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Abstract—Dynamic Time-division duplex (TDD) can provide
efficient and flexible splitting of the common wireless cellular
resources between uplink (UL) and downlink (DL) users. In
this paper, the UL/DL optimization problem is formulated as a
noncooperative game among the small cell base stations (SCBSs)
in which each base station aims at minimizing its total UL and
DL flow delays. To solve this game, a self-organizing UL/DL
resource configuration scheme for TDD-based small cell networks
is proposed. Using the proposed scheme, an SCBS is able to
estimate and learn the UL and DL loads autonomously while
optimizing its UL/DL configuration accordingly. Simulations
results show that the proposed algorithm achieves significant
gains in terms of packet throughput in case of asymmetric
UL and DL traffic loads. This gain increases as the traffic
asymmetry increases, reaching up to 97% and 200% gains
relative to random and fixed duplexing schemes respectively. Our
results also show that the proposed algorithm is well- adapted
to dynamic traffic conditions and different network sizes, and
operates efficiently in case of severe cross-link interference in
which neighboring cells transmit in opposite directions.

Keywords- Dynamic-TDD; small cells; reinforcement learning;
self-organizing networks

I. INTRODUCTION

Next generation of heterogeneous networks (HetNets) are
expected to have significant variations in traffic load between
different cells and at different times. Moreover, due to the
massive increase in the use of smartphones and video stream-
ing applications [1], an asymmetric and dynamically changing
uplink (UL) and downlink (DL) traffic is expected, incurring
new types of cross-link interferences. In order to cope with
this challenge, it is necessary that the evolution of current
wireless networks is able to accommodate asymmetric UL and
DL traffic loads. While Time-division duplex (TDD) systems
[2] have the capability of handling this asymmetry, in practice,
cells operating in TDD are assumed to synchronize their UL
and DL transmissions. Otherwise, they can suffer from a new
type of interference from base stations transmitting in the
opposite direction; this is referred to as cross-link interference
[2]. Basically, there are two types of interference associated
with the asynchronous TDD operation, UL-to-DL interference
and DL-to-UL interference, as illustrated in Fig. 1.
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Fig. 1. New types of interference arising in the dynamic TDD configuration.

Dealing with cross-link interference is a key challenge for
deploying dynamic TDD-based systems [3]. For example,
time-division Long Term Evolution (TD-LTE) systems require
synchronization between base stations over an overlapping
coverage area [4]. Moreover, under small cell base station
(SCBS) deployment, this becomes more challenging [5], since
cells are more likely to have strong interference coupling,
especially in dense overlapping areas. Besides, as centralized
operation becomes difficult, small cells should self-organize
to select their optimum UL/DL configuration, as a function
of the interference levels, and users’ quality-of-service (QoS)
requirements.

The problem of dynamic UL-DL configuration in TD-LTE
systems is studied in [6]. Therein, the prospects of dynamic
TDD in TD-LTE systems are discussed and challenges are
identified, among which interference management is seen as
a major impediment. The performance of dynamic adaptation
of UL and DL in LTE picocell systems is also analyzed in
[7]. It is shown that significant gains in packet throughput are
achieved by using dynamic TDD over the synchronous TD-
LTE. The analytical modeling of UL and DL performance
under dynamic TDD is studied in [8] using tools from
stochastic geometry. A cooperative UL-DL adaptation scheme
is introduced in [9] in which two SCBSs serving one user each,
adapt their UL/DL configuration locally relying on exchanging
low-rate information.

The main contribution of this paper is to propose a dy-
namic UL/DL configuration scheme for TDD-based small
cell environments in which the objective is to minimize the
overall UL and DL delay in each cell and in a completely
autonomous manner. In particular, the problem is formulated
as a noncooprative game in which the SCBSs are the players.978-1-4799-5863-4/14/$31.00 c© 2014 IEEE
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Fig. 2. Possible switching points in a TDD frame.

In this game, each SCBS learns and estimates its current
uplink and downlink delay, as a function of its traffic load,
interference levels and flow-level dynamics, relying only on
its instantaneous observations, and uses this estimated value
to update its UL/DL switching point. A decentralized and
self-organizing learning algorithm is then proposed to find an
equilibrium of the game. The proposed approach is then shown
to achieve considerable gains over fixed and random TDD de-
ployments for different network sizes. In addition, our results
show that the proposed algorithm is well-suited to small cell
environments with large traffic dynamics. Simulation results
show significant packet throughput gains in case of asymmetric
UL and DL traffic loads for the proposed algorithm. The gain
further increases as the traffic asymmetry increases, reaching
up to 97% and 200% gains relative to random and fixed
schemes respectively.

