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Abstract—In this work, a coding technique called cost con-
strained Geometric Huffman coding (CCGHC) is developed.
CCGHC minimizes the Kullback-Leibler distance between a
dyadic probability mass function (pmf) and a target pmf subject
to an affine inequality constraint. An analytical proof is given that
when CCGHC is applied to blocks of symbols, the optimum is
asymptotically achieved when the blocklength goes to infinity. The
derivation of CCGHC is motivated by the problem of encoding a
text to a sequence of slats subject to architectural design criteria.
For the considered architectural problem, for a blocklength of
3, the codes found by CCGHC match the design criteria. For
communications channels with average cost constraints, CCGHC
can be used to efficiently find prefix-free modulation codes that
are provably capacity achieving.

I. INTRODUCTION

In the near future, parts of the electrical engineering faculty
of RWTH Aachen University will move into new buildings
called Information and Communication Technology (ICT)
cubes. To protect the cubes against heating up in sun light,
the idea is to shadow the facades by placing rows of slats
in front of them. The slats itself come in three forms, left,
right, and middle. All slats types have a height of 1.70m. The
widths are given by 0.18m, 0.18m, and 0.31m, respectively.
Each 0.625m a slat is placed. See also Fig. 1 for a visualization
of the cubes. To cover all eight facades of the two cubes, a
total number of 4264 slats is required. The actual choice of
slats is subject to the following design criteria.
C1. For aesthetic reasons, the sequence of slats should

appear random.
C2. To ensure enough cooling, around 33% of the facade

area should be covered by the slats.
C3. Since shadow turns the rooms dark, the total shadowing

should not exceed 33%.
Observing that many different sequences of slats fulfill the
above constraints, Mr. Mathar came up with the idea to encode
a text to the sequence of slats, when read row by row from left
to right. Thus, the challenge is to encode a text to a sequence
of slats subject to the design criteria C1., C2, and C3.

This work has been supported by the UMIC Research Center, RWTH
Aachen University.

Fig. 1. Visualization of the ICT cubes.

In the remainder of this work, we develop a coding scheme
that solves this problem. The key part of our scheme is a new
algorithm that we call cost constrained geometric Huffman
coding (CCGHC). This algorithm minimizes the Kullback-
Leibler distance between a dyadic probability mass function
(pmf) and a target pmf subject to an affine inequality con-
straint. Interestingly, in the context of channel matching [1],
CCGHC can also be used to directly find capacity-achieving
modulation codes for communication channels with average
power constraint. This improves upon the broad search ap-
proach that we presented in [2].

II. APPROACH

A. Problem Modelling

As stated in the introduction, there are three types of slats,
i.e., left, right, and middle slats. We index them in this order.
To turn the design problem into a tractable problem, we use
a probabilistic model. Assume each slat is drawn independent
and identically distributed (iid) from the set {1, 2, 3} according
to a pmf p = (p1, p2, p3)

T . According to criterion C1., we
would ideally choose uniformly among the three types of slats.
Thus, we would like the pmf p to be close to the uniform target
pmf t = (1/3, 1/3, 1/3)T . As a distance measure, we use the
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Kullback-Leibler (KL) distance, which is defined as

D(p‖t) =
∑
i

pi log
pi
ti
. (1)

Thus, criterion C1. can be cast into the objective to minimize
D(p‖t). The width of the slats in meters is

w = (w1, w2, w3)
T = (0.18, 0.18, 0.31)T [m]. (2)

Every 0.625m, a slat is placed. Thus, by criterion C2., each
slat has to cover in the average a breadth of

S = 33% · 0.625 = 0.2063. (3)

Note that wT t/0.625 ≈ 36%, i.e., when using the uniform
distribution, the shadowing is too strong and criterion C3. is
violated. Thus, criterion C2. and C3. can be cast into the affine
inequality constraint wTp ≤ S.

