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Abstract— In many scientific applications, the majority of
the execution time is spent within a few basic sparse kernels
such as sparse matrix vector multiplication (SMV). Such sparse
kernels can utilize only a fraction of the available processing
speed because of their relatively large number of data accesses
per floating point operation, and limited data locality and
data re-use. Algorithmic changes and tuning of codes through
blocking and loop unrolling schemes can improve performance
but such tuned versions are typically not available in benchmark
suites such as the SPEC CFP 2000. In this paper, we consider
sparse SMV kernels with different levels of tuning that are
representative of this application space. We emulate certain
memory subsystem optimizations using SimpleScalar and Wattch
to evaluate improvements in performance and energy metrics.
We also characterize how such an evaluation can be affected
by the interplay between code tuning and memory subsystem
optimizations. Our results indicate that the optimizations reduce
execution time by over 40%, and the energy by over 85%,
when used with power control modes of CPUs and caches.
Furthermore, the relative impact of the same set of memory
subsystem optimizations can vary significantly depending on the
level of code tuning. Consequently, it may be appropriate to
augment traditional benchmarks by tuned kernels typical of
high performance sparse scientific codes to enable comprehensive
evaluations of future systems.
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I. INTRODUCTION

Research in scientific computing algorithms and software

is closely aligned with developments in the area of high-

performance computing architecture. This alignment is primar-

ily from the necessity of utilizing such architectures effectively

to enable knowledge discovery and design through computa-

tional modeling and simulation. The latter typically require

large, refined models for capturing multiscale, multiphysics

phenomena. The limiting factor is often the hardware required

to solve the underlying computations with even larger matrices

and meshes. Many of the computational models from diverse

fields, representing complex multiscale phenomenon are in

the form of partial-differential equations(PDEs). The compu-

tational simulation of such models has lead to a broad array of

new applications involving sparse matrices and meshes [21].

In broad terms, architectural optimizations and performance

tuning schemes for the more traditional dense matrix compu-

tations have co-evolved in the last decade, leading to near-

peak execution rates for such kernels [1], [12]. Sparse ma-

trix computations differ intrinsically from their dense matrix

counterparts in their utilization of architectural features, as dis-

cussed later in Section II. As a consequence, they utilize only

a fraction of the computing power of modern microprocessors

despite sophisticated attempts at performance tuning [28],

[30]. This presents a unique opportunity for architectural

optimizations as power-aware microprocessor, memory and

network design are becoming essential for scaling to future

systems [13].

We conjecture that significant advances in high-performance

architectures and scientific computing will be possible by

considering the co-evolution of architectural optimizations and

their interaction with tuned sparse application features. For

example, new architectural optimizations can be developed

to enable more efficient sparse kernels that better utilize the

architecture and thus complete faster. Additionally, utilizing

low power modes that are present in many processors, memory

(DRAMs), and interconnects can potentially lead to reduced

power without significant performance degradation. Taken

together, they can enable faster and more efficient solution

of larger models while scaling to future power-aware high-

performance systems.

In this paper, we evaluate energy-aware architectural op-

timizations through simulations with SimpleScalar [27] and

Wattch [3]. Our goals are to enable more efficient use of
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the CPU and memory subsystem by sparse matrix kernels.

Our results indicate that when these optimizations are used in

conjunction with power control modes such dynamic voltage

scaling (DVS), we can reduce time by over 60%, and the

energy by over 85%. Additionally, we characterize variations

in the relative impact of system optimizations on performance

and energy metrics from interactions with the level of tuning

of the sparse code. We demonstrate that observed relative im-

provements can vary by over 40% when the same combination

of system optimizations is evaluated using different levels of

tuning for the sparse kernel.

In Section II we describe the role of sparse matrix kernels in

large-scale PDE-based applications and we introduce the codes

we will use in our experiments. In Section III we discuss our

methodology for evaluating performance and energy through

simulation, specific memory subsystem optimizations, and our

base RISC PowerPC architecture which is similar to the

processor in BlueGene/L [10], the top ranked supercomputer.

Section IV contains our main contributions characterizing

improvements in performance and energy and differences in

relative improvements from the interplay between code and

architectural features.

II. SPARSE MATRIX COMPUTATIONS IN MODELING AND

SIMULATION

In recent years, the LINPACK benchmark [12], [22] of

dense numeric kernels have been accepted as the standard

for measuring the efficiency of high-performance architectures

for scientific computing. The significance of LINPACK for

architecture evaluations lies in the fact that the codes are tuned

to include techniques for data-reuse and data-locality [1], [11].

