboration is pipelined, with overlapping plan and exe-
cution phases. They demonstrate that collaboration im-
proves overall execution time but they do not address
conflict resolution between users. Chong et al [7] study

a multi-operator-multi-robot (MOMR) networked system
and propose several control methods to cope with colli-
sion arising from network time delays. Adapting their
terminology, ours would be a multi-operator-single-robot
(MOSR) system.

Fong et al use the term “collaborative control” to de-
scribe systems where collaboration occurs between a sin-
gle mobile robot and a single human operator who is
treated as a peer to the robot and modeled as a noisy infor-
mation source [10]. Related models of single robot/single
human collaboration are analyzed in [1, 17].

In [12] we described an Internet-based collaborative
telerobotic system that averaged multiple human inputs to
simultaneously control a single industrial robot arm. We
reported preliminary experiments with maze-following
that suggested that groups of humans perform better than
single humans in the presence of noise, but complicating
factors such as human variation and learning curves made
that system difficult to analyze.
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Figure 3: Brooks’ Subsumption Control Architecture.
Groups of onboard computational processes interact to
control a mobile robot. (Based on [4]).

Collaborative Control is closely related to research
in Subsumption control architectures, where groups of
onboard computational processes interact to control an
autonomous robot. As illustrated in Figure 3, Brooks
[4] proposed Subsumption as a biologically-inspired
“bottom-up” control architecture where feedback loops
are layered in terms of priority, so that signals relevant for
basic survival pre-empt signals relevant for higher func-
tions such as exploration and mapmaking. This archi-
tecture was tested in a number of applications such as
“Genghis,” a six legged robot which was able to walk
based on local independent sensor information from each
leg. Although our theoretical model is not layered, it
may provide insight into experimental successes with sub-
sumption architectures.

Collaborative control is related to the very active
research topic of Cooperative (behavior-based) robots,
where groups of autonomous robots interact to solve an
objective [2]. Recent results are reported in [8, 23, 20, 5].
Collaborative Control is also related to work in online
collaborative games such as Quake (Capture the Flag),
where users remotely control individual avatars. In our
model of collaborative control, the focus is on group con-
trol of a single shared resource in contrast to groups of



resources.
Outside of robotics, the notion of collaborative con-

trol is relevant to a very broad range of collaborative hu-
man activities including economic markets, pricing be-
havior, voting, traffic flows, etc. Excellent overviews of
the broader context can be found in [15, 22]. There is
also a substantial body of research on Distributed Artifi-
cial Intelligence (DAI) and Multi-Agent Systems (MAS),
emphasizing multiple actors, multiple contexts, multiple
representations, resource limitations, compatibility-based
problems and robustness [11].

3 Formal Model
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Figure 4: Collaborative control of robot motion: two en-
sembles of sources share control of the path.

We study the collaborative control system illustrated in
Figure 4. On the right is the robot motion display show-
ing the desired reference path and the path generated by
two ensembles of sources. Each source is modeled with
a finite automaton that takes as input the position of the
robot and generates one of three outputs: +1, -1, and 0.
The ensemble is divided into two equal sized sets, Sx and
Sy , half controlling horizontal position and half control-
ling the vertical.

For example, an output of +1 from a member of S x

corresponds to a command to move the robot to the right,
and an output of -1 from a member of Sy corresponds to
a command to move the robot downward.

We can define a “well-behaved” source based on a cir-
cular interpolation algorithm that computes the optimal
motion increment from the current cursor position. Con-
sider a source voting on horizontal (∆x) motion, given the
current position of the cursor at time step t: (x(t), y(t)).
To follow a circular path of radius r, the output of the
well-behaved horizontal partcipant is:

A(t + 1) = (−1)bsgn(x2(t) + y2(t) − r2)

b = inv(Q((x(t), y(t)) − 1)&1)

Where sgn is the signum function mapping to 0, -1, +1
and Q is a quadrant function mapping to 1, 2, 3, 4. The
inv and & are bitwise operators corresponding to inverse
and AND. A similar function describes a well-behaved
source in Sy . For details see [13].

There are 2k members of the ensemble, k in each half.
During each time step t, each source computes an output.

∆x(t) =
1
k

∑
A(t)

The robot’s horizontal motion increment is based on the
ensemble’s mean vote, and similarly for the vertical incre-
ment.

