
If you cite this paper, please use the IPSN reference: L. Lanzieri, P. Kietzmann, T. C. Schmidt, M. Wählisch. Secure and Authorized Client-to-Client Communication for
LwM2M. In Proc. of IPSN, IEEE, 2022.

Secure and Authorized Client-to-Client
Communication for LwM2M

Leandro Lanzieri
HAW Hamburg

leandro.lanzieri@haw-hamburg.de

Peter Kietzmann
HAW Hamburg

peter.kietzmann@haw-hamburg.de

Thomas C. Schmidt
HAW Hamburg

t.schmidt@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

ABSTRACT
Constrained devices on the Internet of Things (IoT) continuously
produce and consume data. LwM2M manages millions of these
devices in a server-centric architecture, which challenges edge net-
works with expensive uplinks and time-sensitive use cases. In this
paper, we contribute two LwM2M extensions to enable client-to-
client (C2C) communication: (i) an authorization mechanism for
clients, and (ii) an extended management interface to allow secure
C2C access to resources. We analyse the security properties of
the proposed extensions and show that they are compliant with
LwM2M security requirements. Our performance evaluation on
off-the-shelf IoT hardware reveals that C2C communication out-
performs server-centric deployments. First, LwM2M deployments
with edge C2C communication yield a ≈ 90% faster notification
delivery and ≈ 8 times higher throughput compared to common
server-centric scenarios, while keeping a small memory overhead
of ≈ 8%. Second, in server-centric communication, the delivery rate
degrades when resource update intervals drop below 100 ms.
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1 INTRODUCTION
The constant expansion of the Internet of Things (IoT) led to an
increased deployment of proprietary ecosystems to interconnect
resource constrained “things” via the global Internet. Interoper-
ability between an ever-increasing number of devices and vendors
becomes paramount to avoid incompatibility silos. Lightweight
Machine to Machine (LwM2M) [32] is a widely deployed protocol
that provides device management features, service enablement, and
interoperability across vendors, by defining an interaction model
between LwM2M servers and clients, which operate on a uniform
resource model.

In addition, the need for edge computing in IoT deployments [9]
is rising, driven by high data volume and constraints such as in-
termittent uplink connection to the server and low latency re-
quirements. In these scenarios, autonomous devices, executing
distributed application logic are preferred. LwM2M client-to-client
(C2C) communication enables this, by allowing edge devices to
perform operations directly, while dynamic resource discovery fa-
cilitates application logic specification on runtime without human
intervention. This requires a mechanism to dynamically distribute

Figure 1: Different LwM2M deployment models. This paper
introduces b) client-to-client communication.

credentials and access rights to use resources of other clients se-
curely. LwM2M lacks such a direct client communication because
it only allows servers to initiate transactions. Information always
flows through servers, see Figure 1a).

This work contributes to the research agenda of “building an
open, scalable, and secure Internet of Things” that is accessible to all
parties via standards. In particular, we fill a design gap by introduc-
ing two extensions to the LwM2M core specification and providing
an open source implementation on RIOT [2]. Our proposal enables
a secure and authorized communication regime between clients,
see Figure 1b). In detail, we make the following contributions:

(1) a third party authorizationmechanism [17] that allows clients
to dynamically request servers to gain credentials and access
rights to resources hosted by other clients.

(2) new LwM2M objects and the extension of existing interfaces
allowing clients to use them. Both enable direct communica-
tion between clients and allow IoT deployment scenarios in
which upstream connectivity is limited and local communi-
cation preferred.

(3) a security analysis of our proposal, which shows that our
approach still complies with LwM2M security requirements.
Our analysis considers remote and local attackers separately
and covers four common threats.

(4) an empirical performance analysis conducted on real hard-
ware and in different deployment scenarios. Our proposal
outperforms a server-centric solution in terms of delay (90%)
and goodput (8×).
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(5) open-source implementations of LwM2M client-to-client
communication, which we make publicly available.

Our extensions are carefully designed such that they reuse ex-
isting protocols defined by the LwM2M core specification. This
has two advantages. First, our approach seamlessly integrates into
the LwM2M ecosystem and, second, it allows for re-utilizing oper-
ational knowledge [8] and code, which is particularly important
when deploying constrained devices.

The remainder of the paper is organized as follows. Section 2
provides the necessary background about LwM2M. Section 3 and
Section 4 introduce our proposal for C2C communication and third
party authorization, respectively. Section 5 provides a comprehen-
sive security analysis of our proposed extensions. Our experiments
conducted on off-the-shelf IoT hardware are discussed in Section 6,
together with results revealing the advantages of C2C communi-
cation. We present related work in Section 7 and conclude with a
summary and outlook in Section 8.

2 BACKGROUND ON LWM2M
LwM2M [32] is a device management and service provision pro-
tocol that provides bootstrapping, access control, semantic data
interoperability, and software update features. Clients run on con-
strained devices and register themselves to one or multiple LwM2M
servers. Machine-to-machine applications, which usually run in the
cloud, interact with clients via the servers. Server information and
credentials are either pre-provisioned on a client, or bootstrapped
by a dedicated LwM2M bootstrap-server.

Operation semantics and parameters are first defined generically
and then mapped onto the lower layer. LwM2M supports three
transport bindings: CoAP [30] (over UDP, TCP, SMS, and other Non-
IP transports), HTTP, and MQTT. Interoperability is achieved by
(i) a uniform resource model and (ii) a RESTful interactionmodel [6].
Objects are the building blocks of the resource model and specify
how LwM2M clients group their hosted resources. Occurrences of
these groups, called object instances, contain the resources that
servers access. Multiple instances of a given object can exist on
a client, each with different content but the same data structure.
Servers interact with client resources via interfaces that define
operations, most of which follow a request-response scheme.
Overhead. In spite of the features provided, LwM2M adds only rel-
atively little overhead compared to CoAP-only applications. When
analysing the processing time, our measurements reveal only 3.4%
of the total≈ 2570 𝜇𝑠 required to compute a LwM2MRead operation
(i.e., a GET CoAPS request). In turn, the radio driver and the DTLS
layer appeared as the dominant consumers, with 48.1% and 22.4%
of the time respectively. When looking at the memory footprint
(see Section 6.2), LwM2M represents less than 20% and 33% of total
ROM and RAM requirements.
Security. In multi-server scenarios, access control to client re-
sources is required. Each object instance hosted by the client has
a corresponding access control object instance, that indicates the
server access rights on it. These are organized in access control
lists (ACLs), where each element of the list reflects one particular
server. A single access control owner server manages the access
rights and can modify policies for other servers dynamically.