Pmfs of the slats can be generated as follows. We do
source-channel separation with a binary interface, i.e., we first
compress the text to a binary sequence, and we then design a
code that maps the binary sequence to a sequence of slats with
the objective to match the design criteria. The text compression
part is a well-studied topic. For now, we therefore assume
perfect compression, i.e., after text compression, we have a
stream of iid equiprobable bits. By parsing the binary stream
by a full prefix-free code, we can generate dyadic pmfs d [1],
i.e., pmfs where each entry d is of the form

d = 2−`, ` ∈ N. (4)

Thus, our objective is to approximate the target pmf t by a
dyadic pmf d while guaranteeing in the average a shadowing
of at most S. Within the probabilistic model, the criteria C1.-
C3. can now be cast into the following optimization problem.

minimize
d

D(d‖t)

subject to wTd ≤ S
d is a dyadic pmf.

(5)

B. Cost Constrained Geometric Huffman Coding

Without the restriction of pmfs to be dyadic, problem (5) is
a convex optimization problem and can be solved efficiently.
However, the restriction to dyadic pmfs makes the set of
argument p discrete and the problem is not convex anymore.
To the best of our knowledge, there is no efficient algorithm
known that directly solves the problem. We therefore write
the problem as a trade-off problem by adding a scaled version
λwTd of the shadowing to the objective function. This can
be written as

D(d‖t) + λwTd =
∑
i

di log
di
ti

+ λwTd (6)

= D(d‖t ◦ 2−λw). (7)

The solution can efficiently be found by geometric Huffman
coding (GHC), i.e., d = GHC(t ◦ 2−λw). See [1] for the
definition of GHC and [3] for an implementation in Matlab.
The shadowing constraint can be guaranteed by iteratively

shannon... HUFFMAN
111000...
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Fig. 2. We first compress the text to a binary sequence and then match the
binary sequence to the design criteria by using CCGHC.

adapting λ: if for the resulting d, wTd > S, increase λ and
repeat, if wTd < S, decrease λ and repeat. Thus, the solution
can be found by bisection. In summary, we have the following
algorithm, which we call cost constrained geometric Huffman
coding (CCGHC).

Algorithm 1.(CCGHC)

` < λ∗ < u
repeat

1. λ = `+u
2

2. d = GHC(t ◦ 2−λw)
3. if wTd ≤ S, u← λ; else `← λ

until u− ` < ε
λ∗ = u
d = GHC(t ◦ 2−λ∗w)

C. Asymptotic Achievability

To evaluate the quality of the dyadic pmf found by CCGHC,
we compare to what can be achieved when dropping the
restriction to dyadic pmfs, i.e., when allowing the argument
p in problem (5) to be any pmf from the probability simplex.
Denote the optimal pmf from the probability simplex by p∗.
Since there is only a finite number of dyadic pmfs of a given
length, the performance of the dyadic pmf d found by CCGHC
may be too bad compared to what is achieved by the optimal
pmf p∗. This problem can be solved by generating dyadic
pmfs of blocks of symbols. Consider the target pmf tk of k
consecutive symbols. The corresponding shadowing is given
by the Kronecker sum vk = w⊕k of k copies of w. For an
increasing blocklength, we have the following result.

Proposition 1. Define dk = CCGHC(tk,vk, kS). Then,

D(dk‖tk)
k

→D(p∗‖t) (8)

and
vTk dk
k
→S, v

T
k dk
k
≤ S (9)

i.e., the distance from the target pmf per symbol converges
to the optimal value and the average shadowing per symbol
converges to the target shadowing S, while the shadowing
constraint is always fulfilled.

Proof: The proof is given in Section IV.

III. WRITING TO THE ICT CUBES

We now apply CCGHC to solve the design problem of
finding an encoding scheme subject to the design criteria C1.-
C3. as stated in the introduction. The text that we write to the
facades of the ICT cubes consists of quotes from scientists that
significantly contributed to the development of information
and communications technology. Our coding scheme consists



TABLE I
THE EMPLOYED HUFFMAN CODE.

