
Asynchronous Distributed-Memory Triangle
Counting and LCC with RMA Caching

András Strausz∗, Flavio Vella†, Salvatore Di Girolamo‡, Maciej Besta‡ and Torsten Hoefler‡
∗‡Dept. of Computer Science, ETH Zürich, Zürich, Switzerland

†Dept. of Engineering and Computer Science, University of Trento, Trento, Italy
∗strausza@student.ethz.ch, †flavio.vella@unitn.it, ‡firstname.lastname@inf.ethz.ch

Abstract—Triangle count and local clustering coefficient are
two core metrics for graph analysis. They find broad application
in analyses such as community detection and link recommen-
dation. To cope with the computational and memory demands
that stem from the size of today’s graph datasets, distributed-
memory algorithms have to be developed. Current state-of-the-
art solutions suffer from synchronization overheads or expensive
pre-computations needed to distribute the graph, achieving
limited scaling capabilities. We propose a fully asynchronous
implementation for triangle counting and local clustering coef-
ficient based on 1D partitioning, using remote memory accesses
for transferring data and avoid synchronization. Additionally,
we show how these algorithms present data reuse on remote
memory accesses and how the overall communication time can be
improved by caching these accesses. Finally, we extend CLaMPI,
a software-layer caching system for MPI RMA, to include
application-specific scores for cached entries and influence the
eviction procedure to improve caching efficiency. Our results
show improvements on shared memory, and we achieve 14x
speedup from 4 to 64 nodes for the LiveJournal1 graph on
distributed memory. Moreover, we demonstrate how caching
remote accesses reduces total running time by up to 73%
with respect to a non-cached version. Finally, we compare our
implementation to TriC, the 2020 graph champion paper, and
achieve up to 100x faster results for scale-free graphs.

Index Terms—asynchronous computing, caching, distributed
computing, local clustering coefficient, RDMA, triangle counting

I. INTRODUCTION

Complex real-world systems can be modeled, analyzed,
and optimized through their respective graph representations.
These systems range from social networks [1], to biological
networks [2], to the full Internet [3]. Data mining, information
retrieval, recommendation systems, and fraud detection are just
a few applications of graph analysis [4]–[8].

The local clustering coefficient (LCC) [9] indicates the
likelihood that neighbors of a node are also neighbors to
each other, which has applications in the link prediction
problem [10]. In particular, this metric has been proven useful
in many applications, such as community detection [11], [12]
or link recommendation [13]. In the former case, LCC is used
to detect communities in, e.g., social networks, distinguishing
between vertices that are central to the cluster from others on
its frontier. In the latter, clustering coefficient is used to locate
thematic relationships by looking at the graph of hyperlinks.

The LCC of a vertex is given as the fraction of the pairs
of its neighbors that are themselves connected by an edge.
Figure 1 (left) shows an example of LCC scores on a toy graph.

0 20 40 60

256

64

16

4

1

LCC data reuse

Number of repeated reads (RMA gets)

R
ep

et
iti

on
s

0
1 2

3 4
5

Node B

Node A

RMA

Remote reads issued by rank 0.
Number of nodes: 2.

Graph: Facebook circles.
Vertices: 4'039; Edges: 88'234.

Fig. 1: LCC example and data reuse. Left: graph partitioned
between two compute nodes. The gradient of the vertices
indicates their LCC score. Dashed edges indicate RMA com-
munications needed to read adjacency lists from remote nodes.
Right: data reuse in social network graph [20].

Vertices with darker backgrounds have higher LCC. Given a
vertex, two of its neighbors contribute to its LCC score if
the three vertices form a triangle in the graph. Therefore, to
compute the LCC, one has to count the number of triangles
that are closed by its neighbors for every vertex.

With the rapid growth in the size of graphs to be analyzed,
both memory and computational capacities of a single machine
become insufficient to perform triangle counting (TC) analysis
on a single node. There are two main strategies to compute
TC in distributed memory: (1) by first computing overlapping
partitions that are necessary for local triangle counting or (2)
by issuing communications between processes. Current state-
of-the-art solutions [14]–[17] all follow either the Bulk Syn-
chronous Parallel model [18] or MapReduce [19] and suffer
from synchronization, as well as the overhead of computing
the partitioning of the graph. The 2020 graph champion paper
TriC [16] utilizes blocking all-to-all communication resulting
in synchronization overheads being as costly as communica-
tion. To minimize communication, DistTC [17] computes and
distributes shadow edges that are necessary for computing
triangles locally. This approach leads to a low computation
time but makes the total running time dominated by this pre-
computation step, similarly limiting scalability.

However, distributed triangle counting and local clustering
coefficient do not necessarily require synchronization. In fact,
as the graph is not updated during the computation, the dis-
tributed algorithm can be organized to let different processes
progress asynchronously while still storing only partitions
of the graph. We exploit this characteristic by proposing a

ar
X

iv
:2

20
2.

13
97

6v
2

 [
cs

.D
C

]
 1

 M
ar

 2
02

2

fully asynchronous solution that uses Remote Memory Access
(RMA) one-sided operations to read remote portions of the
graph without involving target nodes. For example, the graph
of Figure 1 (left) is distributed on two computing nodes. To
compute the LCC of vertex 1, node A reads the adjacency lists
of vertices 0 and 2 locally and the adjacency list of vertex 4
via RMA.

We notice how some RMA accesses are repeated and, in
principle, can be avoided to save communication time. For
example, when node A needs to compute the LCC of vertex
2, it will again read via RMA the adjacency list of vertex 4.
Figure 1 (right) shows the data reuse in a real-world graph
modeling social network circles [20]. The plot shows how
many remote reads (x-axis) are repeated y times when the
graph is partitioned among two computing nodes. We exploit
data reuse in the remote access pattern of LCC computations
by caching RMA accesses using CLaMPI [21], a transparent
caching layer for RMA. Moreover, we extend CLaMPI to
accept application-defined scores for cached entries and show
how this can improve caching efficiency.

All in all, in this work we:
• propose a distributed and fully asynchronous algorithm for

both triangle counting and LCC (Section III-A).
• introduce a hybrid strategy for triangle computation based

on the frontiers (Section III-C).
• show how data reuse in remote access patterns of LCC

computation can be exploited by caching RMA accesses
and reduce the overall communication time. We further
increase caching performance by introducing application-
defined scores for victim selection (Section III-B).

Our hybrid approach for the local computation of triangles
can improve performance by up to 8% on a CPU. We achieve
shared memory parallelism by computing the intersection in
parallel using OpenMP, leading to a speedup of up to 2.7×
using 16 threads compared to a sequential implementation.
On distributed memory, our non-cached algorithm achieves a
speedup of up to 14×. Moreover, we can reduce the total
running time using caching by up to 73% compared to a non-
cached version until the graph is not over-partitioned. Finally,
we show up to 100× better performance compared to TriC.