Table 1: Overview of features that are required/provided (○),
partly required/provided (è), or not required/provided (○␣)
in different IoT scenarios/paradigms.
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Smart metering ○␣ ○␣ ○␣ è è ○␣

Smart farming ○␣ ○␣ ○␣ ○␣ ○ ○

Disaster first
response

○␣ ○␣ ○␣ ○␣ ○ ○

Smart home ○␣ è ○ ○ ○␣ ○

Smart
transportation

è è ○␣ è ○␣ ○

Industrial
emergency

○ ○ è ○␣ ○␣ ○

Control systems ○ ○ ○ è ○␣ ○

server-centric ○␣ è ○␣ è ○ ○␣

client-to-client ○ ○ ○ ○ è ○

LwM2M security requirements dictate clients and servers to
authenticate each other, communication must be encrypted, and
message integrity needs to be protected. The protocol specifies
different ways of securing communications (TLS/DTLS [23] and
OSCORE [28]), for which clients need information such as URIs to
uniquely identify servers, credentials (pre-shared keys, raw public
keys, or certificates) and configurations (e.g., security mode, cipher-
suite). Two objects organize this information: the server and the
security objects, which together reflect a server account. After es-
tablishing secure communication, clients register to servers with a
unique endpoint name. In contrast to the URI, the endpoint name
is independent from the transport binding.
Shortcomings. Despite the wide deployment of LwM2M, its
server-centric paradigm presents shortcomings in certain types
of use cases. Table 1 shows typical IoT scenarios, together with
usually required features. Applications such as smart agriculture
and the tracking of—and interaction with—livestock present deploy-
ments at remote locations. On the one hand, they require long-range
communication (e.g., to report animal vitals), on the other hand,
animals need to interact with local devices (e.g., gate control, food
dispensing). LoRaWAN appears as a popular long-range technology
choice for this type of applications, but due to its long on-air times
it applies strict duty cycles. This quota is easily exhausted by de-
ployments which involve control systems, as all information flows
through servers even when—ultimately in many cases—a neighbour
node is the recipient.

Similarly, industrial deployments involving closed-loop control
systems have low latency requirements (10 – 100 ms delays [10]).
Such systems cannot afford a server-centric information flow due
to its additional delays. Instead, these scenarios would benefit from
distributed applications based on direct local communication be-
tween LwM2M clients, which reduces latencies, while still being
monitored by central servers. Typically, the distributed logic is in-
stalled on the nodes after a resource discovery or a commissioning
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process. Instead of a central application, nodes follow business rules
(e.g., "whenever the light switch of room A is pressed, notify light
bulb group 2"). As they only require knowledge of a subset of the
whole application, this paradigm is scalable when adding new de-
vices. Changes in the logic are usually performed by management
tools from the central servers.

Another example are lossy IoT networks present in smart trans-
portation containers. Given their mobile nature, they have inter-
mittent Internet access. The constant need for communication with
the managing server requires to be permanently online. A similar
situation is faced by disaster first-response devices, which usually
have to build ad-hoc delay-tolerant networks. In these environ-
ments a connection to a central server is sporadically available. As
an alternative, the deployment of autonomous devices which can
communicate with one another would allow keeping local func-
tionalities working even if upstream connectivity is lost.

Even in scenarios with steady connectivity and high bandwidth,
a central cloud involvement may raise privacy issues. Constantly
utilizing central servers to store and analyse sensor values and to
control domestic appliances can reveal usage patterns and disclose
personal information. Vendors could leverage LwM2M, and install
devices that interact within the household following user-installed
policies.

Summarizing, LwM2M acts as a semantics-unifying layer that
enables machine-to-machine applications on the cloud not only
to manage IoT devices, but also to implement business logic in
a vendor-independent fashion (e.g., reading sensed data and ac-
tivating actuators in consequence), while adding relatively small
overheads. In parallel, there is a clear need for direct node-to-node
communication over a variety IoT deployments. Consequently, we
propose to extend LwM2M to allow clients to operate on each other
resources, thus maintaining the benefit of its vendor interoperabil-
ity and service enablement features.

3 DIRECT LWM2M CLIENT COMMUNICA-
TION

We now want to derive generic requirements for secure C2C com-
munication in the common use cases that were analysed in the
previous Section 2. As data flowing between nodes is mostly sen-
sitive, devices are expected to establish a secure communication
channel (i.e., providing confidentiality, integrity, and replay protec-
tion to the messages), and to authenticate each other prior to any
data exchange. It is also desirable that resource owners are able to
establish access policies to the resources (which may dynamically
change at runtime), thus, some access control mechanism should be
in place. Additionally, to cope with changing deployments (e.g., new
appliances added to smart homes), flexibility is desired. This implies
that nodes need to make use of trusted and authenticated services
to securely discover resources of interest, and to obtain the required
credentials and rights to access them.

With these requirements inmind, we enable C2C communication
in the case of LwM2M, by re-utilizing existing interfaces defined
in the core specification, namely (i) the device management and
service enablement interface, and (ii) the information reporting
interface. To avoid ambiguity when referring to LwM2M clients uti-
lizing the interfaces, we define: (i) hosting clients host resources on

which operations are performed, and (ii) requesting clients request
the operations on said resources. It is worth noting, however, that
nodes will likely play both roles throughout their lifetimes. Using
the interfaces requires a secure communication channel, hence,
clients need to establish secure transports among each other and to
have adequate access rights. For this, we introduce a new LwM2M
client account to organize the information clients need about each
other, including security credentials, URIs and connection configu-
rations. Similarly to LwM2M server accounts, LwM2M clients hold
one account per client with which they communicate. Three newly
introduced LwM2M objects organize communication and access:
(i) the client object, (ii) the client security object – a LwM2M client
account consists of instances of these two objects, and (iii) a client
access control object to determine which operations a requesting
client is allowed to perform.

3.1 Client-to-client Objects
To ease code re-utilization and lower the implementation overhead,
our newly introduced objects share many resources with existing
objects, used to establish client-server communication.
Client Object. An instance of this object holds parameters related
to the communication with other clients, including the client ID (an
internal reference), the client endpoint name, the account lifetime,
default values for observation periods, and the communication
binding. To mitigate a potential elevation of privilege when access
revocation messages sent by the server do not correctly arrive to
the hosting client, the lifetime parameter in this object determines
for how long a requesting client account is valid. After expiration,
the hosting client disables it, closes existing connections to the
requesting client and ignores subsequent operation attempts. Hence,
requesting clients access needs periodic refresh, unless disabled by
configuring the lifetime to 0.
Client Security Object. An instance of this object holds the URI of
a specific client, security configurations, and the DTLS credentials
or a reference to an object holding OSCORE credentials, depending
on which secure transport is used. Resources of this object exhibit
the exact same identifiers and semantics found in the standard
LwM2M security object. It is worth noting, that only servers are
allowed to operate on client security object instances, to install and
modify credentials in a dynamic fashion during the device lifetime.
This allows for additional flexibility in contrast to deployments with
static configurations. These object instances can be created and
modified by servers through the device management and service
enablement interface, or bootstrapped by a LwM2M bootstrap-
server.
Client Access Control Object. An instance of this object holds
the actual access rights which allows hosting clients to keep track
of the permitted operations to requesting clients. Each instance is
associated to a particular instance of any other object hosted by the
client, and indicates an access control owner that is the responsible
server to manage access rights for this object instance. An instance
contains an ACL that specifies which operations each requesting
client is allowed to perform on the associated instance. This is
indicated using flags (e.g., read, write). For C2C access, we add an
explicit ‘discover’ access flag that controls whether a requesting
client can explore resource attributes of an object, increasing the
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Figure 2: Access control objects in a hosting client, before
and after a requesting client instantiates the light control
object (ID 3311).

control granularity. This is in contrast to regular server based access,
where it is always allowed to discover available objects. Only servers
can modify requesting clients access rights.

3.2 Extended Interfaces and Access Control
Requesting clients can perform all operations defined by the device
management and service enablement interface and the information
reporting interface, provided they have the required access rights.
They use these interfaces to access resources in hosting clients,
via operations like ‘read’, ‘write’ and ‘create’. Resources may be
accessible to multiple requesting clients, and concurrency should
be handled the same way as for multiple-server access. As per the
LwM2M specification, atomicity is required when performing a
‘Write-Composite’ operation.