We can define the following invariant:

cos−1
( A(t) · A(t + 1)
‖A(t)A(t + 1)‖

)
> 0.

Each cursor increment always makes counter-clockwise
movement around the circle. Initially, the cursor begins at
the rightmost tangent point of the circle, the state where
Q(x(t),y(t)) = 1 and sgn(x2(t) + y2(t) − r2) = 0.

No group will be comprised purely of well-behaved
sources. Real systems are heterogeneous and include
sources that may break down, have sluggish responses,
or compute erroneous commands. We can specify formal
models to reflect such error modes treating them as mal-
functioning sources:

1. Silent: B(t) = 0

2. Inverted: C(t) = −A(t)

Note that all finite automata considered thusfar are
deterministic. We consider non-deterministic finite au-
tomata (NFA) in the Discussion section.

4 Performance Metric

To measure collaborative performance, we compute the
error in area between the reference path and the gener-
ated path as a function of the total area of the reference
circle. At any given segment of the generated path, the er-
ror is the difference in area between the triangle described
by the two linear endpoints pi, pi−1 and the origin, and
the sector parameterized by the change in angle ∆θ cor-
responding to the two linear endpoints and r the radius of
the circle. Hence, the total error is:

E(t) =
1
2

t∑
i=1

∣∣∣px
i−1p

y
i − px

i py
i−1 − r2∆θ

∣∣∣ (1)

In the case where the line intersects the circle arc, we sub-
divide the line and recompute the area as the sum of its
parts. We define Performance, P = 1 - En, where En is E
normalized to the area of the circle. Performance is 100%
when the two trajectories match perfectly, and set to 0%
when the generated path fails to converge.



Figure 5: Snapshot of the simulator. The left window dis-
plays the progress of the robot path. The right window
displays the current output of each source.

5 Implementation

A snapshot of the simulator is shown in Figure 5. It
is written in Java JDK 1.1.7 using the Abstract Window
Toolkit. We chose Java because of its ease in prototyping
the simulation software and in displaying the results using
the Java Abstract Window Toolkit (AWT).

The simulator is modularized into separate components
according to functionality. On an abstract level, these
main components consist of the environment, polling
thread and sources. The evironment displays represents
the current position of the point robot and the reference
path (in this case a circle). The sources, modeled with
a few lines of java code, outputs a value according to the
current position of the robot, irrespective of other sources.
A polling thread averages commands from all sources.
and iterates.

5.1 Results

We consider an ensemble of 100 sources, 50 controlling
horizontal position and 50 controlling vertical. The refer-
ence path is a circle with radius 20 units. When all sources
are well-behaved, system performance, as defined in Sec-
tion 4, is 63.03%.

1) In the first experiment, we consider malfunctioning
sources that go silent; they cease operating, so their vote
is a constant 0. Figure 6 plots performance as a function
of the percentage of silent sources in the ensemble. We
expected a gradual decrease in performance. Instead, we
found that performance increases steadily as sources go
silent! Performance improves until only one source re-
mains (99% have gone silent). The reason: since motion
increments are based on the average output of the ensem-
ble, introducing silent sources reduces the size of the mo-
tion increment, which causes motion to more accurately
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Figure 6: Performance as sources go silent (send only a
0 signal). Horizontal axis is percentage of sources that
have gone silent. Performance increases as sources go
silent until all but one remains.

track the reference path.
2) In the second experiment, we consider malfunction-

ing sources that invert their outputs: if the well-behaved
output is 1 the inverted source outputs −1 and vice versa.
Figure 7 plots performance as a function of the percentage
of inverted sources in the ensemble. Here, we expected
performance to deteriorate rapidly as inverted sources are
introduced. But performance improves until about half
the ensemble is inverted. A logical explanation exists:
each inverted source cancels out the vote of one well-
behaved source; the net effect is equivalent to having two
sources go silent. Hence the slope of the performance im-
provement for the inverted sources is about twice as steep
as for silent sources.

This initial model confirms experimental reports show-
ing that collaborative control is surprisingly robust in
practice. In this system, diversity improves performance.