Consequently, when architectural changes aimed at improved

memory bandwidth are evaluated, it is important to use LIN-

PACK because it more accurately represents the impact on

actual high-performance dense scientific applications.

More recently, there has been a significant growth in com-

putational modeling and simulation applications in which the

underlying computations are typically sparse [6], [15], [23]

and hence can allow scaling to larger and more defined models.

However, sparse solution schemes differ from dense kernels

in how they utilize architectural features. For example, sparse

kernels can utilize only a fraction of the available processing

speed because they have a large number of data accesses per

floating point operation, and limited data locality and data re-

use despite algorithmic changes and considerable tuning of

codes through blocking and loop unrolling schemes.

A large fraction of recent research in scientific computing

concerns enabling sparse applications through the develop-

ment of scalable algorithms with tuned implementations in

toolkits and libraries [2], [16], [17]. Many of these tuned

implementations, rely on a tuned form for sparse matrix vector

multiplication. Incidentally, this kernel also occurs in several

codes in the SPEC CPU 2000 suite [7] such as mgrid, swim,

and equake. However, it is not explicitly identified and the

implementation may use application specific data structures

that are likely not optimized for performance. As architectural

changes are optimized for performance and energy, it is

especially important to use tuned implementations of such

a sparse kernel to accurately represent the space of high

performance scientific computing applications. In this paper,

we demonstrate the interplay between code optimizations and

architectural optimizations by using four forms of the sparse

matrix vector (SMV) multiplication kernel.

The general purpose library function forms SMV use stan-

dard data structures for storing the sparse matrix A, the source

vector x and the destination vector y. The latter two are stored

as simple arrays in contiguous locations in memory. Only

the nonzeroes in the matrix and its corresponding indices are

explicitly stored using a standard sparse format with a list of

subscripts and nonzeroes and a list to index into these two lists

for each row. Sparse matrix vector multiplication requires one

floating-point multiplication and addition per nonzero element

in A. Note that in addition to the nonzero element, its indices

in the matrix also have to be loaded, thus increasing the

number of data accesses per floating point operation. There

is potential for re-use with elements of the source vector x,

but the access pattern on x depends on the sparsity structure

of A which can be re-ordered to a ‘band form’ using, for

example, a Reverse Cuthill McKee (RCM) scheme [8] to

improve locality of access in x. Such re-orderings can be used

with other techniques like register-blocking and loop-unrolling

to further improve the performance [28], [30]; some of these

techniques may actually increase floating-point operations

while decreasing loads from memory.

We use SMV-U, a natural implementation of sparse matrix

vector multiplication or, equivalently, an untuned version of

the code in Sparsity [18]. We use SMV-O from Sparsity [18]

with an appropriate level of loop unrolling and register

blocking for the best performance on our base architecture,

described in Section III. We use the following four sparse



matrices. The name, dimension (103), number of nonzeroes

(106), and the percentage of nonzeroes relative to a dense

matrix of the same dimension are: bcsstk31, 35.6, 1.2,

.09%; fdm21, 32.1, .16, .01%; qa8fm, 66.1, 1.6, .03%;

and msc23052, 23.0, 1.1, .21%. These matrices are first re-

ordered using RCM before applying the two versions of the

kernel.

We next consider an application-specific sparse matrix vec-

tor multiplication kernel, namely the one in the equake code

from SPEC CFP 2000 [7]. This application simulates the

propagation of elastic waves in large, highly heterogeneous

valleys and more than 90% of execution time is spent in its

SMV function. The data structure for the matrix is applica-

tion specific and it reflects the relationship of the matrix to

the mesh. The sparse matrix nonzero elements in a row of

the matrix typically do not occur contiguously in memory.

Furthermore corresponding portions of the source vector may

also not be contiguous in memory. We use Equake-A to

denote the SMV kernel for this application specific format

in equake. We made a minor change in this kernel to obtain

the tuned version Equake-AT while still using the application

specific data structure. The tuning reflects a change in how

memory is allocated in the code to ensure a greater degree

of contiguous allocations to improve the locality of data

accesses. We used Equake-AT in quake and we verified that

the simulation results were correct and unchanged after the

replacement of the original kernel with its modified version.

The original data structure and its mapping to memory in

Equake-A and the modified mapping to memory in Equake-AT

are shown in Figure 1. We would like to observe that we have

implemented only a very small modification and we conjecture

that the kernel could benefit from the application of further

optimizations for increasing instruction level parallelism (ILP)

and improving data-reuse.