All access control rules that apply to servers also do to clients.
This means that for each requesting client explicitly authorized to
perform an operation on a resource, a corresponding ACL should
be instantiated on the hosting client, otherwise the default access
is granted. The assignment of access control owners after a ‘create’
operation, however, differs for C2C operations. Whenever an object
is instantiated via a ‘create’ operation, a hosting client additionally
creates new instances of the access control and client access control
objects, to track server and client access rights respectively, for
the new object instance. In contrast to regular server operation, a
requesting client that creates a new object instance does not become
its access control owner, instead, the owner is the server indicated
in the client access control object instance which authorized the
‘create’ operation.

Figure 2 illustrates a subset of the object instances on a hosting
client 𝐶1, before (yellow boxes) and after (blue boxes) a requesting
client 𝐶3 performs a ‘create’ operation on the light control object
(ID 3311). 𝐶1 hosts two server accounts (𝑆1 and 𝑆2 with IDs 1 and

2), and one client account for 𝐶3. Instance 0 of the access control
object holds access rights for the light control object 3311, and the
ACL contains ‘create’ access rights for both servers, whereas the
LwM2M bootstrap-server is the access control owner. Instance 0
of the client access control object holds ‘create’ access rights for
𝐶3, pointing to 𝑆1 as the access control owner. In both cases, as the
‘create’ operation is performed on an object and not on a particular
object instance, only the object reference resource is set, and not
the instance reference. When 𝐶3 creates a new instance of the light
control object on 𝐶1, 𝐶1 also creates locally new instances of both
access control objects. Instance 1 of the access control object indi-
cates that 𝑆1 (i.e., the server which allowed the instantiation) is the
access control owner for the new instance of the light control object,
and it grants ‘read’ access to 𝑆2. In turn, instance 1 of the client
access control object holds 𝑆1 as access control owner respectively,
and provides 𝐶3 with ‘read’ and ‘write’ access rights.

4 THIRD PARTY AUTHORIZATION OF
LWM2M CLIENTS

Clients are authorized by LwM2M servers that handle access rights
and credential distribution. LwM2M servers are considered trusted
third parties to the clients, as the LwM2M specification requires
mutual authentication. We introduce two new mechanisms to en-
able third party authorization of LwM2M clients. Owner server hints
allow clients to discover the responsible server which can grant
access to a resource. The access request interface is utilized by clients
to request specific access rights and credentials to this responsible
server. If the server accepts the request, it distributes the access
rights and credentials through the regular device management in-
terface. Figure 3 presents the complete sequence diagram of an
unauthorized requesting client that requests access rights of a re-
source on a hosting client, utilizing the server as a third party. The
server distributes credentials, to establish a secure C2C communica-
tion, and access rights, to authorize subsequent operations among
clients. The credentials and access rights distribution is usually per-
formed infrequently, this is, before the initial C2C interaction, but
its frequency ultimately depends on the application requirements
and security policies.

4.1 Owner Server Hints
In multi-server LwM2M deployments requesting clients need to
find out which server is in charge of processing a resource access
request for a given node. As LwM2M makes no assumptions as to
whether servers belong to the same organization (i.e., they may not
communicate with one another), this knowledge must be dynam-
ically acquired by the nodes. To achieve this functionality in our
LwM2M extension, the hosting client provides server information
contained in the owner server hints. It is worth noting, that this
discovery mechanism can be avoided in case there is out-of-band
information that a deployment has a single server.

In a first step, the requesting client sends an unauthorized re-
source request to the hosting client and attempts to perform an
operation on a specific resource 1 . This is commonly done on un-
secured transport. We further analyse the security implications in
Section 5.4. The initial contact information is assumed to be learnt
by a discovery mechanism, such as a resource directory [1].
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Figure 3: Request and installation of LwM2M client access rights and authorized C2C communication.

A hosting client that receives a request on an unsecured channel
from the unknown requesting client rejects it. It responds with
an unauthorized status code, and includes the owner server hints
which contain the URI of the server that owns the resource, respon-
sible to grant access 2 . The response optionally contains multiple
server URIs that point to separate credential- and access manage-
ment servers. To prevent disclosing information about whether a
resource is hosted by the client, returned codes are kept generic
and at least one default owner LwM2M server is included in the
response, until enough trust exists with the requesting client and a
secured transport is established.

A requesting client must verify that the received server URI
represents a known and trusted server with which a secure com-
munication has already been established (i.e., on registration). The
existing trust relation to the server is essential, since unsecured
server hints could have been tampered by an attacker.

4.2 Access Request Interface
We introduce a new interface that allows clients to request servers
for access rights and credentials. The interface consists of a single
operation initiated by the client: the access request. A client includes
the intended access rights, the endpoint name of the hosting client
it attempts to access, and a flag to indicate the need for creden-
tials to establish secure communication 3 . Utilizing endpoint client
names [32, Sect. 7.3.1] abstracts from the underlying protocol and
allows to identify clients across LwM2M transport bindings. As
a counterexample, URIs reveal different structures across trans-
port bindings which complicates interoperability in heterogeneous
deployments. It is noteworthy that this requires unique endpoint
names for clients that participate in a network.

After reception of the access request, the server verifies if the
client is entitled to obtain the requested access rights. This decision
depends on the application-logic. Commonly servers follow pre-
installed access policies or query the resource owner. On acceptance,
the server generates credentials and creates client accounts on both

clients. Thereafter, it modifies the client access control object of
the hosting client to enable the requesting client to access to the
required resource 4 & 5 . Once clients are in possession of the
credentials, if they are using (D)TLS-based security they perform
the handshake 6 , and if they use OSCORE the derive locally the
corresponding security contexts. Finally, authorized client-to-client
interactions can be performed 7 & 8 .

We present a mapping of the access request interface onto CoAP
transport, however, our approach naturally extends to other LwM2M
transport protocols. A requesting client performs an access request
operation sending a POST request on the path /ac to the LwM2M
server. The operation has two parameters passed as URI query
strings: (i) ep is mandatory and holds the endpoint client name of
the hosting client. (ii) c is optional and indicates if the requesting
client requires credentials to be installed in order to initiate secure
communications with the hosting client.

The requested access rights are included in the payload of the
request, encoded in LwM2M CBOR [4] format. A message can
contain multiple access requests to multiple objects and instances.

5 SECURITY ANALYSIS
Throughout the design of the proposed LwM2M extensions we
followed an iterative threat-driven approach, by performing a me-
thodical four-steps analysis of the security and privacy aspects
of the extensions: (i) asset identification and security properties
assignment (Section 5.1), (ii) attacker model building (Section 5.2),
(iii) attack surfaces analysis (Section 5.3), (iv) threat analysis, which
lead to protocol improvements. In this section, we present each
step of the analysis and the outcome of the threat model, together
with mitigations.

5.1 Assets and Security Properties
In this step we enumerate the resources with security properties
that should be preserved, and that might be targeted by attackers.
We use the well known CIA(A) [21] descriptors as the space of
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Table 2: Threat model of the LwM2M client-to-client communication and third party authorization extensions.

No. Threat description Asset
(§5.1)

Adversary
(§5.2)

Surface
(§5.3)

CIAA
(§5.1) Mitigation

T0 Information Disclosure: Observing
unprotected operations attackers can
learn which resources may be hosted
and which are of interest.

App. config. /
Client

resources.

Local Unauthorized request /
Server hints.

CO Sensitive content should be avoided
on unauthorized requests.

T1 DoS: Open DTLS port on a client is
used for message amplification to per-
form a denial of service attack.

Operational
resources.

Remote Open client DTLS port. AV The DTLS server sends out a
HelloVerifyRequest message
during handshake.

T2 Elevation of privilege: A server can-
not revoke client access to a resource,
elevating its privilege, because incom-
ing communication is jammed.

Hosted
resources.