II. BACKGROUND

A. Notation

We denote an unweighted graph that contains no multi-
edges and loops as G = (V,E), where V is the set of
vertices and E ⊆ V × V the set of edges (|V | = n and
|E| = m). We will use vi to denote a vertex and eij for the
edge from vi to vj . We call the adjacency of vi the set of
vertices adj(vi) = {vj : eij ∈ E} and denote by A the
adjacency matrix of G. Moreover, we define the in-degree
of vi as deg−(vi) = |{vj : eji ∈ E}| and the out-degree as
deg+(vi) = |{vj : eij ∈ E}| (note, for a directed graph in and
out-degree equals). We use the symbol 4ijk for the triangle
that consists of the edges eij , eik and ejk. We will denote by
p the number of processes. For simplicity, we assume that p

TABLE I: Symbols used in the paper.

G = (V,E) A graph G where V , E are sets of vertices and edges.
n number of vertices.
deg+(vi) out-degree of vi.
deg−(vi) in-degree of vi.
adj(vi) adjacency of vertex vi.
A adjacency matrix of G.
4ijk a triangle including the edges eij , ejk, eik ∈ E
p number of computing nodes

is always a power of 2 and p divides n. A summary of the
notation used in the paper can be found in Table I.

B. Graph format

We consider graphs with no multi-edges and remove ver-
tices that have degree less than two, as they cannot be part of
any triangle. If the input graph is stored in a degree-ordered
format, we use a random relabeling to avoid assigning all the
highest degree vertices to the same process.

The graph is stored in the CSR (Compressed Sparse Row)
format (see Figure 2), where each process stores its partition
with the help of two arrays: offsets and adjacencies.
An element i of the offsets array stores the offset at which
adjacency list of vertex vi starts in the adjacencies array.

0 2 6

1 2 0 2 3 4 0 1 4

offsets

adjacencies

0 (v:0) 1 (v:1) 2 (v:2)

0 1 2 3 4 5 6 7 8

Fig. 2: Compressed Sparse Row (CSR) representation of the
subgraph stored on node A of Figure 1.

C. Triangle computation

We follow the edge-centric method for triangle counting and
compute the number of triangles that are closed by an edge
eij for every eij ∈ E. This is given by the number of common
neighbours, which can be formulated as |adj(vi) ∩ adj(vj)|.
We note that in the undirected case, the presence of a triangle
4ijk implies the presence of 4ikj . However, in the general
edge-centric method, both triangles are enumerated because
they lie on different edges. To reduce computation, this dou-
ble counting can be eliminated by offsetting the neighbor’s
adjacency to count the common elements only for the upper
triangle in the adjacency matrix, that is, for the set of vertices
{vk : vk ∈ adj(vj) ∧ j < k}.

For the computation of the intersection, we apply either
binary search or sorted set intersection (SSI), which proceed
for two sorted lists A and B with |A| ≤ |B| as follows:

1) Binary search: With binary search, the computation of
the intersection breaks down to issuing |A| lookups in a sorted
array of length |B| resulting in a running time complexity of
O(|A| · log(|B|)). To minimize this, one should always assign
the longer list as the search tree and the shorter one as the
array of keys.

Algorithm 1 Binary Search for A ∩B
1: function BINARYSEARCH(A,B)
2: counter, bottom← 0
3: top← |B| − 1
4: for all x ∈ A do
5: while bottom < top− 1 do
6: mid = b(top− bottom)/2c
7: if x < B[mid] then
8: top← mid
9: else if x > B[mid] then

10: bottom← mid
11: else
12: counter ← counter + 1
13: break

return counter

Algorithm 2 Sorted Set Intersection for A ∩B
1: function SSI(A,B)
2: counter ← 0
3: i, j ← 0
4: while i < |A| and j < |B| do
5: if A[i] == B[j] then
6: counter ← counter + 1
7: i← i+ 1
8: j ← j + 1
9: else if A[i] < B[j] then

10: i← i+ 1
11: else
12: j ← j + 1

return counter

2) Sorted Set Intersection: SSI traverses the two lists simul-
taneously by comparing the current elements and progressing
the array whose current element is smaller. If a common
element is found, it increments the counter and moves an
element in both arrays. Trivially, SSI computes the intersection
of two lists in O(|A|+ |B|).

The described algorithms are outlined in Algorithm 1 and
2. We emphasize that these methods assume sorted adjacency
lists, however, most graph datasets are already of this form.

D. Local Clustering Coefficient

The Local Clustering Coefficient of a vertex vi was defined
by Watts and Strogatz [9] as the proportion of existing edges
between the vertices adjacent to vi divided by the possible
number of edges that can exist between them. For directed
graphs, this can be computed as:

C(i) =
|{ejk : vj , vk ∈ adj(vi), ejk ∈ E}|

deg+(vi) · (deg+(vi)− 1)
(1)

Similarly, for an undirected graph:

C(i) =
2 · |{ejk : vj , vk ∈ adj(vi), ejk ∈ E}|

deg+(vi) · (deg+(vi)− 1)
(2)

For a pair of vertices {vj , vk}, in order to contribute to the
numerator, the edges eij , eik and ejk must exist, forming the
triangle 4ijk in G. Thus, if vertex degrees are known, LCC
can be computed by detecting, for every vertex, the number
of triangles in which they participate.

E. MPI-RMA

Remote Memory Access (RMA) operations are defined
by the MPI-3 standard [22] and enable MPI processes to
access memory regions of remote peers in a one-sided fashion.
When running on networks supporting remote direct memory
access (RDMA), RMA operations are naturally mapped to
the hardware interface (e.g., ibverbs [23], uGNI [24], [25]),
resulting in higher throughput and lower latency. While also
two-sided communications can benefit from a RDMA-based
implementation, they still incur in overheads caused by MPI
message matching that can lead to additional message copies
or synchronization. For this reason, in this work we focus
on MPI RMA. Processes can expose their local memory
by creating a window that serves as a logically distributed
memory region. To access remote memories, MPI processes
can use functions like MPI_Put and MPI_Get. With the
first, a process can write into memory regions exposed over
the network by remote peers. With the second, a process
can read the content of such regions. Communications in
MPI RMA are always non-blocking, and synchronization is
enforced only at the beginning and at the end of an epoch.
The process-local memory region can be accessed by other
processes during an exposure epoch, whereas a process can
access remote data during an access epoch. MPI defines two
types of synchronization modes: active and passive. With the
first, both initiator (i.e., the process issuing RMA operations)
and target (i.e., the process targeted by RMA operations)
processes synchronize to start a new epoch. With the passive
mode, the participation of the target process is not required.

F. RMA Caching

CLaMPI [21] is a software caching layer that transparently
caches data retrieved through MPI RMA operations. CLaMPI
can be linked to MPI applications, and it is designed to fit
into the MPI-3 RMA programming model, minimizing cache-
management overheads and relying on the concept of MPI
epochs to enforce consistency.

As applications can issue arbitrary-size read operations,
CLaMPI supports caching of variable-size entries. This is
achieved by using two data structures: a hash table to index
cached entries and an AVL tree to store free regions in the
memory buffer reserved for caching. Both the size of the hash
table and the capacity of the memory buffer are parameters
that can be tuned to the specific use case. CLaMPI includes an
adaptive parameter tuning heuristic that automatically resizes
the hash table and the memory buffer by observing indicators
such as cache misses, conflicts in the hash table, and evictions
due to lack of space in the memory buffer.