6 Proving Convergence

Simulation shows that performance increases as sources
go silent. We can formalize this result as follows. Let k
be the number of linear segments in the path generated by
the ensemble. When all segments are of equal length, k is
approximately equal to 2πr/L, where L is the length of
each segment. Because of our linear aggregation model
over Sx and Sy , L can be defined as:

L =
√

c0∆x(t)2 + c1∆y(t)2 (2)

where c0 and c1 are constants and ∆x(t) and ∆y(t) are
the aggregate votes from Sx and Sy respectively.
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Figure 7: Performance as inverted sources are intro-
duced into the ensemble. Horizontal axis is percentage of
sources that are inverted. Again, performance increases
as inverted sources are introduced until half the sources
are operating in opposition to the well-behaved output.

Consider the aggregate vote ∆x(t), for an ensemble
composed of m well-behaved and n silent sources:

∆x(t) =
∑m

i=1 Ai(t) +
∑n

i=1 Bi(t)
m + n

Recall from Section 3 that Ai(t) and Bi(t) correspond to
the outputs from well-behaved and silent sources respec-
tively. Since B(t) = 0, ∆x(t) reduces to:

∆x(t) =
∑m

i=1 A(t)
m + n

As more well-behaved sources go silent, ∆x(t) ap-
proaches 0, and similarly for ∆y(t). This causes the seg-
ment length, L, to approach 0. Consequently, the area of
the triangle described by the two endpoints and the origin
also goes to 0. Hence, the error E(t) as defined in Equa-
tion 1 approaches 0 and system Performance approaches
1. A similar proof can be constructed for inverted sources.

7 Discussion and Future Work

In this paper we have developed a formal model, treat-
ing sources as deterministic finite automata. A collabo-
rative ensemble of sources generates a single stream of
incremental steps to control the motion of a point robot
moving in the plane. We consider a set of 100 sources,
half controlling horizontal motion and half controlling
vertical motion. We measure system performance with
an ensemble of well-behaved sources and then introduce
malfunctioning sources. We find that performance ini-
tially improves in the presence of malfunctioning sources

and is robust even when a sizeable fraction of sources go
silent or generate inverted signals. Diversity of sources
improves performance in such cases.

Collaboration is a crucial ingredient for human educa-
tion and teamwork. It may be possible for groups of In-
ternet users not only to view but to participate in remote
experiences [14]. Rather than competing for resources,
control of a remote mobile robot might be shared among
large groups of simultaneous sources. Our formal model
may suggest how humans might share control over the In-
ternet, where time delays can be significant and vary in
length. We might model such sources as follows:

1. Random: D(t) = sgn(rand(−1, 1))

2. Time Delayed: Fc(t) = A(t − c)
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Figure 8: Performance as random sources are introduced,
based on 5000 trials (50 trials per mixture). When more
than half the sources are random, the path can fail to con-
verge (Performance = 0) .

In a preliminary experiment, we introduced non-
deterministic sources that generate random output. Figure
8 shows average performance over 5 random trials. Here,
performance also increases but deteriorates badly when
half the sources are random. Understanding why this oc-
curs will be a priority for future research.

Mark Moll suggested a nondeterministic source that is
superior to the well-behaved sources considered earlier.
Each source performs a weighted coin flip where the prob-
abilities are proportional to the current path error. If the
normalized error e ∈ [0, 1] then for any source output
xi, P(xi = B(t)) = 1 − e and P(xi = A(t)) = e. It
follows that the expected value of the ensemble will be
the expected value of a single source, e, which will yield
overall performance that converges to 100%. A deran-
domized deterministic version can be constructed where



each source i, (i = 1, ..., n), gets assigned an active vot-
ing threshold of i/n. Each source will then vote A(t)
when the error exceeds its threshold and B(t) otherwise.

We will define general performance metrics for these
models by generalizing the path error metric. We will also
consider time-to-completion metrics. How should these
metrics scale with the number of sources?

We will also study alternative consensus algorithms
that are computationally fast and robust to time delays,
noise, and variations in source response. Alternative ag-
gregation methods such as winner-take-all and Kalman
filters [24] may be superior in terms of noise-rejection or
robustness to time delays. For example it may be pos-
sible to monitor correlations between sources to cluster
and classify sources. Filtering based on such classifica-
tion may reduce disturbances.
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