Local Extended device
management interface

CO Lifetime parameter in the client secu-
rity object defines maximum period of
access.

T3 Tampering: A requesting client re-
ceives invalid server hints, which
might point to a rogue or compro-
mised server.

Owner
server URI.

Local Server hints IN LwM2M clients only consider for
access requests LwM2M servers to
which they are already registered.

security properties: Confidentiality (CO), Integrity (IN), Availability
(AV), and Authenticity (AU).
Application configuration (CO, IN). Considers the node be-
haviours and their relations with other clients and servers, e.g., the
interest of client 𝐶3 in resource R hosted by client 𝐶1.
Owner server URI (IN). Identity of a resource owner, e.g., the
server that assigns access rights. It is worth noting, however, that
confidentiality of the owner server URI is not expected, as it is
usually sent over un-protected communication channels between
clients.
Client access rights (CO, IN). Access grants of requesting clients
to resources on hosting clients, e.g., permissions that the owner
server grants a client 𝐶3 on resources hosted by client 𝐶1.
Client credentials (CO, IN, AU). Key material used for secure
communication, e.g., the pre-shared key of a client.
Hosted client resources (CO, IN). LwM2M resources on a host-
ing client, e.g., the status of a light control object.
Device operational resources (CO, IN, AV, AU). The preser-
vation of networking-, computational-, battery-, and memory re-
sources, i.e., a device that hosts/operates on a resource R remains
in operation.

In addition to preserving the aforementioned asset properties,
we must consider the LwM2M security requirements defined in
[33, Sect. 5.1], which apply across all transport bindings. They
state that (i) messages must be replay protected, (ii) requests and
responses must be bound, (iii) freshness must be verifiable for
certain operations, (iv) secure fragmentation must be supported,
(v) data from clients and servers must be encrypted and integrity
protected and (vi) clients and servers must be authenticated prior
to data exchange.

5.2 Attacker Model
Our attacker model assumes that adversaries are not in possession
of valid credentials required for mutual authentication with the
server or clients. We identify two attacker groups:
Remote attackers access nodes remotely through the network.
They may be capable of eavesdropping messages transmitted be-
tween clients and servers but have no access to the local client
network. These attackers try to learn internals and use this in-
formation to compromise a device under attack. Therefore, they
impersonate hosting clients, requesting clients or LwM2M servers
by sending malicious messages via the LwM2M interfaces. Remote
attackers usually leverage protocol or software vulnerabilities to
manipulate sensitive processing tasks.
Local attackers have direct access to the local network. Addition-
ally to the capabilities of a remote attacker, local ones may intercept,
modify and replay messages among clients on the local area net-
work (usually wirelessly). Attackers who apply advanced hardware
access techniques to manipulate secret information directly from
the silicon are not in the scope of this analysis.
On peer-to-peer attacks. LwM2M deployments are commonly
composed of heterogeneous embedded devices with specific capabil-
ities, resources and tasks that are all part of a single administrative
domain. Even though we analyse direct communication between
LwM2M clients, these networks are not equivalent to traditional
peer-to-peer (P2P) systems, which run on independent responsi-
bilities. Consequently, we consider typical P2P attacks out of the
scope for this analysis. As an example, rational attacks would not
apply because nodes participating in the LwM2M deployment are
naturally cooperating (i.e., they expose their resources and share
via the LWM2M server).
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5.3 Attack Surfaces
Attack surfaces are potential entry points that can be leveraged by
adversaries to perform attacks against the system assets. Here, we
analyse the attack surfaces of the LwM2M extensions.
Open DTLS port on client. To allow secure DTLS-based trans-
port among clients, these need to accept incoming session hand-
shakes, similarly to LwM2M servers. It is noteworthy, however,
that OSCORE [28] as the alternative secure transport requires no
handshake.
Extended device management interface. Not only servers, but
also other clients, can access client resources. The increased num-
ber of accessing devices, which can be potentially compromised,
enlarges this attack surface compared to server-centric LwM2M
deployments.
Unauthorized resource request. In order to learn which server
owns access rights to a resource, requesting clients may perform
unauthorized requests, which often occur over non-secured trans-
ports.
Server hints. In response to an unauthorized request, a hosting
client responds with the owner server hints, which may be sent in
clear text prior to establishing a secure transport.

5.4 Threat Model
Table 2 presents a series of threats that we identify based on the for-
mer analysis of assets, adversaries, and attack surfaces. To classify
the threats we follow the STRIDE framework [14] which defines
six categories of security threats: Spoofing identity (S), Tampering
with data (T), Repudiation (R), Information disclosure (I), Denial of
service (D) and Elevation of privilege (E).

T0 describes a threat in which an attacker, who eavesdrops an
unprotected unauthorized resource request, acquires information
about a possible resource hosted by the LwM2M client and the
interest of the requesting client on it. An attacker learning this in-
formation may raise a privacy issue, thus, requesting clients should
avoid sending sensitive payload on unprotected unauthorized re-
quest (e.g., only perform read operations), and hosting clients should
keep response codes generic. In cases where particular resource
URIs must not be revealed, a requesting client can perform an ini-
tial request to a non-sensitive resource to get the owner server
hints, from which it can request initial credentials. After the se-
cure channel has been established, the sensitive request can be
performed.

T1 is identified as a threat introduced by the extensions, because
in a server-centric LwM2M deployment clients would not play the
server role during a DTLS handshake, and could be configured to
simply ignore them, when using DTLS-based security. One pos-
sible mitigation is to use the HelloVerifyRequest message with
a stateless cookie, making the usage of spoofed IP addresses for
DoS attacks difficult. Another strategy is to establish a limit for
incoming requests.

T2 and T3 are mitigated by design in the proposed LwM2M exten-
sions. T2 considers a situation in which an access right revocation
message does not arrive to the hosting client, either because an
attacker blocks it or because of the lossy nature of the networks.
This results in an elevation of privileges for the requesting client,

who keeps the access beyond the intended period. By assigning a
lifetime to the distributed credentials the impact of such an attack
is reduced, at the cost of an increased traffic generated by periodic
authorization requests. T3 considers the case of invalid server hints,
which are sent to a requesting client (e.g., injected by a local at-
tacker) and could point to a compromised or rouge LwM2M server.
A requesting client should only consider known servers as valid
owners to request access credentials.

Now we analyse the compliance of the extensions with the
LwM2M security requirements (listed in Section 5.1). As C2C com-
munication is not considered in the specification, we give the re-
quirements a broad scope to consider data exchanged among clients
as well. Requirements (i) through (iv) are fulfilled by the under-
lying transport bindings, as we utilize the same ones as in stan-
dard LwM2M deployments for C2C communication. Messages ex-
changed over the extended device management and access request
interfaces are encrypted and integrity protected (requirement (v))
by both OSCORE and DTLS. Moreover, these protocols also provide
mutual authentication (requirement (vi)) to clients when perform-
ing operations on the extended interface. The only messages sent
prior to mutual authentication, and that are not encrypted nor in-
tegrity protected, are the initial unauthorized resource request and
the server hints. We have already described the impact of this and
provided mitigations to reduce the exposure through this surface.
Only the URIs of the requested resource and LwM2M servers would
be sent over unprotected transport, and no critical information
would be disclosed. In the case when a particular application can-
not afford such disclosure, LwM2M clients can be pre-provisioned
with credentials and still establish a C2C communication. Thus,
we conclude that the extensions comply with the LwM2M security
requirements.