In CLaMPI, the eviction procedure is triggered when the
application makes remote memory accesses over an MPI
window that: (a) is enabled for caching, (b) does not contain
the referenced data in cache, and (c) does not have enough
space either in the hash table or in the memory buffer to index
or store the new data. Due to the variable size of the cached
entries, the system can incur in external fragmentation of the
memory buffer: the free space can be fragmented in small

adjacencies
(RMA window)

0

1 2

3 4

5

LCC computation of vertex 2

C(2) = lcc(adj0, adj1, adj4)

Reading graph chunk
from disk & 1D partitioning

Reading graph chunk
from disk & 1D partitioning

Node A

0 2 6

1 2 0 2 3 4 0 1 4

0 (v:0) 1 (v:1) 2 (v:2)
offsets

(RMA window)

adjacencies
(RMA window)

0 1 2 3 4 5 6 7 8

2

local memory

CSR representation (network exposed)

offsets
(RMA window)

Node B

1 5 1 2 3
0 1 2 3 4

0 2 4
0 (v:3) 1 (v:4) 2 (v:5)

CSR representation (network exposed)

CLaMPI RMA Cache

window node offset size data
offsets B 0 2

adjacencies B 0 2
...

0 2
1 5

o0, o1 = MPI_Get(win: offsets, node: B, offset: 1, size: 2)
adj4 = MPI_Get(win: adjacencies, node: B, offset: o0, size: o1-o0)

the first MPI_Get reads the offset of the adjacency list

the second MPI_Get retrieves the actual adjacency list

MPI_Gets are intercepted by CLaMPI, which looks for
cache hits before issuing the remote access

Once a remote access completes, the retrived
data gets stored in the CLaMPI cache.

1 3

4

6

5

Fig. 3: Overview of the proposed approach for distributed, fully-asynchronous LCC computation with RMA caching.

non-contiguous regions that cannot fit a new entry. To reduce
external fragmentation, CLaMPI assigns a score to the cached
entries that reflect both their temporal locality and how much
fragmentation they are causing in the memory buffer. The
victim selection takes this score into account when deciding
which entry to evict: e.g., if an entry is poorly placed in the
memory buffer (e.g., surrounded by free space that could be
merged if the entry would be removed), it will be more likely
to be evicted even if it presents higher temporal locality.

CLaMPI provides three operational modes to enforce con-
sistency of cached data: transparent, always-cache, and user-
defined. The transparent mode does not make any assump-
tion on the nature of the cached data (e.g., read-only or
read-write) and flushes the cache at every epoch closure.
In this case, CLaMPI can still save remote accesses that
target the same data and that are made within the same
epoch. However, cached data does not persist among multiple
epochs. Consistency within the epoch is guaranteed by the
MPI RMA semantic that, e.g., forbids conflicting put and get
operations happening in the same epoch. The always-cache
mode assumes that data accesses with RMA operations is read-
only. In this case, there is no need to flush the cache since
there are no updates to be propagated. Finally, the user-defined
mode leaves the responsibility of flushing the cache to the
application. For example, an application might be using data
as read-only for a number of epochs, during which cached data
can persist, and then switch to another phase where updates
are issued, hence needing to flush the cache.

III. ACCELERATING DISTRIBUTED LCC

LCC can be formulated in terms of counting the number
of closed triplets centered in a node. This formulation enables
the use of triangle counting as a fundamental primitive for
LCC computation. Moreover, it implies that it is possible to
compute LCC of each vertex asynchronously. The problem
of computing triangles in large-scale graphs has been widely
investigated, and, as we mentioned, the main limitation to
scalability comes from the synchronization cost and the un-
balancing of the graph partitioning.

In our algorithm design, we explore asynchronous compu-
tation and a mechanism for improving data locality based on
the concept of vertex delegation.

Algorithm 3 Distributed LCC Computation
1: procedure DISTRIBUTED LCC
2: Exchange vertices based on 1D partitioning
3: Build CSR representation
4: for all locally owned vertex vi do
5: t← 0 . Stores the number of triangles.
6: for all eij such that vj ∈ adj(vi) do
7: if vj is remote then
8: RemoteRead(adj(vj)) . See Sec. III-B
9: t += Intersect(adj(vi), adj(vj)) . See Sec. III-C

10: Compute LCC score of vi with t triangles.

To this aim, we distribute the input graph among multiple
computing nodes and let them access remote partitions via
one-sided RMA operations. By distributing the graph, we
lower the per-node memory requirements and reduce initial-
ization overheads (i.e., I/O time to read the graph), which
would otherwise limit strong-scaling capabilities because of
Amdahl’s law. Additionally, we show how the remote memory
access pattern of LCC presents data reuse (temporal local-
ity), which we exploit by caching RMA get operations with
CLaMPI. Figure 3 shows an overview about the proposed
approach.

A. Asynchronous computation

We use a 1D partitioning scheme to distribute the graph
among the processes 1 . In this scheme, an equal number of
vertices are assigned to each process. With p computing nodes
this is given by V = V1 ∪ V2 . . . ∪ Vp, such that:

Vk =

{
vi : i ∈

(
(k − 1) · n

p
,
k · n
p

]}
We note that, in case the degrees are highly skewed, this
partitioning method can introduce load imbalance between
processes. A more balanced partitioning can be achieved by
cyclic distribution [26]. However, this would require sorting
vertices, introducing additional computation as well as com-
munication.

Processes compute the number of triangles for every lo-
cally owned vertex 2 . In the edge-centric method (see Sec-
tion II-C), a process pi computes |adj(vi)∩adj(vj)| for every
ei,j ∈ E such that vi ∈ Vi and vj ∈ adj(vi). In case the
vertices vi and vj belong to different partitions, the owner

process first reads the adjacency of vj from remote memory.
In the CSR representation, the degree of a vertex is implicitly
stored in the offsets array, therefore, after computing the
number of triangles the LCC score is instantly attainable. The
algorithm is outlined in Algorithm 3.

As the graph is stored in CSR representation 3 , to read
the adjacency list of a vertex from a remote node, we need
to perform two remote read operations: one for reading from
the offsets array the offset of the adjacency list in the
adjacencies array 4 , followed by a second one that reads
the actual adjacency list from the adjacencies array (i.e.,
starting at the right offset) 5 .

To enable remote access, processes expose their local graph
partitions over the network. As a result, the graph is logically
shared among all the processes: it can be accessed either
locally (i.e., for locally owned partitions) or remotely (i.e.,
for partitions owned by other processes). Using MPI-RMA,
this can be achieved in two windows, denoted by woffsets and
wadj 3 , in which processes share their local offsets and
adjacencies arrays, respectively. When performing remote
reads, processes first issue a RMA get targeting the woffsets
RMA, then issue a RMA get on the wadj window to retrieve the
adjacency list. To guarantee that the algorithm is fully asyn-
chronous, we adopt the MPI passive target synchronization
mode [22]. In this way, processes initially expose the inter-
ested memory regions in RMA windows, which then become
accessible from remote peers without further synchronization.
A process that wants to access a remote window first calls
a MPI_Win_lock_all to start an access epoch. This is
followed by one or more RMA get operations. We remark
on the unfortunate name of MPI_Win_lock_all: it is not
an actual lock, and thus it does not synchronize processes.
Instead, its effect is to signal the beginning of a new access
epoch; the remote window can still be accessed by multiple
(“all”) processes. After accessing data, the process can then
perform a MPI_Win_flush operation or close to access
epoch with an MPI_Win_unlock_all to make sure that
the remote reads are completed and that the relative data can
be accessed without risk of corruption. Even in this case, the
closure of an access epoch in the passive synchronization mode
is a local operation, and it does not require synchronization.