The rest of this paper is organized as follows, in Section II,
we describe the network model and formulate the problem.
Section III introduces the proposed self-organizing UL/DL
optimization scheme. Simulation results are provided in Sec-
tion IV. Finally, Section V concludes the paper.

II. SYSTEM MODEL

A. Network Model

We consider a wireless communication system consisting
of a set of small cell base stations (SCBSs) B = {1, . . . , B}.
We assume that a user equipment (UE) arrives at location x
within the considered geographical area according to a Poisson
arrival process with rate λ(x). Each UE requests either a DL
or UL file whose size follows an exponential distribution with
mean 1/µ(x). A closed-access policy is assumed in this work,
meaning that each SCBS has its own subscribed UEs, and
hence no handover is considered [5]. We further assume Lb
to be the coverage area of an SCBS b, where a UE at location
x is served by an SCBS b if x ∈ Lb.

We assume that the system operates in TDD mode. A time
frame consists of a number of Nf subframes. A frame is
divided into two portions, UL portion and DL portion. Each
portion consists of a group of subframes dedicated to serving
either UL or DL traffic. A switching point wb is defined as
the point in which SCBS b switches from UL mode to DL
mode. There is a number of Nf − 1 possible switching points

for a frame length of Nf , then wb ∈ {1, . . . ,Wf}, where
Wf = Nf−1, as illustrated in Fig. 2. For any of these possible
switching points, there will be at least one subframe for UL
and for DL in each frame.

B. Problem Formulation

We define the vector w = [w1, w2, . . . , wB ] as the vector
of switching points for all SCBSs in the system. Varying
switching points asynchronously in different cells may cause
opposite transmission directions in different cells which leads
to cross-link interference (i.e. UL-to-DL interference and DL-
to-UL interference). Consequently, the Signal-to-Interference-
plus-Noise-Ratio (SINR) for UL and DL, respectively, for a
receiving node at location x ∈ Lb is given by:

ΓUL
b (x) =

pUL
b hb,b(x)

σ2 +
∑
j∈BUL\{b} p

UL
j hj,b(x) +

∑
k∈BDL

pDL
k hk,b(x)

, (1)

ΓDL
b (x) =

pDL
b hb,b(x)

σ2 +
∑
j∈BUL

pUL
j hj,b(x) +

∑
k∈BDL\{b} p

DL
k hk,b(x)

, (2)

where pUL
b (pDL

b ) is the UL (DL) power from the serving
node b, pUL

j (pDL
j ) is the UL (DL) power from the interfering

node j, hm,b(x) is the channel gain, including pathloss,
between the transmitting node in SCBS b and the receiving
node in location x ∈ Lb, BUL and BDL are the sets of cells
operating in UL and DL, respectively, and σ2 is the noise
variance. Furthermore, the data rates of a UE at location
x ∈ Lb for UL and DL, respectively, are given by:

cUL
b (x) = fb log2(1 + ΓUL

b (x)), (3)

cDL
b (x) = fb log2(1 + ΓDL

b (x)). (4)

where fb is the bandwidth allocated to that UE.
The system-load density at location x is defined as [10]:

%
(l)
b (x) :=

γ(l)(x)

c
(l)
b (x)

, (5)

where l ∈ {UL,DL} and γ(l)(x) := λ(l)(x)/µ(l)(x) is the
load density at location x.

The cell load density for cell b ∈ {1, 2, . . . , B} is defined
as the time delay needed to serve the UL and DL traffic as
follows:

ρ
(l)
b (wb) =

1

δ(l)(wb)

∫
x∈Lb

%
(l)
b (x)dx. (6)

where l ∈ {UL,DL}, δ(l)(wb) is the UL or DL duty cycle,
which is the fraction of time frames dedicated to either UL or
DL service within a frame, and is expressed as follows:

δ(l)(wb) =


wb
Wf

l = UL,

Wf − wb
Wf

l = DL.