: 000 a : 0100 b : 101110 c : 01101 d : 11110 e : 110 f : 11111 g : 001110 h : 00110
i : 0101 j : 001111111 k : 00111101 l : 01100 m : 10110 n : 1000 o : 0111 p : 100101 q : 001111110
r : 1010 s : 1110 t : 0010 u : 10011 v : 00111100 w : 101111 x : 001111100 y : 100100 z : 001111101

TABLE II
THE MATCHING CODE INDUCED BY d3 = CCGHC(t3,v3, 3S).

0010 : lll 1101 : llr 00000 : llm 1100 : lrl 1111 : lrr 00011 : lrm 00010 : lml 01101 : lmr 0000111 : lmm
1110 : rll 1001 : rlr 01100 : rlm 1000 : rrl 1011 : rrr 01111 : rrm 01110 : rml 01001 : rmr 000010 : rmm

01000 : mll 01011 : mlr 001101 : mlm 01010 : mrl 1010 : mrr 001100 : mrm 001111 : mml 001110 : mmr 0000110 : mmm

lllllllllllllllllll mmmmmmmmm rrrrrrrrrrrrr

Fig. 3. Decoding the top floor with the codes specified in Table II and Table I results in shannon the fu. This is the first
part of shannon the fundamental problem of communication is that of reproducing at one point either exactly or
approximately a message selected at another point, a phrase taken from the first chapter of [4].

of two parts. We first compress the text to a binary sequence
by Huffman coding, and then match the binary sequence to the
design criteria by using CCGHC. See Fig. 2 for an illustration.

A. Text Compression

To keep the number of symbols small, we write the text
using only small Latin characters and space, which results
in an alphabet size of 27. To map the text to a binary
sequence, we use the Huffman code [5] of the relative symbol
frequencies in the text. See Tab. I for the resulting code. 49.4%
of the bits in the resulting binary sequence are zeros and
50.6% are ones, so roughly speaking, our assumption to have
an iid sequence of equiprobable bits at the binary interface is
reasonable.

B. Criteria Matching

We now map the binary sequence blockwise to a sequence
of slats. The objective is to match the design criteria C1.-C3.
as stated in the introduction. To see how close we are to the
optimum, we calculate the optimal pmf p∗ when the restriction
to dyadic pmfs is dropped. The optimal pmf is given by

p∗ = (0.3988, 0.3988, 0.2023)T . (10)

This is the pmf closest to the uniform pmf, thus the best match
of criterion C1., while fulfilling the shadowing constraints C2.
and C3.

We choose k = 3 as blocklength for the matcher codes. As
a first matcher code, we use the code induced by the dyadic
pmf d3 = CCGHC(t3,v3, 3S). The resulting code is displayed
in Table II. The first row of the resulting sequence of slats is
displayed in Fig. 3. The interested reader is invited to decode it
by using first the matching code in Table II in inverse direction
and then the Huffman code in Table I in inverse direction. The

effective relative frequencies of the slats is

peff =
1

4264
(]{left}, ]{right}, ]{middle})T (11)

= (0.3838, 0.39457, 0.22162)T . (12)

As we can see, peff is very close to p∗. The effective
shadowing is

Seff = 0.20881, (13)

which corresponds to an average shadowing of 33.4%. This
exceeds the target percentage of 33% by 0.4 percentage points,
thus violates criterion C3. This problem can be fixed as
follows. We use a stricter shadowing constraint S′ = 0.206
instead of the original target constraint S = 0.2063 and
calculate d′3 = CCGHC(t3,v3, 3S

′). The effective relative
slats frequencies that result from the code induced by d′3 are
now

p′eff = (0.39132, 0.4317, 0.17698)T . (14)

and the effective shadowing is

S′eff = 0.20301. (15)

This corresponds to an average shadowing of 32.5%, thus
fulfills criterion C3. Note that peff is closer to the uniform
pmf than p′eff and thus matches better criterion C1. It is now
up to the architects to choose among code d3 and d′3, i.e., to
find the best trade-off between criterion C1. and the criteria
C2. and C3. for their purpose.

IV. ANALYSIS OF CCGHC

This section consist of two parts. In Subsection A, we derive
two lemmas that characterize the operating point geometry
in terms of average cost and distance to the target pmf. We
then use these two lemmas in Subsection B to actually prove
Proposition 1.