Finally, to increase efficiency, we use a double-buffering
approach where we overlap the processing of two consecutive
edges by overlapping the computation phase of the current
edge with the communication corresponding to the next one.

B. Exploiting data reuse

While remote memory accesses enable a global memory
abstraction where each node can access the memory of remote
ones, these accesses are normally one or more orders of
magnitude more expensive than accessing local memory. For
example, they can take up to 2-3 microseconds on a Cray Aries
network [21]. In contrast, a DRAM accesses takes hundreds
of nanoseconds that become tens of nanoseconds if the data
is in cache.

0.0

0.5

1.0

11.7%

Uniform 91.9%

R-MAT S:21 E:16

10−3 10−2 10−1 100
0.0

0.5

1.0

42.5%

Orkut

10−3 10−2 10−1 100

57.4%

LiveJournal

Pe
rc

en
ta

ge
of

re
m

ot
e

re
ad

s

Percentage of vertices targeted by remote reads

Fig. 4: Data reuse in four datasets using 8 processes and 1D
partitioning. The plot shows how the highest degree vertices
contribute to the total number of remote reads issued. Upper
left, we show a graph with uniform degree distribution, while
the other graphs follow a power law-like degree distribution
(see Table II). We highlight the fraction of remote reads that
target the top 10% of the highest degree vertices.

By distributing the graph among multiple processes, a large
portion of the edges has endpoints in distinct partitions, thus
requiring remote communications. For example, in an R-MAT
graph with 220 vertices and 224 edges equally partitioned
among 8 processes using 1D partitioning, 95% of the edges
go between different partitions.

Assuming that vertices are randomly assigned to comput-
ing nodes, the in-degree of a vertex directly correlates with
the number of times it will be remotely accessed. Using p
computing nodes, a node will access a non-local vertex vj in
expectation deg−(vj)−p

p times. Most real-world graphs present
a degree distribution that follows a power law. Hence, a large
portion of the remote reads will target the same small set of
vertices. An illustration of how the highest degree vertices
contribute to the number of remote communications can be
found in Figure 4.

We exploit temporal locality in the remote memory access
pattern by using a caching layer for RMA, CLaMPI, that
allows to transparently cache MPI RMA accesses 6 . By
caching remote data, each node stores a dynamically defined
sub-graph containing vertices that are frequently accessed and
thus are expected to be accessed in the future as well.

As discussed in Section III-A, an access of a remote
adjacency list is done through two steps: a first RMA get
to read from the woffsets of a remote node, followed by a
second RMA get to the wadj of the same node (using the data
offset read with the first get). We enable caching for both
RMA windows at every process. This results in two CLaMPI
caches: Coffsets and Cadj. The former caches data offsets telling
the position at which the adjacency list of a vertex starts and
ends, whereas the latter stores full adjacency lists of cached
vertices. Both caches are set to always-cache as the graph is
never modified during the computation. In this configuration,
CLaMPI does not automatically flush caches between access
epochs.

1) Cached windows characterization: The following two
observations describe the characteristics of the two CLaMPI
caches and serve as a ground for their analysis:

Observation 3.1: As noted earlier, the number of accesses
to a vertex correlates with its degree. As the entries in Cadj are
adjacency lists and the size of the adjacency list of a vertex
is equal to its degree, the size of the cached adjacency lists is
a good indicator for the reuse of entries in Cadj.

Observation 3.2: On the other hand, Coffsets stores fixed-size
entries, namely the offsets of adjacency lists in the remote
adjacencies arrays. Therefore, there is no connection
between the size of an entry and its reuse. However, an entry
that stores the position of the adjacency list of a high-degree
vertex will be accessed more often than an entry corresponding
to a low-degree vertex.
We illustrate these observations in Figure 5 using the Facebook
circles dataset [20]. The figure shows how, in the case of Cadj,
the entry reuse (left) correlates with the entry size (right). Even
though for directed graphs in- and out-degree may differ, we
expect that the second observation also holds in the directed
case due to the high reciprocity in real-world graphs.

0 200 400
Vertex degree

0

100

200

300

N
um

be
ro

fr
em

ot
e

ac
ce

ss
es

Remote acesses

Data reuse

0 200 400
Vertex degree

0

200

400

600

E
nt

ry
si

ze
(B

)

Cache entries

Coffsets Cadj

Fig. 5: Data reuse and cache entry sizes for the Facebook
circles dataset [20] distributed among two computing nodes.

We enable CLaMPI’s adaptive strategy for the auto-tuning
of the hash table size. However, as the adaptive strategy flushes
the cache every time it adjusts the hash table size, it is crucial
to determine good starting values. The size of the hash table
should be equal to the expected number of entries in the cache.
Coffsets stores fixed-size entries, where every entry corresponds
to one vertex in the graph. Therefore, the number of entries in
Coffsets is linear in n and in the size of memory allocated for
the cache. For example, if the cache size equals n/2 bytes, the
optimal size of the hash table for Coffsets will roughly equal
n/2. We expect to cache some of the highest degree vertices.
Thus a small number of entries in Cadj is likely to take up
much of the space allocated for this cache (recall the size of
the entry equals the degree of the corresponding vertex). If
the graph’s degree distribution follows a power law, the size
of the hash table for Cadj will be a function of the graph size
and the cache size, which will also follow a power law. In this
case, if the cache size is half of the graph’s size, we expect to
store n · 0.5α many entries in the cache. We found that α = 2
results in a good approximation for the hash table size.

2) Application-defined scores for cached entries: By de-
fault, CLaMPI selects entries to evict with a least recently

used (LRU) scheme weighted on a positional score to limit
external fragmentation. With this scheme, high-degree vertices
can still be evicted if the CLaMPI cache fills up (e.g., due
to many low-degree vertices being accessed). Additionally, as
CLaMPI caches a missing entry only if it has resources to
store it, evicted high-degree vertices have a lower chance of
being re-cached due to their larger sizes.

We notice how the vertex degree represents a good indi-
cation of the importance of storing that vertex: the higher
the degree, the more probable it is that the vertex will be
accessed multiple times. In particular, Observation 3.1 enables
us to use this application-specific knowledge about an entry’s
value to increase further caching performance. By controlling
the eviction procedure based on the degree centrality of the
vertices, we expect to avoid storing a high number of low-
degree vertices. Lower degree vertices would consume space
in the cache while having a lower likelihood of being reused.
We modified CLaMPI to accept an application-specific score
passed by the user. This score is used by CLaMPI in the
victim selection process whenever an entry must be evicted.
After completing the get targeting ws, we know the out-
degree of the non-local vertex, and we can assign it as a
score of the respective adjacency list in Cd. We note that this
extra knowledge about an entry’s value may lead to increased
performance, but we lose the spatial effect of the score that
attempted to reduce fragmentation.