III. MODELING POWER AND PERFORMANCE

CHARACTERISTICS

We use cycle-accurate emulations of the sparse kernels

using SimpleScalar3.0 [4] and Wattch1.02d [3] with extensions

to model memory subsystem enhancements [24]. We model a

single-core processor with some of the features of the Blue-

Gene [26] starting from a PowerPC440 embedded core and

including memory subsystem optimizations for prefetching as

described in our earlier paper [24].

Our base architecture has two floating point units and two

Vector
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Original Tuned

Matrix

Original Tuned

MemoryMemory

Fig. 1. Mapping of sparse matrix, and source and destination vector elements
to memory in Equake-A and an illustration of tuning to improve contiguous
allocation of data elements to increase locality of access in Equake-AT.

integer ALUs. Each FPU has a multiplication/division module

and modules for other arithmetic and logic. We model a

cache hierarchy with three levels on chip, including a 32KB

data/32KB instruction level 1 cache (L1), a 2KB level 2 cache

(L2), and a 4MB unified level 3 cache (L3). Starting with the

base architecture, henceforth denoted by ‘B,’ we consider first

the effects of doubling the width of the data paths, indicated

using the label ‘W’.

We operate the SRAM L3 at system frequency and voltage

levels when we consider different frequency-voltage pairs

to simulate the effects of utilizing DVS [5]. We consider

eight CPU frequencies from 300MHz to 1000 GHz with with

corresponding nominal Vdd voltages in the 0.46V to 1.2V. The

SRAM L3 cache may not benefit sparse kernels and and en-

ergy efficient alternative could include utilizing power control

modes of caches; we simulate this by considering five L3 cache

sizes of 256K, 512K, 1MB, 2MB and 4MB. Additionally, we

consider the impacts of the memory subsystem optimizations

including memory page policy and prefetching at the memory

controller and L2 cache.

Memory page policy: open or closed labeled ‘MO’ or

‘MC’. This feature can impact performance depending on the

data access pattern and its interaction with data layouts in

memory (temporal and spatial locality). The closed page policy

is more suitable for random memory accesses, when each

access is preceded by an ‘activate’ operation and followed

by a ‘precharge’ operation [9], [20]. On the other hand,

with temporal and spatial locality of data accesses, an open



page policy could reduce latencies, at the expense of greater

complexity of the controller. An activated row stays active

until a read/write operation to another row in the same bank.

The latencies can be reduced to 8 cycles from 16 cycles for

successive reads without bank conflicts [19].

Memory prefetching (stride-1) at the memory controller,

labeled ‘MP’. MP can reduce the effective latency of memory

access and it is emulated by adding a prefetch buffer to the

memory controller. This buffer is a 16 element table, with each

element holding a cache line of 64 bytes or 128 bytes for ‘W’

and it uses a a full LRU replacement policy. We model the

power consumed by our prefetch buffer as the cost of operating

a small 16 entry, direct mapped cache with a 64 or 128 byte

cache line [24].

Level 2 cache prefetching (stride-1) labeled ‘LP’. Once

again, this feature can reduce the latency of data access. The

extra energy consumption is modeled as second cache access.

IV. EMPIRICAL RESULTS

In this section, we evaluate the impact of memory subsystem

optimizations for sparse matrix vector multiplication kernels

representing different levels of tuning.

We consider metrics such as execution time and energy,

where energy is computed as the system power × time. Our

contributions include the following.

• Characterizing improvements in time and energy when

memory subsystem optimizations are used in conjunction

with DVS and low power modes of caches.

• Characterizing relative improvements (RI) starting from

the base system for fixed feature sets relative to a fixed

base line.

• Modeling relative incremental improvements (RII) from

adding a feature to the system after a sequence of earlier

optimizations. For example, evaluating the incremental

impact of adding memory prefetching (MP) for the base

system with wider data paths (W) and an open page

policy (MO).

As described earlier in Section II, we consider two variants

of a general purpose SMV, labeled SMV-U and SMV-O for

a total of four matrices with an RCM ordering. We also use

the equake code from SPEC CFP 2000 with its application

specific sparse matrix vector kernel (Equake-A) and with a

slightly tuned version of the kernel (Equake-AT). We start with

in-depth analysis for SMV-U and SMV-O and conclude with

an overview of results for equake.

We use several plots in this section with the following

general format.

• The X-axis indicates 40 configurations corresponding to

distinct frequency and L3 cache size pairs. The X-axis

value 1 represents a CPU at 300 MHz with 256 KB L3,

the value 2 represents a 300 MHz CPU with a 512KB

L3, and so on with 40 representing the 1GHz, 4MB L3

configuration.

• The Y-axis shows either absolute or relative values of

metrics such as time and energy and other derived metrics

to capture relative improvements.