A. Operating Point Geometry

We start by characterizing the region of achievable operating
points. We define the distance-cost function D(E) pointwise
by the solution of

minimize
p

D(p‖t)

subject to wTp− E ≤ 0

− p ≤ 0

1Tp− 1 = 0

(16)

i.e., if p∗ is the optimal pmf for E = E∗, then D(E∗) =
D(p∗‖t). Note that the two last constraints restrict p to the
probability simplex, i.e., ensure that p is a pmf. By the
convention log 0 = −∞, clearly, whenever ti = 0, the
optimal pmf assigns p∗i = 0, since otherwise, the objective
function would take the value infinity. Therefore, without loss
of generality, we assume in the following that ti > 0 for all
i. The Lagrangian is

L(p, λ,µµµ, ν) = D(p‖t) + λ(wTp− E)−µµµTp+ ν(1Tp− 1).
(17)

Assume p is feasible. Then the KKT conditions are

λ ≥ 0, µ ≥ 0 (18)

λ(wTp− E) = 0 (19)
µipi = 0 (20)

∂L(p,µ, ν, λ)

∂pi
= log

pi
ti
− 1− µi + ν + λwi = 0 (21)

It can be shown that for Problem (16), a pmf p is optimal
if and only if there are λ,µµµ, ν such that p fulfills the KKT
conditions. Denote now by p∗, λ,µµµ, ν values that fulfill the
KKT conditions. By the last condition,

log p∗i = log ti + 1 + µi − ν − λwi (22)

since by assumption ti > 0, the right-hand side is finite,
therefore, pi > 0. Thus, by (20), µi = 0 and we conclude

log p∗i = log ti + 1− ν − λwi, i = 1, . . . ,m. (23)

Lemma 1. For wmin < E < wT t, the distance-cost function
D(E) is strictly convex in E.

Proof: Denote by p∗ and optimal pmf for E = E∗. Since
p∗ is a pmf,

p∗i =
p∗i∑
j p
∗
j

=
tie

1−ν−λwi∑
j tje

1−ν−λwj
(24)

=
tie
−λwi∑

j tje
−λwj

. (25)

Since by assumption E∗ < wT t, the average weight constraint
is active, which implies λ > 0. Thus, by (19), wTp∗ = E∗,
i.e,

wTp∗ =

∑
i witie

−λwi∑
j tje

−λwj
, f(λ) = E∗. (26)

We differentiate f(λ) and get

df(λ)

dλ
=

∑
i

∑
j(wiwj − w2

i )titje
−λ(wi+wj)[∑

j tje
−λwj

]2 (27)

We now want to show that df(λ)
dλ < 0. Since the denominator

is positive, we only need to consider the numerator. We have∑
i

∑
j

(wiwj − w2
i )titje

−λ(wi+wj) (28)

=
∑
i

∑
j≥i

(wiwj − w2
i + wjwi − w2

j )titje
−λ(wi+wj) (29)

=
∑
i

∑
j≥i

[−(wi − wj)2]titje−λ(wi+wj) < 0 (30)

where the inequality in the last line follows since there is
at least one pair (i, j) such that wi 6= wj and since, by
assumption, ti > 0 for all i. Thus, f is strictly monotoni-
cally decreasing and thereby invertible on its image, i.e., on
(wmin,w

T t). Consequently, λ = f−1(E) is strictly monoton-
ically decreasing. By [6, Sec. 5.6.3], λ = − dD(E)

dE , thus,

d2D(E)

dE2
= − df−1(E)

dE
> 0 (31)

which shows the strict convexity of D(E) in E.

Lemma 2. For a given cost constraint E∗, denote by p∗

an optimal pmf. Denote by p an arbitrary pmf with the only
restriction that pi = 0 whenever p∗i = 0. Then

D(p‖t) = D(E∗)− λ(wTp− E∗) + D(p‖p∗). (32)

where −λ is the the slope of the tangent of D in (E∗,D(E∗)).