C. Optimization of local computation

We take advantage of parallelism on the edge level and
compute the intersection of the adjacency lists in parallel with
OpenMP. For the binary search-based method, we distribute
work among the threads by splitting the shorter (keys) array
into equal-sized chunks. On the other hand, for SSI, we split
the longer array and every thread intersects the assigned chunk
with the shorter list. By using parallelism for the computation
of the intersection and not on a higher level (e.g. distributing
edges among threads) we can achieve low imbalance between
the threads. However, as a too-small parallel region would
limit performance, we determine a cut-off value, for which
case the intersection is computed sequentially. Moreover, to
decrease the cost of entering a parallel block, we specify
OMP_WAIT_POLICY=active that forces threads to spin
even if they are inactive.

Based on the time complexities of the algorithms described
in Section II-C, for two sorted lists A and B with |A| ≤ |B|,
one can arrive at the following rule for the case where SSI is
theoretically faster:

|B|
|A|
≤ log2(|B|)− 1 (3)

We utilize this decision rule to arrive at a hybrid method for
triangle counting where frontiers are empirically compared to
decide which method to apply for computing the intersection.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

To evaluate our distributed LCC solution, we used R-
MAT [27] synthetic graphs and real-world graphs from several
databases [28]–[30]. An R-MAT graph with scale x and edge
factor y includes 2x vertices and 2x+y edges. We generate
R-MAT graphs with the parameters a = 0.57, b = c = 0.19
and d = 0.05 for controlling the degree distribution. Table II
lists properties of the graphs that were used for the final
experiments and shows the size of their CSR representation
after one-degree removal.

Shared memory benchmarks were run on an Intel® Xeon
Gold 6154 @ 3.00GHz CPU with 16 cores, and the code
was compiled with Intel’s ICC 2021.1 with the -O3 flag.
The distributed version was tested on the Piz Daint cluster
at the Swiss National Supercomputing Centre (CSCS). We
used the XC50 computing nodes, which are powered by 12
core Intel® Xeon® E5-2690 v3 2.60GHz CPUs equipped
with 64GB RAM per node and interconnected with Cray’s
Aries network arranged in a dragonfly topology. The code was
compiled with the ICC 19.1 compiler with -O3 flag and using
the cray-mpich 7.7.16 MPI implementation.

We distinguish small-scale experiments with no more than
64 computing nodes that we allocate on a single electrical
group and large-scale experiments with 128 or more, allocated
freely over the whole cluster.

Time measurements were taken using the LibLSB li-
brary [31]. For shared memory experiments, we report the
median and repeated every experiment until the 5% of the
median was within the 95% CI. For distributed memory
experiments, we measure two different job allocations with
three executions per allocation. We report the median of the
longest-running node among all runs with the corresponding
95% CI. The reported results do not include the read-in of
the graph and the relative distribution phase but only the time
taken for the LCC computation.

TABLE II: Graphs used in this paper.

Name (type) |V| |E| CSR Size
SNAP-Orkut (U) 3 M 117.2 M 905.8 MiB
SNAP-LiveJournal (U) 4 M 34.7 M 273.8 MiB
SNAP-LiveJournal1 (D) 4.8 M 69 M 273.7 MiB
SNAP-Skitter (U) 1.7 M 11.1 M 89.5 MiB
uk-2005 (D) 39.5 M 936.4 M 3.6 GiB
wiki-en (D) 13,6 M 437.2 M 1.7 GiB
R-MAT S21 EF16 (U) 2.1 M 33.6 M 251.1 MiB
R-MAT S23 EF16 (U) 8.4 M 134.2 M 1021 MiB
R-MAT S30 EF16 (U) 1073.7 M 17179.9 M 130 GiB

B. Comparison baseline

We compare our solution to TriC [16], a state-of-the-art,
distributed-memory framework for global triangle counting.
TriC achieves TC in a per-vertex fashion, implicitly computing
LCC scores. The main difference to our solution lies in the

query-response approach used by TriC to check for necessary
remote edges that leads to synchronization between processes.

TriC’s memory demand significantly increases for scale-
free graphs, often leading to out-of-memory errors. In those
cases, we employed a new version of TriC (TriC Buffered)
that allocates fixed-size buffers towards remote processes.

We build TriC using the same Intel ICC 19.1 compiler and
map tasks to CPU cores, as it is an MPI-only implementation.
For every execution, we specify the -b flag to achieve a more
balanced partitioning. We set the buffer size to the largest
possible value not bigger than 16 MiB. This cap was necessary
due to a network protocol change for messages bigger than 16
MiB that led to higher communication overheads.

C. Shared memory experiments

Our measurements comparing the different methods for
computing the intersection are summarized in Table III. The
trade-offs between binary search and sorted set intersection
were discussed in Hu et al. [15]. They locate the main
weakness of binary search on CPUs in the random accesses in
the lookup tree, which leads to a high number of cache misses.
On the contrary, SSI traverses the arrays linearly making
possible close to zero cache misses. However, in a graph
with skewed degree distribution, most edges connect vertices
with degrees that are multiple orders of magnitude different
from each other. In that case, binary search is essential, as its
running complexity is logarithmic in the length of the longer
array. Our results show the necessity of both methods on CPU,
as the hybrid version always performed better than using SSI
or binary search exclusively.

A strong scaling experiment was carried out to measure the
gains of computing the intersection in parallel (Figure 6). We
distribute the local computation on edge level that leads to

TABLE III: Performance comparison of the different intersec-
tion methods on different graphs using 16 threads. We report
the number of edges processed per microsecond.

Name Hybrid SSI Binary search
R-MAT S20 EF8 0.540 0.508 0.449
R-MAT S20 EF16 0.425 0.403 0.340
R-MAT S20 EF32 0.325 0.311 0.250
LiveJournal 1.084 1.018 0.984
Orkut 0.596 0.552 0.503

1 2 4 6 8 10 12 14 16
Number of threads

0.0

0.2

0.4

0.6

0.8

Pe
rf

or
m

an
ce

(e
dg

es
/

µ
s)

2.0x
2.7x

1.2x

Shared memory scaling

R-MAT
S20 EF16

R-MAT
S20 EF32 Orkut

Fig. 6: Strong scaling on shared memory with hybrid method.
We report the number of edges processed per microsecond.

0 0.2 0.4 0.6 0.8 1
(1.1MB)

Relative cache size

12

10

8

6

4

Ti
m

e
(s

)

0 0.2 0.4 0.6 0.8 1
(14.8MB)

Relative cache size

12

10

8

6

4

Ti
m

e
(s

)

0 0.2 0.4 0.6 0.8 1
(1.1MB)

Relative cache size

1.00

0.75

0.50

0.25

0.00

M
is

s
ra

te

0 0.2 0.4 0.6 0.8 1
(14.8MB)

Relative cache size

1.00

0.75

0.50

0.25

0.00

M
is

s
ra

te

Communication time Miss rate

Offsets cache (Coffsets) Adjacencies cache (Cadj)

Fig. 7: Cache behaviour as a function of the cache size. We enable caching only on the respective window, and issue non-
cached reads on the other. We used an R-MAT graph with 220 vertices and 224 edges distributed among 2 computing nodes
and measured 100 configurations for both caches. The grey area shows compulsory misses.

leaving and re-entering the parallel region for every edge. In
effect, the large number of OpenMP library calls becomes a
performance bottleneck, which we could also justify by profil-
ing our implementation. We could see a minor improvements
of 2%-4% with using OMP_WAIT_POLICY=active. The
best results are achieved for the R-MAT S20 EF32 graph with
a speedup of 2.7× from 1 to 16 threads.