• Relative values show scaling with respect to a certain

fixed point for the same kernel. Metrics for a kernel are

not shown relative to values for a different kernel.

• Plots for base architecture are labeled ‘B’ and the features

include wider data paths (W), open page memory policy

(MO), a memory prefetcher (MP), and an L2-prefetcher

(LP). When these features are added incrementally start-

ing from the base ‘B’, the order is shown using labels of

the form ‘B+W+MO+MP’ for base with wider data paths

followed by adding an open page memory policy and a

memory prefetcher.

We also use stacked and grouped bars to summarize results

for a fixed L3 size across frequencies.

A. Performance and Energy Metrics: Profiles and Summary

Figures 2 and 3 show the execution times and energy

for SMV-U (left) and SMV-O (right) when the features are

added incrementally in the order ‘B+W+MO+MP+LP’. Both

sets of plots show reductions in execution time from the

optimizations and it is easy to see that both codes could

benefit from significant energy savings by using DVS, at

improved execution times. Furthermore, at a given frequency

for a specific memory subsystem optimization, the L3 cache

size has negligible impact on execution time for both codes,

thus allowing further energy savings if power saving modes

of caches can be utilized. The plots indicate that at wider

data paths (W) and the memory open page policy (MO) are

particularly useful in reducing both time and energy. It is

also interesting to note that SMV-O on the system with all

optimizations is faster at even the lowest frequency (300MHz)

than for the base configuration at 1GHz.

These plots in Figures 2 and 3 are useful for identifying

general trends but they do not give insights into the relative

effectiveness of different optimizations. We therefore use the



data presented in these plots to define and compute additional

metrics. Consider a specific code such as SMV-U. Let Tf,c,q

denote the observed execution time, at frequency f , cache size

c and feature set q. We define relative improvement (RI) with

respect to T1G,4M,B as:

RI(T )f,c,q =
T1G,4M,B − Tf,c,q

T1G,4M,B

.

Using the conventional definition of speedup as S(T )f,c,q =
T1G,4M,B

Tf,c,q
, the metric RI(T )f,c,q = 1 − 1

S(T )f,c,q

. Some obser-

vations regarding this metric include:

• Values greater than 0 indicate improvements (for exam-

ple, decreases in time) while negative values indicate

degradation (for example, increases in time).

• This metric can also be used to study improvements in

energy; we indicate it as RI(E)f,c,q.

• RI values are defined with respect to a specific kernel and

hence its base performance or energy values.

Figure 4 shows the RI values for time, and energy for

SMV-U at all frequencies for the smallest L3 cache size of

256KB. Observe that in all cases, the improvements for SMV-

O are higher than for SMV-U for same configuration. On

average with all optimizations, execution time for SMV-O is

improved by 48% at average system energy improvements of

85%. Corresponding average improvements for SMV-U are

35% in time and 83% in energy.

B. Relative Incremental Improvements (RII): Measuring In-

cremental Impact per Feature Addition

The RI values represent speedups for specific configurations

relative to a fixed base (at 1GHz, 4MB L3). Thus, they model

improvements from the specific set of optimizations as well as

from other factors including frequency related scaling and the

effect of cache sizes. It would be appropriate to devise a metric

that removes the effects of frequency and cache sizes for

modeling incremental improvements when the existing con-

figuration is augmented by one more optimization. Otherwise,

effects of frequencies and caches may dominate over improve-

ments strictly from the new feature. To model the speedup for

adding one optimization r to an existing configuration q (at

a specific frequency and cache size), we define the relative

incremental improvement (RII) as RII(T )q+r =
Tq−Tq+r

Tq
. If

we use the conventional definition of speedup Sq+r =
Tq

Tq+r
,

then it can be seen that Sq+r = 1
1−RII(T )q+r

. For the sequence

of optimizations given by B + W + MO + MP + LP , it
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Fig. 2. Execution time in seconds for SMV-U and SMV-O when features
are added in the order ‘B+W+MO+MP+LP’.
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Fig. 3. Energy (J) for SMV-U and SMV-O when features are added in the
order ‘B+W+MO+MP+LP’.

can be easily seen that the time with all features, namely

TB+W+MO+MP+LP is given by subtracting from TB , the

time at the base configuration, values of RII(T )B+W TB,

RII(T )B+W+MOTB+W , RII(T )B+W+MO+MP TB+W+MO ,

and RII(T )B+W+MO+MPLP TB+W+MO+MP .