6 PERFORMANCE EVALUATION
In this section, we compare our proposal, client-to-client communi-
cation and authorization, with the current client-server architecture
in LwM2M. We analyze memory consumption, transmission delays,
and maximum goodput, based on experiments on real hardware.
Our experiments are guided by the use cases of edge processing and
distributed application logic in single- and multi-hop deployments.

6.1 Experiment Setup
Hardware and Software. We conduct our experiments by deploy-
ing real implementations on the FIT IoT-LAB testbed, using off-the-
shelf class 2 IoT devices [3] that feature ARM Cortex-M3 MCUs run-
ning at 72 MHz, with 64 KiB of RAM and 512 KiB of ROM, equipped
with IEEE 802.15.4-compatible Atmel AT86RF231 transceivers.

The firmware that runs on the constrained IoT devices is based
on the operating system RIOT, version 2021.04. The LwM2M client
is implemented using Wakaama version 1.0, the heap, needed by
Wakaama, with the Two-Level Segregated Fit (TLSF) allocator. In
terms of security support, we consider both OSCORE (the current
main branch of uOSCORE) and DTLS (current development branch
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Figure 4: Memory requirements of LwM2M client modules ( 4a) and heap usage by requesting client and hosting client ( 4b).

of tinyDTLS). On the LwM2M server side, we use the implementa-
tion Leshan, version 1.3.1, which runs on a Dell PowerEdge R6525
server with two AMD EPYC 7702 processors and 512 GB of RAM.
Configuration and Startup. In all DTLS and OSCORE deploy-
ments, we use AES in CCM mode with a 128-bit key, an authentica-
tion tag of 8 bytes, and pre-shared keys (PSK) suites. The testbed
hardware does not feature a hardware random number generator.
To generate the initial CoAP message ID, we use the SRAM-based
physically unclonable function (PUF) [13] as entropy source to seed
the RIOT pseudo random number generator.
Deployment Scenarios. To compare the performance of C2C ver-
sus server-centric communication, we deploy multiple topologies
running three scenarios: (i) server-centric, (ii) C2C using DTLS se-
curity, (iii) C2C using OSCORE security. In all scenarios, a hosting
client produces a 5-bytes data every second, which should reach a
requesting client. We focused our experiments on the observation
of resource updates, as it is, for the typically deployed low-power
sleepy devices, a more common approach than constant polling. In
scenario (i), a centralized application interacts with the LwM2M
server via an HTTP API and observes the sensor resource, writing
new values to another client upon update notifications. In scenarios
(ii) & (iii), the application logic is decentralized, i.e., the request-
ing client observes the sensor resource in the hosting client, thus,
receiving periodic notifications directly.

6.2 Firmware Size
Figure 4a presents memory requirements for three configurations
of the LwM2M client firmware: (i) baseline (no extensions), (ii) C2C
extension enabled, and (iii) C2C + Auth extensions enabled. Mea-
surements are separated into ROM, which considers the code seg-
ment and variables initial values (text + data segment), and RAM,
which includes (un-)initialized global variables (bss + data seg-
ment). ROM and RAM consumption of the LwM2M core module
remain unaffected across configurations and require ≈ 11 KiB ROM
and 5KiB RAM, including the RAM memory pool used by the heap
allocator. Similarly, utilities modules are fundamentally constant,

however, our Auth extension adds 460 bytes of ROM for introduc-
ing CBOR encoding which would also benefit the pure Wakaama
baseline implementation.

Due to the functional similarities between the newly introduced
LWM2M objects and their existing counterparts, we are able to
reutilize most of the code (i.e., no extra C object files are compiled
for the new LwM2M objects), only with slight size increments to
accommodate the extra logic. The size of security, access control,
and server objects increase by ≈ 100 bytes, 110 bytes, and 200 bytes
in ROM, and ≈ 40, 40 and 170 bytes in RAM, due to the additional
states to handle client security, client access control, and client
objects. The client handling module is responsible for connections
and requesting client operations, which adds 970 bytes in ROM
within the C2C extension, and additional 310 bytes with the Auth
extension, for additional logic of connection handling and client
credential management. The C2C and Auth modules use 1230 and
910 extra bytes of ROM, while no extra RAM in needed, since
connection states are stored in the security and server objects.
Memory requirements that correspond to the OS, network stack,
and drivers have a constant memory offset across configurations
(not displayed in Figure 4a), however, we indicate the percentage of
our LwM2M client modules to the total firmware size. In summary,
the LwM2M proportions conform ≈ 20 % of the ROM and ≈ 33 % of
the RAM in comparison to the total image, which is around 125 KiB
in ROM and 31KiB in RAM.

We conclude that the pure overhead of our C2C extension in-
creases total ROM image size by only ≈3.3 % and RAM by 0.9 %,
while the Auth extension requires additional ≈ 5.0 % of ROM and
no extra RAM. This is in line with our goal to maximize code re-
utilization.

6.3 Heap Usage
Figure 4b illustrates heap usage on two clients, separated into three
phases: Initialization & registration, authorization request, and
C2C access. The top half of the figure corresponds to a LwM2M
requesting client, and the bottom half to a LwM2M hosting client.
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We exclude the LwM2M server memory consumption, since it does
not suffer from memory constraints. Overall, heap requirements
range from ≈ 300–1100 bytes on constrained nodes.

The usage pattern during initialization & registration (00.00–
00.35 seconds) is similar for both clients, however, the requesting
client requires additional ≈ 80 bytes to allocate a structure that
holds initial information about the LwM2M hosting client. This
memory is required for every hosting client to which the requesting
client connects. In contrast, the host has no prior knowledge of
a requesting client. At 10 seconds, the requesting client initiates
an authorization request to the server which requires memory for
the state of a CoAP request. A spike in the graph at 10.03 seconds
corresponds to temporary memory used for the CBOR message
encoding. Between 10.10–10.38 seconds, spikes in both graphs cor-
respond to read and write operations on the resources, performed
by the server, which installs credentials and access rights. After
the authorization request has finalized, at 10.40 seconds, the re-
questing client de-allocates its state and memory usage returns to a
new baseline slightly higher than the previous one, because of the
new client information that Wakaama needs to allocate internally.
The requesting client starts a DTLS handshake with the hosting
client at 14.02 seconds. An increment of ≈ 100 bytes reflects an ac-
tive DTLS connection, that has to be allocated and kept for every
host, until the connection closes. Finally, at 14.28 seconds, a C2C
read operation allocates ≈ 200 bytes state on the requesting client.
Upon reception, at 14.34 seconds, the hosting client allocates heap
memory for the new DTLS connection (≈ 100 bytes similarly to the
requesting client on handshake) and utilizes temporary memory to
format the response message.

6.4 Packet sizes
Nowwe dissect the packets that constitute the authorization request
flow and a C2C read operation, using both DTLS and OSCORE
security, as shown in Figure 5.

Themaximumdata unit size of the IEEE 802.15.4 2.4 GHz physical
layer is 127 bytes. Considering the sizes of the 8-bytes destination
and source hardware addresses, 2-bytes frame control field, 1-byte
sequence number, 2-bytes personal area network (PAN) ID, and 2-
bytes frame check sequence (FCS), the MAC header adds to 23 bytes,

Figure 6: A variable number of forwarders to determine the
impact of multihop on server-centric LwM2M deployments.

which allows up to 104 bytes to be transmitted by the upper layers.
A total of 41 bytes are used by the 6LoWPAN layer, as it requires
2 bytes to accommodate the IP header compression, 1 for the hop
limit, 32 for both IPv6 addresses, and 6 to encode the compressed
UDP header.