D. Distributed memory experiments

1) Caching performance: The time of a remote read of size
s bytes can be modeled by t(s) = α + s · β, where α is the
setup overhead and β the time to read one byte. This means
that for the analysis of the cache, both the number of gets
saved by caching (hit rate) as well as the size of such gets
have to be taken into consideration.

In Figure 7 we demonstrate how the difference between
the entries stored in Coffsets and Cadj (see Section III-B) and
the above remark on the duration of a remote memory read
influence communication time for LCC computation. The
power law-like relationship between the miss rate and Cadj’s
size is the straight consequence of our algorithm and the
graph’s degree distribution. In this case, we also notice how
already a small memory overhead (relative to |V |) allows us
to save up to 30% of the time spent on communication. In
contrast, we observe a linear relationship between the miss
rate in Coffsets and its size due to the connection between an
entry’s size and the frequency of remote reads targeting the
entry. However, a large portion of transferred data comes from
remote reads targeting wadj, which is reflected in the reduction
in communication time achieved by Cadj. In this experiment,
we reduce communication time by 51.6% with caching only
wadj. We expect that for larger datasets, this difference will
grow further. Summarizing, with a small memory overhead,
one can save an initial amount of communication that targets
woffsets. However, any further decrease will have a memory
overhead linear in terms of the graph’s size.

In the following, we assess the effect of the application-
specific score described in Section III-B. In this experiment,
we fix the memory allocated for Cadj to 25% of the size of the
graph’s non-local partition at every node to trigger the eviction
procedure. The results for an R-MAT graph with 220 vertices

4 8 16 32 64
Number of computing nodes

0

200

400

A
vg

.r
em

ot
e

re
ad

tim
e

(m
s)

Communication time

4 8 16 32 64
Number of computing nodes

0.0

0.2

0.4

0.6

M
is

s
ra

te
(s

)
Cadj miss rate

Original scores Degree centrality scores

Fig. 8: Comparison of original and user-defined scores. We
show the average time taken for reading a remote vertex. The
grey area shows compulsory misses.

and 224 edges are shown in Figure 8. Degree centrality scores
improve caching performance between 14.4% and 35.6% with
respect to the original scores for this dataset.

2) Overall performance: Finally, in Figures 9 and 10 we
report the performance of our LCC implementation both with
and without caching. Next to the measurements, we denote the
speedup achieved with respect to the smallest configuration.
For experiments using caching, a total of 16 GiB memory
is reserved, allocating 0.8 · |V | bytes for Coffsets and the
rest for Cadj. Note, that with this configuration Coffsets can
store 0.4 · |V | many vertices, as the position of a remote
adjacency list is given as a pair of (start, end) positions.
Furthermore, we also show measurements using TriC to better
asses our implementation. In case of missing data points, the
corresponding experiment exceeded a wall-time of 9 hours.

As the graph is distributed among more computing nodes,
the number of edges that cause communication increases. For
example, for the R-MAT S21 EF16 graph, the average fraction

4 8 16 32 64
Number of computing nodes

23

25

27

29

211
R

un
ni

ng
tim

e
(s

)

10.8x
8.5x

3.2x

R-MAT S21 EF16

4 8 16 32 64
Number of computing nodes

24

26

28

210

212

R
un

ni
ng

tim
e

(s
)

9.4x
6.4x

7.1x

Orkut

4 8 16 32 64
Number of computing nodes

22

23

24

25

26

27

R
un

ni
ng

tim
e

(s
)

13.9x
4.0x
6.4x

LiveJournal

4 8 16 32 64
Number of computing nodes

25

27

29

211

213

215

R
un

ni
ng

tim
e

(s
)

9.2x
9.2x

2.7x

R-MAT S23 EF16

4 8 16 32 64
Number of computing nodes

23

25

21

27

29

R
un

ni
ng

tim
e

(s
)

11.3x
5.0x

9.0x

Skitter

4 8 16 32 64
Number of computing nodes

22

23

24

25

26

27

R
un

ni
ng

tim
e

(s
)

14.0x

4.8x
6.7x

LiveJournal1

LCC Non-cached LCC Cached Tric Tric Buffered

Fig. 9: Strong scaling experiments on small scale with 16 GiB memory overhead (log-log scale).

128 256 512
Number of computing nodes

212

213

214

215

R
un

ni
ng

tim
e

(s
)

1.4x

3.4x

RMAT S30 EF16

128 256 512
Number of computing nodes

25

26

27

28

R
un

ni
ng

tim
e

(s
)

1.5x
1.4x

1.8x

uk-2005

128 256 512
Number of computing nodes

24

25

26

27

28

R
un

ni
ng

tim
e

(s
)

1.7x
1.4x

1.8x

wiki-en

LCC Non-cached LCC Cached Tric

Fig. 10: Strong scaling experiments on large scale with 16 GiB memory overhead (log-log scale).1

of remote and local reads grows from 66% to 98%. For the
same graph, with 4 computing nodes, communication already
takes up to 78.9% of the total running time, which rises to
97.7 % for 64 nodes. In general, we could observe that com-
munication quickly dominates the total running time, implying
that the limitations of the shared memory computation have
minor effects on overall performance. Moreover, it follows that
overlapping communication and computation, even for more
than a single edge, cannot significantly improve the runtime.
As communication dominates, the speedup achievable is de-
termined by the number of edges causing communications.
At small scale, the worst scaling for a real-world graph is
observed on the Orkut graph with 9.4× speedup from 4 to
64 nodes. We explain this with the following two reasons.
Firstly, for this graph, the running time is mostly determined
by computation when 4 nodes are used, but quickly becomes
communication-bound with larger configurations. Secondly, in
this case, 1D partitioning causes load imbalance, leading to
an up 25% difference in the running time of the different
processes. We achieve our best results for the LiveJournal1
graph, with 14× speedup from 4 to 64 computing nodes.

Our large-scale experiments are similarly limited by load
imbalance, which bounds the achieved scaling.

The efficiency of caching is influenced by multiple factors.
Firstly, in case the cache size is significantly smaller than the
size of the graph, capacity misses are unavoidable. Secondly,
the graph structure inherently determines the possible data
reuse, and graphs with flatter degree distribution will lead to a
large number of compulsory misses. Finally, by distributing the
graph among an increasing number of computing nodes, data
reuse reduces due to the increasing number of edges that cross
partitions. This will similarly result in an increased number of
compulsory misses. Compulsory misses decrease the overall
hit rate and incur an overhead caused by the caching process
in CLaMPI. For example, for the LiveJournal graph, 15.5%
of the remote reads are compulsory misses for 4 nodes (a
compulsory miss is always a compulsory miss in both caches)
that grows up to 64.9% with 64 nodes.