(7)



Here, dividing each cell load by its respective UL or
DL duration is done in order to account for the UL/DL
effective traffic. Therefore, lower duty cycles lead to higher
delays and vice versa. Our objective is to find the vector of
switching points w that minimizes the overall average flow
delay by minimizing

∑
b∈B

ρb
1−ρb over the entire time frame

[10]. Therefore, we define a cost function that reflects the flow
delay average over the whole subframes within a timeframe,
calculated as follows:

J(w) =

B∑
b=1

(
1

wb

wb∑
j=1

ρUL
b,j(wb)

1− ρUL
b,j(wb)

+
1

Wf − wb

Wf∑
j=wb+1

ρDL
b,j(wb)

1− ρDL
b,j(wb)

)
(8)

where ρUL
b,j(wb) and ρDL

b,j(wb) are the b-th cell load densities for
the UL and DL, respectively, at subframe j as defined in (6).
Thus, we can define the following cost optimization problem:

minimize
w

J(w) (9)

subject to 0 < ρUL
b,j(wb) < 1, ∀b ∈ B

0 < ρDL
b,j(wb) < 1, ∀b ∈ B.

III. SELF-ORGANIZING UL/DL CONFIGURATION

To solve (9), we develop a distributed algorithm which
dynamically optimizes the UL/DL configuration. The goal is
to design a decentralized algorithm that selects a vector of
switching points w that minimizes the cost function in (8).
With the lack of global network information, the algorithm
must rely only on the local information available at each SCBS
to optimize an individual cost function rather than the global
cost in (8). However, the cost function for each SCBS depends
not only on its own traffic load but also on the interference
experienced from neighboring cells. Therefore, each SCBS b
should learn to estimate its cost function and use this estimated
cost function to update its strategy. Here, an SCBS’s strategy
is essentially the selection of a switching point.

In view of the interference coupling between neighboring
cells, the performance of each SCBS depends not only on
its choice of switching points, but on other SCBSs’ choices
as well. Therefore, we model this problem as a strategic
noncooperative game G =

(
B, {Ab}b∈B, {Jb}b∈B

)
where B

is the set of players (SCBSs), in which each of them selects its
action a(nb)

b from a set of actionsAb = {a(1)b , a
(2)
b , . . . , a

(Nb)
b },

where Nb is the number of possible actions, which corresponds
to the number of switching points Wf in our problem. For each
BS b ∈ B, the corresponding cost function can be expressed
as follows:

Jb(a
(nb)
b ,a−b) =

1

wb

wb∑
j=1

ρUL
b,j

1− ρUL
b,j

+

1

Wf − wb

Wf∑
j=wb+1

ρDL
b,j

1− ρDL
b,j

(10)

where a
(nb)
b is the player’s selected action and a−b is the

vector of other players’ actions.
Each player b chooses an action following a mixed strategy

profile πb = [π
b,a

(1)
b

, π
b,a

(2)
b

, . . . , π
b,a

(Nb)

b

], which is a vector of
probability distributions over the set of possible actions Ab.
Let the strategy of choosing an action a

(nb)
b by player b at

a time frame t be the probability that this action is selected
π
b,a

(nb)

b

(t) = Pr(ab(t) = a
(nb)
b ). Then, by randomizing the

action selection following their mixed-strategies, players aim
at minimizing their long-term (expected) cost functions given
by:

J̄b(πb,π−b) =
∑
a∈A

Jb(a
(nb)
b ,a−b)

B∏
j=1

π
j,a

(nj)

j

(11)

where A = A1 × · · · × AB is the space of action profiles.
In this game, each SCBS will choose the action that can

lead to minimizing its cost function Jb, given other players’
actions. We propose an algorithm that captures this behavior
by adopting the Gibbs Sampling-based probability distribution,
in which the probability of playing an action a

(nb)
b can be

expressed as follows [11]:

Λ
b,a

(nb)

b

(a−b) =
exp

(
−βbJb(a(nb)

b ,a−b)
)

∑Nb

m=1 exp
(
−βbJb(a(m)

b ,a−b)
) (12)

where βb is a Boltzmann’s temperature coefficient. From (12),
it is clear that an action a(nb)

b that yields a lower cost function
will have a higher probability to be selected. Moreover, βb
controls the exploitation versus exploration tradeoff, in which
higher values lead to frequent selection of the actions with
lower cost values, which is the exploitation case, while lower
β values lead to exploring other values as well.