The authorization request is for read access on one object in-
stance, encoded in CBOR as detailed in Section 4.2. During creden-
tial distribution the authorization request, client and access control
object instantiation messages are common across transports. On
the other hand, the content of the security object instantiation mes-
sage only holds credentials when using CoAP over DTLS (DTLS
security), as OSCORE credentials are distributed separately in its
own OSCORE object. All messages in this process trigger 6LoW-
PAN fragmentation as they are bigger than the physical data unit.
The object instantiations and the content messages are encoded
in LwM2M TLV, because of the current support in Wakaama. The
OSCORE read and content packets are respectively 15 and 21 bytes
smaller than the DTLS counterpart, due to the bigger size of the
DTLS record layer compared to the OSCORE header.

6.5 Time to resource update
We analyse the times between the generation of a new resource
value in a hosting client and its arrival at a requesting client on all
deployment scenarios. The topology for this experiment consists of
LwM2M clients connected to the LwM2M server through a gateway
and a varying number of intermediate forwarder nodes, as shown
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Figure 7: Temporal distributions of notification arrival ( 7a) and authorization request followed by first C2C operation ( 7b).

in Figure 6. We vary forwarders to quantify the impact of extra
hops when using the server-centric LwM2M deployment. Figure 7a
shows the results for C2C and server-centric communication for
different amount of hops between the gateway and the clients. To
reduce the impact of the variable delay introduced by the Inter-
net connection between the gateway and the LwM2M server, we
first subtracted this time from the server-centric measurements,
and then offset them by the median Internet delay of across all
experiments (≈ 78 ms), which was measured by timestamping the
packets from and to the gateway. We observe a reduction of ≈ 90%
in the notification delay when using C2C communication compared
to the server-centric single-hop scenario. The extra time required
in the latter scenario is explained by the overhead of the ’write’
operations from the LwM2M server to the client and the delays of
the connection between the gateway and the server. The impact
of additional hops is of ≈ 15 ms delay per hop when communicat-
ing through the server, which is consistent with typical 6LoWPAN
times.

Now we consider a second setup where the requesting client first
performs an authorization request to the LwM2M server and then a
C2C read operation. The entire credential distribution is composed
of 5 operations: (i) authorization request, instantiation of (ii) client
object, (iii) client security object and (iv) client access control object
in hosting client, (v) update of the client security object instance in
requesting client.

Figure 7b shows that ≈ 50% of the DTLS credential distributions
are completed in less than 1 second without needing CoAP retrans-
missions, while within 4 seconds most of the DTLS credentials
distributions are successful. We observe that distributing OSCORE
credentials takes slightly longer and needs a second retransmis-
sion for ≈ 15% of the cases, due to the instantiation of one more
object compared to DTLS credentials (the OSCORE object). We can
observe a stair-case pattern caused by CoAP retransmissions that
reflects the default configuration of a 2-seconds ACK timeout [30].
Once credentials are distributed, the initial C2C read operation
using OSCORE takes ≈ 10 ms, while the initial DTLS handshake
raises this time to between 140 and 160 ms.

Next, we look at the effective goodput achieved across deploy-
ment scenarios, summarized in Figure 8. For this experiment, a
hosting client sends 5.000 notifications at varying intervals, con-
figuring the radios at 250 Kbit/s and 2000 Kbit/s (minimum and
maximum available values respectively). The resulting goodput
measurements are depicted using box plots, next to the theoretical
optimum (dashed lines). For each interval the rate of successfully
delivered notifications is plotted as well. We can observe an almost
optimal behaviour in both C2C scenarios, with a steady delivery
rate close to 100%, which only starts to degrade when approaching
10 ms intervals. This is in line with the times shown in Figure 7a.
On the other hand, the server-centric scenario reveals a maximum
LwM2M payload goodput of ≈ 50 B/s, and a degradation of the
delivery rate for intervals bellow 100 ms, which is in concordance
with the notification arrival times we observed before. When uti-
lizing a higher radio data rate we observe a slight improvement in
the delivery rates and less dispersion in the goodput values. We
attribute this to a lower probability of packet collision.

Finally, to simulate a more realistic and less controlled topology,
we construct six topologies of 20 randomly selected nodes each. The
constraints for the selection algorithm are a minimum distance of
2.2 m and a maximum of 6.6 m between nodes, which has resulted
in a sufficiently reliable communication for our measurements. For
each topology, the hosting client and the requesting client are also
randomly chosen. Figure 10 depicts the randomly built topologies
and the number of hops between the nodes of interest. We measure
the notification completion times for the three previously-described
deployment scenarios, and observe that C2C performs between 60%
and 90% faster than server-centric communication.

6.6 Energy consumption
For the topologies depicted in Figure 6 we now measure the energy
consumption while sending notifications to a requesting client. Fig-
ure 9 shows the energy consumption aggregated through all nodes
but the gateway, which was not considered energy-constrained
due to its wired connection. We observe that the main impact in
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energy consumption occurs when increasing the number of inter-
vening nodes, and that C2C deployments, at ≈ 42.9 J, pay no energy
overhead for the features, nor for the simultaneous utilization of
DTLS and OSCORE. Moreover, the right side of Figure 9 shows
that forwarder nodes require ≈ 12% more power than hosts and
requesters. We can conclude that C2C communication helps relax-
ing the overall energy requirements in LwM2M deployments by
reducing the amount of intermediate forwarder nodes.

7 RELATEDWORK
Edge computing and device-to-device communication. IoT
deployments have shown a shift from centralized cloud comput-
ing paradigms towards distributed architectures that augment the
edge of the network [31] by producing and consuming data locally
in an autonomous fashion. Edge Mesh [25] proposes a paradigm
where decision-making and task distribution are moved to edge
devices. Costa et al. [5] propose a middleware to share a tuple space
among wireless sensors. Following the same direction, Whitehouse
et al. [39] and Lachenmann et al. [16] present neighborhood pro-
gramming abstractions for wireless sensor networks to share state
among them. Shang et al. [29] show how named data network-
ing architecture allows building IoT applications with local trust
management and inter-vendor interoperability, while staying inde-
pendent of constant cloud connectivity. Although these proposals
focus on enabling decentralized IoT deployments, they define their
own interaction and datamodels. In this paper, we focus on LwM2M,
as it is a highly deployed management protocol. Tracey et al. [35]
propose a peer-to-peer architecture based on a distributed hash
table, which they further develop in [37]. Although they integrate
the developed tuple-based library in a LwM2M implementation

[36], no analysis is performed on the performance impact of such
integration on a LwM2M deployment.
LwM2Mextensions. The interoperability provided by the LwM2M
protocol makes it an appealing solution for heterogeneous IoT de-
ployments, thus, multiple extension proposals have been made
to expand its capabilities and increase its performance. Given the
lossy nature of IoT networks and the reduced energy availability,
there are proposals to reduce the traffic between clients and servers.
Karaagac et al. [12] define a LwM2M object that allows LwM2M
servers to perform batched operations on clients, thus, reducing
the amount of sent messages. In addition, different LwM2M proxy
entities [24] [22] have been proposed. They can perform group
operations across multiple clients, cache and aggregate responses
and apply compression mechanisms to the messages. We argue that
the addition of intermediate proxies in LwM2M networks increases
deployment costs and complexity. Although these solutions reduce
the bytes transferred between client and server on certain scenarios,
they do not provide direct interaction among clients, thus, they do
not enable autonomous deployments with distributed IoT applica-
tions, which is described by Jimenez in [11] as a lacking feature in
the LwM2M specification.
Authentication in the IoT.With an increasing direct communica-
tion between constrained IoT devices, the need for mutual authenti-
cation and authorization [26] arises. Markmann et al. [18] propose
a lightweight federation scheme that binds device authentication to
network attachment. Vučinić et al. [38] propose theOSCAR architec-
ture, based on object security and the distribution of access secrets
to request resources from other nodes. However, the existence of a
secret per access group imposes high memory requirements when
a fine-grained access control is required. Moreover, the usage of the
same secret access across consumers complicates access revocation.
AoT [19, 20] proposes a suite of protocols to perform attribute-based
access control and authentication throughout the life-cycle of IoT
devices. Their analysis suggests that the imposed communication
overhead may not be well-suited for limited bandwidth networks,
as it would produce a big amount a packet fragmentation, which
could lead to packet loss. Xi et al. [40] propose an authentication
and key agreement mechanism to enable device-to-device com-
munication, which allows deriving common secrets based on the
radio environment. The IETF is developing ACE-OAuth [27], an au-
thentication and authorization framework based on OAuth 2.0 and
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CoAP, where devices request access tokens and credentials from
authorization servers, which are used to access resources on other
devices. This delegates access control and policies to centralized
servers. Although integrating such mechanisms into LwM2M may
be feasible, in this paper we focus on reutilizing the already existing
key distribution and access control mechanisms in LwM2M.