Regarding the overall performance, we can distinguish
between 3 scenarios: (1) computation dominates and caching

1We report only one measurement per data point for the RMAT S30 EF16
graph due to cost reasons.

has no significant effect; (2) high number of compulsory
misses limit caching performance; (3) caching is beneficial
and reduces the communication time. Scenario (1) can be seen
for the Orkut graph where the effect of caching increases
from 4 to 8 computing nodes. Scenario (2) is especially
notable for the LiveJournal and LiveJournal1 graphs. In these
cases, CLaMPI’s overhead leads to worse performance than
the non-cached version. However, we see significant reduction
in running times between these two extremes. At small scale,
we achieve up to 67% and 47% better running times for the R-
MAT S21 EF16 and LiveJournal graphs, respectively. At large
scale, the cached version resulted in 73% better performance
compared to the non-cached implementation for the R-MAT
S30 EF16 graph. We remark, that this result is achieved with
a cache size of only 12% of the graph’s CSR representation.

We achieve significantly better execution times both at
large-scale (up to 3.6x speedup) and at small-scale (up to
100x) compared to TriC. The advantages of our asynchronous
implementation over TriC is especially notable with the syn-
thetic datasets that posses a close to perfect scale free degree
distribution. Despite the imbalance between processes coming
from the 1D distribution, we conclude that these results justify
the necessity of an asynchronous algorithm for distributed-
memory LCC computation.

V. RELATED WORK

In the following, we summarize the main techniques used
for shared and distributed-memory TC analysis. For a thorough
comparison of the different triangle counting algorithms, we
refer the reader to the paper from Schank and Wagner [32],
and to work by Shun et al. [33].

A. Frontier intersection

SSI has been introduced by Green et al. [34], and binary
search appeared first for triangle counting in Hu et al. [15].
Pandey et al. [35] utilize hashing for computing intersections
but, instead of hashing every element, they use a selected
number of bins where multiple elements are stored. This
solution was further improved in their recent work [14].

B. Algebraic computation

For a graph G one can compute the matrix C = AA ◦A,
whose entry cij stores the number of triangles that contain eij .
For undirected graphs, this can be simplified to C = LU◦A,
where L and U are the lower and upper triangular matrices.
Triangle counting implementations based on this algebraic
computation method take advantage of the sparsity of G and
use highly optimized libraries for sparse matrix multiplication.
An improved parallel implementation can be found in the
paper from Azad et al. [36], and a distributed algebraic-based
TC algorithm has been proposed by Hutchinson [37] using the
Apache Accumulo distributed database. Aznaveh et al. [38]
implemented shared memory parallel TC and LCC computa-
tion based on the SuiteSparse GraphBLAS implementation of
the GraphBLAS standard.

C. Distribution techniques

For any TC or LCC algorithm that utilizes parallelism on
some level, work distribution is of primary importance. Kolda
et al. [19] use the Mapreduce technique for triangle counting.
Lumsdaine et al. [26] introduced a cyclic distribution for 1D
to achieve balanced partitions. Two-dimensional partitioning
assigns edges to processes in a grid-based manner. Tom and
Karypis [39] developed a triangle counting algorithm for
undirected graphs following a parallel matrix multiplication
scheme based on 2D. Acer et al. [40] utilize 2D partitioning
among the computing nodes and achieves shared memory
parallelism based on 1D. Hoang et al. [17] compute shadow
edges and corresponding vertices that are necessary for lo-
cal triangle computation, thus avoiding any communication
during the computation phase. We emphasize that all the
aforementioned work requires synchronization mechanisms,
and therefore, their scalability is limited.

VI. CONCLUSION

We introduce a fully asynchronous distributed-memory al-
gorithm for both triangle counting and LCC. Synchronization
overheads are removed by using RMA one-sided operations to
retrieve remote parts of the graph that are needed to progress
the algorithm (i.e., parts of the adjacency lists that have been
partitioned and assigned to remote peers). Additionally, we
show how irregular graph algorithms such as LCC and TC
expose data reuse, which we exploit by using a transparent
caching solution for RMA, i.e., CLaMPI. To improve cache
efficiency, we extend CLaMPI to take into account application-
specific scores when deciding which entries to evict in case
of conflict or capacity misses. For example, by using degree
centrality as the score for LCC, we are able to reduce the total
running time by up to 73%. Overall, we show that removing
synchronization costs and achieving vertex delegation by a
caching mechanism leads to clear performance improvements
over the current state-of-the-art. Finally, we plan to extend this
work in many directions by i) designing new asynchronous
algorithms for TC/LLC based on distribution schema that
have lower communication costs than 1D distribution [41];
ii) investigating other graph problems that may benefit from
the proposed approach [42]–[45] and, in general, those that
can be expressed in a push-pull dichotomy [46]; iii) studying
other application-specific scores for cached entries to improve
caching efficiency.

ACKNOWLEDGMENT

This work has been partially funded by the UNIBZ-RTD-CALL2018-
IN2087, INdAM–GNCS 2020-NoRMA, MIU-FISR-2020-FISR2020IP 00802
projects, and the European Project RED-SEA (Grant No. 955776). This project
has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (Grant
agreement No. 101002047). We thank the Swiss National Computing Center
(CSCS) for providing computing resources and excellent technical support.

REFERENCES

[1] L. Tang and H. Liu, “Graph mining applications to social network
analysis,” in Managing and Mining Graph Data. Springer, 2010.

[2] T. Aittokallio and B. Schwikowski, “Graph-based methods for analysing
networks in cell biology,” Briefings in bioinformatics, vol. 7, no. 3, 2006.

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang,
“Complex networks: Structure and dynamics,” Physics reports, vol. 424,
no. 4-5, 2006.

[4] D. J. Cook and L. B. Holder, Mining graph data. John Wiley & Sons,
2006.

[5] M. Besta, Z. Vonarburg-Shmaria, Y. Schaffner, L. Schwarz, G. Kwas-
niewski, L. Gianinazzi, J. Beranek, K. Janda, T. Holenstein, S. Leisinger
et al., “Graphminesuite: Enabling high-performance and programmable
graph mining algorithms with set algebra,” in VLDV, 2021.

[6] L. Gianinazzi, M. Besta, Y. Schaffner, and T. Hoefler, “Parallel algo-
rithms for finding large cliques in sparse graphs,” in ACM SPAA, 2021.

[7] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization
of complex networks,” Science, vol. 353, no. 6295, 2016.

[8] M. Besta, R. Kanakagiri, G. Kwasniewski, R. Ausavarungnirun,
J. Beránek, K. Kanellopoulos, K. Janda, Z. Vonarburg-Shmaria, L. Gi-
aninazzi, I. Stefan et al., “Sisa: Set-centric instruction set architecture
for graph mining on processing-in-memory systems,” in ACM/IEEE
MICRO, 2021.

[9] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” nature, vol. 393, no. 6684, 1998.

[10] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: statistical mechanics and its applications, vol. 390, no. 6,
2011.