Consequently, each player will run two coupled reinforce-
ment learning processes to estimate its cost function and strat-
egy vector. The goal of these processes is to find the strategies
that allow achieving the best long-term performance while
relying only on the instantaneous observations. These two pro-
cesses run in parallel and allow each SCBS to build an estimate
of its current cost function vector Ĵb = [Ĵ

b,a
(1)
b

, . . . , Ĵ
b,a

(Nb)

b

]

at time frame t and use this estimate to update its current
strategy profile vector πb(t). These two processes can be
written ∀b ∈ B and ∀nb ∈ {1, . . . , Nb} as follows:

Ĵ
b,a

(nb)

b

(t) = Ĵ
b,a

(nb)

b

(t− 1)+

αb(t).1{ab(t−1)=a
(nb)

b }

(
J̃(t− 1)− Ĵ

b,a
(nb)

b

(t− 1)
)

π
b,a

(nb)

b

(t) = π
b,a

(nb)

b

(t− 1)+

ζb(t).
(

Λ
b,a

(nb)

b

(
Ĵb(t− 1)

)
− π

b,a
(nb)

b

(t− 1)
)
(13)

where J̃(t − 1) is the instantaneous observed cost function
at time t − 1, Λ

b,a
(nb)

b

is given by (12), αb(t) and ζb(t)

are the learning parameters, and should satisfy the following



Algorithm 1 Dynamic UL-DL Algorithm
1: The implementation at each SCBS b
2: Initialization: pick a sequence of time frames
{t(1)b , t

(2)
b , . . . , t

(n)
b , . . .}, set t(0)b = 0, Ĵb(0) = (0, . . . , 0)

and πi(0) = 1
Nb

(1, . . . , 1).
3: for each t(n)b do
4: Select an action according to the probability distribu-

tion πb(t
(n−1)
b ).

5: Calculate the cell load according to (6).
6: Calculate the observed cost function (10).
7: Update the estimated cost for the selected action and

the probability distribution vector (13).
8: end for

constraints [11]:
(i) lim

T→∞

T∑
t=1

αb(t) = +∞, lim
T→∞

T∑
t=1

αb(t)
2 < +∞

(ii) lim
T→∞

T∑
t=1

ζb(t) = +∞, lim
T→∞

T∑
t=1

ζb(t)
2 < +∞

(iii) lim
t→∞

ζb(t)
αb(t)

= 0.

(14)

The proposed algorithm is illustrated in Algorithm 1.
It is shown in [11] that this reinforcement learning pro-

cess guarantees that the algorithm convergences to the Logit
Equilibrium (LE) [12]. The LE is a special case of ε-Nash
equilibrium in which none of the players can decrease its cost
function by more than a value ε without deviating from its
current strategy. As ε→ 0, the equilibrium coincides with the
Nash equilibrium.

To explain the rationale behind the LE, we recall from (12)
the effect of varying the Boltzmann’s temperature coefficient
βb. As βb → 0, the resulting mixed-strategy follows a uniform
distribution, irrespective of the strategies of the other players,
i.e., Λ

b,a
(nb)

b

(a−b) = 1
Nb

for all a(nb)
b ∈ Ab. When βb → ∞,

the result is a uniform distribution over the best actions given
the strategies of the other players π−b.

For a finite βb > 0, higher probabilities are assigned to the
actions associated with low average cost and low probabilities
to the actions associated with high cost values. Hence if a
strategy profile π∗b ,∀b ∈ B provides the following bound
for the cost reduction a player might obtain by unilaterally
deviating from a given mixed-strategy [11]:

J̄b(πb,π−b)− J̄b(π′b,π−b) 6
1

βb
ln(Nb) (15)

where J̄b(πb,π−b) is the expected cost as defined in (11),
then π∗b is an LE equilibrium, i.e., an ε-equilibrium with
ε = max

b∈B

(
1
βb

ln(Nb)
)

. This equilibrium highlights the trade-
off in choosing the value of the coefficient βb. Although it
follows from (15) that a reduction in cost obtained by a player
unilaterally deviating from its strategy is more likely to occur
using lower values of βb, on the other hand, larger values
make the ε-Nash equilibrium sufficiently close to the Nash
equilibrium, as deduced from (12).

TABLE I
SIMULATION PARAMETERS

Parameter Value/description

System bandwidth 10 MHz

Duplex mode TDD

Number of SCBSs [2,10]

Max. number of UEs per BS 20

TDD frame length 6 subframes

Sub-frame duration 1 ms

Small cell radius 40 m

Max. SCBS transmission
power

23 dBm

Max. UE transmission power 23 dBm

Thermal noise -174 dBm/Hz

Antenna configuration 1*1

Path loss model Multi-cell pico scenario [13]

Penetration loss 10 dB

Simulation time 20 seconds (20000 subframes)

Learning parameters
Strategy learning rate (ζb) 1/(t

(n)
b )0.65

Load learning rate (αb) 1/(t
(n)
b )0.5

Temperature coefficient (1/βb) 0.005

Maximum learning iterations 200 frames

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
dynamic TDD algorithm. To illustrate the gains of the pro-
posed scheme, we compare it against two baseline schemes;
1) fixed TDD frame, in which small cells are assumed to have
the same synchronous TDD frame, with equal UL and DL duty
cycle, and 2) random TDD frame, in which the switching point
is varied randomly.