8 CONCLUSION AND OUTLOOK
In this paper, we started from the observation that device man-
agement and provisioning is challenging but required in the con-
strained IoT. Popular solutions such as LwM2M avoid this challenge
by involving servers when sensors need to communicate with ac-
tuators. This triangular message forwarding requires upstream
connectivity where local communication is sufficient.

We designed and implemented client-to-client communication.
Instead of starting completely from scratch, our solution purpose-
fully extends LwM2M. We provided a detailed security analysis,
including an attacker and threat model, which showed that our
proposal complies with LwM2M security requirements but aban-
dons the server-centric perspective. Our performance analysis, con-
ducted in a multi-hop testbed, showed that client-to-client com-
munication leads to shorter data arrival times (up to ≈ 90% on
single-hop topologies) and higher and reliable goodput (≈ 8× when
notifying resource updates) compared to the server-centric com-
munication, but only introduces little overhead (≈ 8% in ROM and
≈ 0.9% in RAM). Our findings indicated that client-to-client com-
munication may lead to almost optimal data delivery.

In the future, we plan to apply the principles derived in this work
on other management protocols. We also aim for further improve-
ments of our proposal. Link Bindings [15] allow to dynamically

link state updates between resources, allowing to define distributed
behaviours. By utilizing Group OSCORE [34] or its data-centric
variants [7] a LwM2M client could potentially reduce the number
of outgoing notifications when multiple observations exist on the
same resources. The emerging lightweight authorization and au-
thentication framework ACE OAuth may be deployed in parallel
to the existing key distribution and access control mechanisms of
LwM2M.

ARTIFACTS
We conducted all our experiments based on open source software
and an open access testbed. Source code and documentation are
available on Github: http://github.com/inetrg/ipsn-2022-lwm2mc2c.

ACKNOWLEDGMENTS
We would like to thank our anonymous shepherd and reviewers
for their valuable feedback. This work was partly supported by the
German Federal Ministry of Education and Research (BMBF) within
the project PIVOT.

REFERENCES
[1] Christian Amsuess, Zach Shelby, Michael Koster, Carsten Bormann, and Peter

van der Stok. 2020. CoRE Resource Directory. Internet-Draft – work in progress 26.
IETF.

[2] Emmanuel Baccelli, Cenk Gündogan, Oliver Hahm, Peter Kietzmann, Martine
Lenders, Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias
Wählisch. 2018. RIOT: an Open Source Operating System for Low-end Embedded
Devices in the IoT. IEEE Internet of Things Journal 5, 6 (December 2018), 4428–
4440. http://dx.doi.org/10.1109/JIOT.2018.2815038

[3] C. Bormann, M. Ersue, and A. Keranen. 2014. Terminology for Constrained-Node
Networks. RFC 7228. IETF.

[4] C. Bormann and P. Hoffman. 2013. Concise Binary Object Representation (CBOR).
RFC 7049. IETF.

http://github.com/inetrg/ipsn-2022-lwm2mc2c
http://dx.doi.org/10.1109/JIOT.2018.2815038


Secure and Authorized Client-to-Client Communication for LwM2M IPSN ’22, May 4–6, 2022, Milan, Italy

[5] Paolo Costa, Luca Mottola, Amy L. Murphy, and Gian Pietro Picco. 2006.
TeenyLIME: Transiently Shared Tuple Space Middleware for Wireless Sensor
Networks. In Proceedings of the International Workshop on Middleware for Sen-
sor Networks (Melbourne, Australia) (MidSens ’06). Association for Computing
Machinery, New York, NY, USA, 43–48.

[6] Roy T. Fielding and Richard N. Taylor. 2000. Principled Design of the ModernWeb
Architecture. In Proc. of the 22Nd International Conference on Software Engineering
(Limerick, Ireland) (ICSE ’00). ACM, New York, NY, USA, 407–416.

[7] Cenk Gündogan, Christian Amsüss, Thomas C. Schmidt, and Matthias Wählisch.
2021. Group Communication with OSCORE: RESTful Multiparty Access to a Data-
Centric Web of Things. In Proc. of the 46th IEEE Conference on Local Computer
Networks (LCN) (Edmonton, Canada). IEEE Press, Piscataway, NJ, USA, 399–402.
https://doi.org/10.1109/LCN52139.2021.9525000

[8] Cenk Gündogan, Peter Kietzmann, Martine S. Lenders, Hauke Petersen, Michael
Frey, Thomas C. Schmidt, Felix Shzu-Juraschek, and Matthias Wählisch. 2021.
The Impact of Networking Protocols on Massive M2M Communication in the
Industrial IoT. IEEE Transactions on Network and Service Management (TNSM) 18,
4 (Dec. 2021), 4814–4828. https://doi.org/10.1109/TNSM.2021.3089549

[9] Jungha Hong, Yong-Geun Hong, Xavier de Foy, Matthias Kovatsch, Eve Schooler,
and Dirk Kutscher. 2022. IoT Edge Challenges and Functions. Internet-Draft –
work in progress 04. IETF.

[10] International Society of Automation. 2011. Wireless Systems for Industrial Au-
tomation: Process Control and Related Applications. Technical Report Standard
ISA-100.11a-2011. ISA.

[11] Jaime Jimenez. 2016. CoAP functionality expected in a LWM2M system. Internet-
Draft – work in progress 00. IETF.

[12] Abdulkadir Karaagac, Matthias VanEeghem, Jen Rossev, Bart Moons, Eli De-
Poorter, and Jeroen Hoebeke. 2018. Extensions to LwM2M for Intermittent
Connectivity and Improved Efficiency. In 2018 IEEE Conference on Standards for
Communications and Networking (CSCN). IEEE, Paris, France, 1–6.

[13] Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch. 2021. A Guideline
on Pseudorandom Number Generation (PRNG) in the IoT. ACM Comput. Surv.
54, 6 (July 2021), 112:1–112:38. https://dl.acm.org/doi/10.1145/3453159

[14] Loren Kohnfelder and Praerit Garg. 1999. The threats to our products. Technical
Report. Microsoft. https://adam.shostack.org/microsoft/The-Threats-To-Our-
Products.docx

[15] Michael Koster and Bill Silverajan. 2021. Dynamic Resource Linking for Constrained
RESTful Environments. Internet-Draft – work in progress 14. IETF.