[11] M. C. Nascimento, “Community detection in networks via a spectral
heuristic based on the clustering coefficient,” Discrete Applied Mathe-
matics, vol. 176, 2014.

[12] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoe-
fler, and E. Solomonik, “Communication-efficient jaccard similarity for
high-performance distributed genome comparisons,” in IEEE IPDPS.
IEEE, 2020.

[13] J.-P. Eckmann and E. Moses, “Curvature of co-links uncovers hidden
thematic layers in the world wide web,” Proceedings of the national
academy of sciences, vol. 99, no. 9, 2002.

[14] S. Pandey, Z. Wang, S. Zhong, C. Tian, B. Zheng, X. Li, L. Li, A. Hoisie,
C. Ding, D. Li et al., “TRUST: Triangle Counting Reloaded on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, 2021.

[15] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle counting
on GPUs,” in SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018.

[16] S. Ghosh and M. Halappanavar, “Tric: Distributed-memory triangle
counting by exploiting the graph structure,” in 2020 IEEE High Per-
formance Extreme Computing Conference (HPEC), 2020.

[17] L. Hoang, V. Jatala, X. Chen, U. Agarwal, R. Dathathri, G. Gill, and
K. Pingali, “Disttc: High performance distributed triangle counting,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019.

[18] L. G. Valiant, “A bridging model for parallel computation,” Communi-
cations of the ACM, vol. 33, no. 8, 1990.

[19] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” SIAM Journal on Scientific
Computing, vol. 36, no. 5, 2014.

[20] J. J. McAuley and J. Leskovec, “Learning to discover social circles in
ego networks.” in NIPS, vol. 2012. Citeseer, 2012.

[21] S. D. Girolamo, F. Vella, and T. Hoefler, “Transparent Caching for RMA
Systems ,” in Proceedings of the 31st IEEE International Parallel &
Distributed Processing Symposium (IPDPS’17). IEEE, May 2017.

[22] T. Hoefler, J. Dinan, R. Thakur, B. Barrett, P. Balaji, W. Gropp, and
K. Underwood, “Remote memory access programming in mpi-3,” ACM
Transactions on Parallel Computing (TOPC), vol. 2, no. 2, 2015.

[23] T. Bedeir, “RDMA read and write with IB verbs,” Citeseer, Tech. Rep.,
2010.

[24] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC series
network,” Cray Inc., White Paper WP-Aries01-1112, 2012.

[25] R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling highly-scalable
remote memory access programming with MPI-3 one sided,” in Proceed-
ings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, 2013.

[26] A. Lumsdaine, L. Dalessandro, K. Deweese, J. Firoz, and S. McMil-
lan, “Triangle counting with cyclic distributions,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2020.

[27] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” in Proceedings of the 2004 SIAM International
Conference on Data Mining. SIAM, 2004.

[28] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[29] J. Kunegis, “Konect: The koblenz network collection,” in Proceedings
of the 22nd International Conference on World Wide Web, ser. WWW
’13 Companion. New York, NY, USA: Association for Computing
Machinery, 2013.

[30] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, 2004.

[31] T. Hoefler and R. Belli, “Scientific Benchmarking of Parallel Com-
puting Systems.” ACM, Nov. 2015, proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC15).

[32] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in Experimental and Efficient
Algorithms, S. E. Nikoletseas, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005.

[33] J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in 2015 IEEE 31st International Conference on Data Engineer-
ing. IEEE, 2015.

[34] O. Green, P. Yalamanchili, and L.-M. Munguı́a, “Fast Triangle Counting
on the GPU,” in Proceedings of the 4th Workshop on Irregular Applica-
tions: Architectures and Algorithms, ser. IA3 ’14. IEEE Press, 2014.

[35] S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu, “H-index: Hash-
indexing for parallel triangle counting on GPUs,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 2019.

[36] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in 2015 IEEE International Parallel
and Distributed Processing Symposium Workshop. IEEE, 2015.

[37] D. Hutchison, “Distributed triangle counting in the graphulo matrix
math library,” in 2017 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2017.

[38] M. Aznaveh, J. Chen, T. A. Davis, B. Hegyi, S. P. Kolodziej, T. G.
Mattson, and G. Szárnyas, “Parallel GraphBLAS with OpenMP,” in
2020 Proceedings of the SIAM Workshop on Combinatorial Scientific
Computing. SIAM, 2020.

[39] A. S. Tom and G. Karypis, “A 2D parallel triangle counting algorithm
for distributed-memory architectures,” in Proceedings of the 48th Inter-
national Conference on Parallel Processing, 2019.

[40] S. Acer, A. Yaşar, S. Rajamanickam, M. Wolf, and Ü. V. Catalyürek,
“Scalable triangle counting on distributed-memory systems,” in 2019
IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2019.

[41] E. Solomonik and J. Demmel, “Communication-optimal parallel 2.5d
matrix multiplication and lu factorization algorithms,” in Euro-Par 2011
Parallel Processing, E. Jeannot, R. Namyst, and J. Roman, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011.

[42] A. Formisano, R. Gentilini, and F. Vella, “Scalable energy games solvers
on gpus,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 12, 2021.

[43] F. Vella, M. Bernaschi, and G. Carbone, “Dynamic merging of
frontiers for accelerating the evaluation of betweenness centrality,”
ACM J. Exp. Algorithmics, vol. 23, mar 2018. [Online]. Available:
https://doi.org/10.1145/3182656

[44] E. Solomonik, M. Besta, F. Vella, and T. Hoefler, “Scaling betweenness
centrality using communication-efficient sparse matrix multiplication,”
in ACM/IEEE Supercomputing, 2017.

[45] M. Besta, A. Carigiet, K. Janda, Z. Vonarburg-Shmaria, L. Gianinazzi,
and T. Hoefler, “High-performance parallel graph coloring with strong
guarantees on work, depth, and quality,” in ACM/IEEE Supercomputing,
2020.

[46] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler,
“To push or to pull: On reducing communication and synchronization
in graph computations,” in Proceedings of the 26th International
Symposium on High-Performance Parallel and Distributed Computing,
ser. HPDC ’17. New York, NY, USA: Association for Computing
Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3078597.
3078616

http://snap.stanford.edu/data
https://doi.org/10.1145/3182656
https://doi.org/10.1145/3078597.3078616
https://doi.org/10.1145/3078597.3078616

	I Introduction
	II Background
	II-A Notation
	II-B Graph format
	II-C Triangle computation
	II-C1 Binary search
	II-C2 Sorted Set Intersection

	II-D Local Clustering Coefficient
	II-E MPI-RMA
	II-F RMA Caching

	III Accelerating Distributed LCC
	III-A Asynchronous computation
	III-B Exploiting data reuse
	III-B1 Cached windows characterization
	III-B2 Application-defined scores for cached entries

	III-C Optimization of local computation

	IV Experimental Evaluation
	IV-A Experimental setup
	IV-B Comparison baseline
	IV-C Shared memory experiments
	IV-D Distributed memory experiments
	IV-D1 Caching performance
	IV-D2 Overall performance

	V Related Work
	V-A Frontier intersection
	V-B Algebraic computation
	V-C Distribution techniques

	VI Conclusion
	References