Proof:

D(p‖t) =
∑
i

pi log
pi
ti

(33)

=
∑
i

pi log
pip
∗
i

tip∗i
(34)

=
∑
i

pi log
p∗i
ti

+D(p‖p∗) (35)

=
∑
i

pi log p
∗
i −

∑
i

pi log ti +D(p‖p∗) (36)

We further develop the first term∑
i

pi log p
∗
i =

∑
i

(pi + p∗i − p∗i ) log p∗i (37)

= −H(p∗) +
∑
i

(pi − p∗i ) log p∗i (38)

= −H(p∗) +
∑
i

(pi − p∗i )(log ti + 1− ν − λwi) (39)

= −H(p∗)− λ(wTp−wTp∗) +
∑
i

pi log ti

−
∑
i

p∗i log ti (40)

= D(p∗‖t)− λ(wTp−wTp∗) +
∑
i

pi log ti. (41)
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Fig. 4.
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Q′′

−ξ
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Fig. 5.

All together,

D(p‖t) = D(p∗‖t)− λ(wTp−wTp∗) + D(p‖p∗) (42)

= D(E∗)− λ(wTp− E∗) + D(p‖p∗). (43)

B. Proof of Proposition 1

We now show that any target operating point Q∗ =
(wTp∗,D(wTp∗)) can be achieved by a dyadic pmf. We
do this in two steps. First, we show the existence of dyadic
operating points close to the target operating point, and then
we show that CCGHC actually finds them. Both results are a
direct consequence of the strict convexity of the distance-cost
function D(E) that we stated in Lemma 1.

1) Existence of good dyadic points: Consider the optimal
pmf p∗k of k consecutive symbols. Define vk = w⊕k where
w⊕k denotes the Kronecker sum of k copies of w. Further-
more, define dk = GHC(p∗k). By Lemma 2, the operating
point geometry becomes

D(dk‖tk)
k

= D(E∗)− λ
(vTk dk

k
− E∗

)
+

D(dk‖p∗k)
k

.

(44)

By [1, Prop. 2], since dk = GHC(p∗k), the normalized KL-
distance on the right-hand side goes to zero as k → ∞.
Consider now Fig. 4. The tangent of D(E) in Q∗ is given
by

g(E) = D(E∗)− λ(E − E∗). (45)

As the normalized KL-distance of dk to p∗k gets smaller, the
normalized KL-distance of dk to tk on the left-hand side of
(44) is approaching the tangent g. However, because the tan-
gent is linear in E and D is strictly convex and lower bounds
D(dk‖t∗k)

k , the dyadic operating point (
vT
k dk

k , D(dk‖t∗k)
k ) has

to approach Q∗ both in terms of distance and cost.
2) Finding good dyadic points: It remains to show that

algorithm CCGHC finds good dyadic points. This can best be
seen in Fig. 5. Suppose we want to find a dyadic pmf dk such

that for a given ε > 0,

D(dk‖t∗)
k

≤ D(E∗) + ε and
vTk dk
k
≤ E∗. (46)

Define

E′ : D(E′) = D(E∗) + ε and E′′ =
E′ + E∗

2
. (47)

The chord from Q∗ = (E∗,D(E∗)) to Q′ = (E′,D(E′))
cuts a segment from the area above D. Because of the
strict convexity of D, this segment is nonempty. Note that
all operating points in the segment fulfill the requirements
(46). As shown in the previous Subsection IV-B1, for a big
enough k, there are dyadic operating points approximating
Q′′ = (E′′,D(E′′)) that lie within this segment. Define now
−ξ as the slope of the chord, i.e.,

ξ = −D(E′)− D(E∗)

E′ − E∗
. (48)

Now, dk = GHC(tk ◦ 2−ξvk) minimizes

1

k

[
D(dk‖tk) + ξvTk d

]
(49)

and will thus find a point in the segment. The slope −ξ will
also be evaluated by CCGHC, thus dk = CCGHC(tk,vk, kE

∗)
will give a dyadic operating point at least as good as

dk = GHC(tk ◦ 2−ξvk). (50)

This concludes the proof of Proposition 1.
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