[16] Andreas Lachenmann, Pedro Marrón, Daniel Minder, Olga Saukh, Matthias
Gauger, and Kurt Rothermel. 2007. Versatile Support for Efficient Neighbor-
hood Data Sharing. In: Langendoen, Koen (ed.); Voigt, Thiemo (ed.): Proceedings of
the 4th European Conference on Wireless Sensor Networks (EWSN 2007), pp. 1-16
4373.

[17] Leandro Lanzieri, Peter Kietzmann, Thomas C. Schmidt, and Matthias Wählisch.
2021. Poster Abstract: Third Party Authorization of LwM2M Clients. In Proc. of
ACM/IEEE Int. Conf. on Internet of Things Design and Implementation (IoTDI ’21)
(Virtual). ACM, New York, NY, USA, 263–264. https://doi.org/10.1145/3450268.
3453512

[18] Tobias Markmann, Thomas C. Schmidt, and Matthias Wählisch. 2015. Federated
End-to-End Authentication for the Constrained Internet of Things using IBC
and ECC. In Proc. of ACM SIGCOMM, Poster Session (London). ACM, New York,
603–604. http://dx.doi.org/10.1145/2785956.2790021

[19] Antonio L. Maia Neto, Yuri L. Pereira, Artur L. F. Souza, Italo Cunha, and
Leonardo B. Oliveira. 2018. Demo Abstract: Attributed-Based Authentication
and Access Control for IoT Home Devices. In 2018 17th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN). 112–113.

[20] Antonio L. Maia Neto, Artur L. F. Souza, Italo Cunha, Michele Nogueira,
Ivan Oliveira Nunes, Leonardo Cotta, Nicolas Gentille, Antonio A. F. Loureiro,
Diego F. Aranha, Harsh Kupwade Patil, and Leonardo B. Oliveira. 2016. AoT: Au-
thentication and Access Control for the Entire IoT Device Life-Cycle. In Proceed-
ings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM

(Stanford, CA, USA) (SenSys ’16). Association for Computing Machinery, New
York, NY, USA, 1–15.

[21] NIST. 2004. Standards for Security Categorization of Federal Information and
Information Systems. Technical Report FIPS-199. National Institute of Standards
and Technology, Gaithersburg, MD, US.

[22] Martina Pappalardo, Giacomo Tanganelli, and Enzo Mingozzi. 2020. Enhanced
Support of LWM2M in Low Power and Lossy Networks. In 2020 IEEE International
Conference on Smart Computing (SMARTCOMP). 344–349.

[23] E. Rescorla and N. Modadugu. 2012. Datagram Transport Layer Security Version
1.2. RFC 6347. IETF.

[24] Maria Ines Robles, Domenico D’Ambrosio, Jaime Jimenez Bolonio, and Miika
Komu. 2016. Device group management in constrained networks. In 2016 IEEE
International Conference on Pervasive Computing and Communication Workshops
(PerCom Workshops). IEEE, Sydney, NSW, Australia, 1–6.

[25] Yuvraj Sahni, Jiannong Cao, Shigeng Zhang, and Lei Yang. 2017. Edge Mesh: A
New Paradigm to Enable Distributed Intelligence in Internet of Things. IEEE
Access 5 (2017), 16441–16458.

[26] L. Seitz, S. Gerdes, G. Selander, M. Mani, and S. Kumar. 2016. Use Cases for
Authentication and Authorization in Constrained Environments. RFC 7744. IETF.

[27] Ludwig Seitz, Goeran Selander, Erik Wahlstroem, Samuel Erdtman, and Hannes
Tschofenig. 2021. Authentication and Authorization for Constrained Environments
(ACE) using the OAuth 2.0 Framework (ACE-OAuth). Internet-Draft – work in
progress 46. IETF.

[28] G. Selander, J. Mattsson, F. Palombini, and L. Seitz. 2019. Object Security for
Constrained RESTful Environments (OSCORE). RFC 8613. IETF.

[29] Wentao Shang, Zhehao Wang, Alexander Afanasyev, Jeff Burke, and Lixia Zhang.
2017. Breaking out of the Cloud: Local Trust Management and Rendezvous in
Named Data Networking of Things. In Proceedings of the Second International
Conference on Internet-of-Things Design and Implementation (Pittsburgh, PA, USA)
(IoTDI ’17). Association for Computing Machinery, New York, NY, USA, 3–13.

[30] Z. Shelby, K. Hartke, and C. Bormann. 2014. The Constrained Application Protocol
(CoAP). RFC 7252. IETF.

[31] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646.

[32] OMA SpecWorks. 2020. Lightweight Machine to Machine Technical Specification:
Core v1.2. Technical Report.

[33] OMA SpecWorks. 2020. Lightweight Machine to Machine Technical Specification:
Transport Bindings v1.2. Technical Report.

[34] Marco Tiloca, Goeran Selander, Francesca Palombini, John Mattsson, and Jiye
Park. 2021. Group OSCORE - Secure Group Communication for CoAP. Internet-
Draft – work in progress 13. IETF.

[35] David Tracey and Cormac Sreenan. 2013. A Holistic Architecture for the Internet
of Things, Sensing Services and Big Data. In 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing. 546–553.

[36] David Tracey and Cormac Sreenan. 2017. OMA LWM2M in a holistic architec-
ture for the Internet of Things. In 2017 IEEE 14th International Conference on
Networking, Sensing and Control (ICNSC). 198–203.

[37] David Tracey and Cormac Sreenan. 2019. Using a DHT in a Peer to Peer Archi-
tecture for the Internet of Things. In 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). IEEE, Limerick, Ireland, 560–565.

[38] Mališa Vučinić, Bernard Tourancheau, Franck Rousseau, Andrzej Duda, Laurent
Damon, and Roberto Guizzetti. 2015. OSCAR: Object security architecture for
the Internet of Things. Ad Hoc Networks 32 (2015), 3–16.

[39] Kamin Whitehouse, Cory Sharp, David Culler, and Eric Brewer. 2004. Hood: A
Neighborhood Abstraction for Sensor Networks. MobiSys 2004 - Second Interna-
tional Conference on Mobile Systems, Applications and Services.

[40] Wei Xi, Chen Qian, Jinsong Han, Kun Zhao, Sheng Zhong, Xiang-Yang Li, and
Jizhong Zhao. 2016. Instant and Robust Authentication and Key Agreement
among Mobile Devices. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (Vienna, Austria) (CCS ’16). Association
for Computing Machinery, New York, NY, USA, 616–627.

https://doi.org/10.1109/LCN52139.2021.9525000
https://doi.org/10.1109/TNSM.2021.3089549
https://dl.acm.org/doi/10.1145/3453159
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://adam.shostack.org/microsoft/The-Threats-To-Our-Products.docx
https://doi.org/10.1145/3450268.3453512
https://doi.org/10.1145/3450268.3453512
http://dx.doi.org/10.1145/2785956.2790021

	Abstract
	1 Introduction
	2 Background on LwM2M
	3 Direct LwM2M Client Communication
	3.1 Client-to-client Objects
	3.2 Extended Interfaces and Access Control

	4 Third Party Authorization of LwM2M Clients
	4.1 Owner Server Hints
	4.2 Access Request Interface

	5 Security Analysis
	5.1 Assets and Security Properties
	5.2 Attacker Model
	5.3 Attack Surfaces
	5.4 Threat Model

	6 Performance Evaluation
	6.1 Experiment Setup
	6.2 Firmware Size
	6.3 Heap Usage
	6.4 Packet sizes
	6.5 Time to resource update
	6.6 Energy consumption

	7 Related Work
	8 Conclusion and Outlook
	Acknowledgments
	References