In the RII definition above, incremental optimizations to

the system in a given order are seen as providing incremental

speedups; RII values for energy can be defined similarly. Note

that these RII values are sensitive to the ordering and they are

shown in Figure 5 for SMV-U and SMV-O. These RII values
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time and energy values for the base configuration at 1GHz with a 4MB L3
cache. The lines indicate average improvements for the final configuration
‘B+W+MO+MP+LP’ across frequencies (solid SMV-O, dotted SMV-U).

indicate the wider data paths have greater impact for SMV-

O than for SMV-U and they are the most energy efficient.

The open page policy (MO) improves energy efficiency at

all frequencies while improving time significantly at higher

frequencies. Additionally, the relative impact of MP is more

marked in certain frequency ranges than in others. More sig-

nificantly, all optimizations benefit SMV-O more than SMV-U.

Observe that the plots in Figure 5 indicate significant dif-

ferences in RII values between SMV-U and SMV-O when the

same feature is added to same configuration. These differences

are clearly from the difference in the tuning levels of the two

codes. Consequently, if RII values are used to select features,

then the outcome can be impacted by the choice of kernel. For

example, if only features yielding execution time RII values

greater than .1 are to selected, then values in Figure 5, indicate

that ‘LP’ will not be selected if SMV-U is used. Likewise, the

RII values indicate greater improvements in time and energy

with MO for SMV-O. Consequently, design choices could be

different depending on the choice of the kernel used in the

evaluation.

C. Results for Equake-A and Equake-AT

We now summarize performance and energy results when

evaluations are performed using Equake-A and Equake-AT.

Figure 6 shows the plots for execution time and energy for on

the base configuration and when all optimizations are applied,

i.e., for the configuration B+W +MO+MP +LP . Observe

that the optimizations result in very small improvements in
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Fig. 5. Relative incremental improvements (RII) in execution time (top)
and energy (bottom) for SMV-U (left) and SMV-O (right). Plots correspond
to the incremental addition of memory subsystem optimizations in the order:
the base configuration (B), adding wider data paths (B+W), an open page
policy (B+W+MO), a memory prefetcher (B+W+MO+MP), and an L2-prefetcher
(B+W+M0+MP+LP).

the execution time of Equake-A while Equake-AT benefits to

a larger degree. As mentioned earlier in Section II, the SMV

kernel could potentially be tuned further to include features

for increasing data-reuse and locality of access. Nonetheless,

the slight tuning does enable the code to utilize the memory

subsystem optimizations in larger measure than Equake-A.

Next, we compute RII values for execution time using

Equake-A and Equake-AT; these are shown in Figure IV-C.

There is significant divergence in the RII values for the two

codes; for example, LP has a negative impact for Equake-A

while Equake-AT benefits to a small degree. Once again, these

differences arise from the differences in the level of tuning

of the SMV kernel representing the dominant computation in

equake.
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optimizations, starting with the base configuration (B), adding wider data paths
(B+W), an open page policy (B+W+MO), a memory prefetcher (B+W+MO+MP),
and an L2-prefetcher (B+W+M0+MP+LP).

V. CONCLUSIONS

In this paper, we have considered several memory subsys-

tem enhancements for energy-aware high performance sparse

computations. These optimizations benefit both the tuned and

natural forms of sparse matrix vector multiplication, a function

common to many codes in an emerging class of scientific

applications. For the untuned kernel, SMV-U, optimizations

improve time relative to the base configuration at 1GHz by

over 30% starting at frequencies as low as 500MHz with

energy reductions of over by over 80%. Corresponding figures

for the tuned form, SMV-O, are in excess of 40% for time

and 85% for energy. Similarly, the tuned form of equake

also benefits more from the optimizations. Thus considerable

savings in energy are possible with improvements in exe-

cution time if memory subsystem optimizations are used in

conjunction with DVS and low-power modes of caches. Not

surprisingly, tuned kernels realize greater benefits from the

memory subsystem optimizations. However, the differences

in relative incremental improvements from the same set of

optimizations, independent of frequency or cache size effects,

are considerable depending on the level of code tuning. These

differences indicate a distinct interplay between code and

system optimizations.

There is increasing interest in such sparse applications

because they allow scaling to solve larger and more refined

models. However, tuned implementations representing the

types of optimized codes found in high-performance scientific

software [14], [21], [25], [29] are typically not available

in current benchmark suites. We conjecture that performance

analysis with such tuned codes in addition to more traditional

benchmarks, will enable a more comprehensive assessment of

architectural optimizations for future high end systems.

Our contributions are primarily empirical and our simulation

codes and sparse kernels will be available upon request. We

also plan to develop and make available to the architecture

community, a benchmark suite of sparse kernels that better

represent features of scientific applications and are suitable

for studying performance and power trade-offs through archi-

tectural emulation.
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