We consider an arbitrary number of SCBSs distributed
randomly, and underlaying the macrocell coverage area. In
this work, we focus only on the SCBS-to-SCBS co-channel
interference scenario. The bandwidth is assumed to be shared
between all SCBSs. The bandwidth is assumed to be divided
equally between all UEs transmitting or receiving in a given
subframe. Both SCBSs and UEs are assumed to transmit with
their maximum power, hence, no power control is considered
in this work. We use the average packet throughput as the
performance measure for different schemes, which is defined
as the packet size divided by the delay encountered to com-
plete its transmission. The motivation behind this is that it
captures both packet rate and delay, which is the objective of
the proposed scheme. To investigate the asymmetric UL/DL
traffic, we conduct simulations for different mean UL-to-DL
ratios. For example, UL-to-DL ratio of 0 dB means that the
average rate requirement λb/µb is the same for UL and DL.
Each SCBS uses a sequence of time frames, no more than
a maximum of 200 frames to learn its load and update its
UL/DL configuration accordingly. The simulation parameters
are summarized in Table I.

In Fig. 3, we compare the packet throughput performance



of our scheme against the two baseline schemes for different
UL-to-DL ratios. All SCBSs are assumed to have the same
average UL-to-DL ratios while the instantaneous traffic is
different. The UL-to-DL ratio is expressed in dB, for example,
20 dB means that 10 log(

λUL
b /µ

UL
b

λDL
b /µ

DL
b

) = 20. Fig. 3 shows that
the proposed scheme achieves significant gains reaching up
to 200% at −20 dB compared to the random scheme in all
traffic conditions. Moreover, this figure also shows that our
approach outperforms the fixed scheme in case of asymmetric
traffic conditions. The gain increases as the level of asymmetry
increases, since the SCBSs are able to learn their UL and
DL loads and adapt their transmissions accordingly. Fig. 3
also shows that the proposed algorithm achieves up to 97%
gain at −20 dB over the fixed assignments. However, the gain
becomes smaller in the symmetric traffic case in which the
fixed scheme is shown to achieve the same performance since
it allocates equal resources to UL and DL and hence it is
suitable for symmetric traffic.

Fig. 4 shows the average packet throughput for the case
in which half of the cells have opposite UL-to-DL ratios
compared to the other half. For example, if the first half has
a ratio of 10 dB, the second half has a ratio of −10 dB. This
scenario is challenging in the sense that it is associated with
high cross-link interference. In Fig. 4, we can see that the
proposed scheme achieves considerable gains over both the
random and fixed schemes. Clearly, the proposed algorithm is
able to find a balance between selecting the switching point
that matches the SCBS load and avoiding configurations that
are associated with high cross-link interference. Fig. 4 shows
that the proposed approach achieves gains reaching up to 145%
and 53% over the random and fixed schemes, respectively in
the case of UL-to-DL ratio of 20 dB.

In Fig. 5, we show the average packet throughput resulting
from all three schemes for different network sizes. This is
done by varying the number of SCBSs while keeping the
number of UEs per SCBS constant. All SCBSs are assumed
to have an UL-to-DL ratio of 10 dB. Fig. 5 shows that, as the
number of SCBSs increases, the average packet throughput
resulting from all three schemes decreases. This is due to
the fact that higher SCBSs density increases the effect of
interference from neighboring SCBSs. However, Fig. 5 shows
that, for all network sizes, the proposed approach yields a
higher average packet throughput than the baseline schemes.
This performance gain reaches up to 90% and 185% relative
to fixed and random schemes, respectively.

In Fig. 6 and Fig. 7, the convergence behavior of the
proposed scheme is evaluated for an example of two SCBSs
operating in opposite UL-to-DL ratios of 20 dB and −20 dB.
Fig. 6 shows the variations in the probability distribution for
the set of actions (switching points) as the algorithm iterates
in the first SCBS that is dominated by UL traffic, whereas the
behavior of the second SCBS that is dominated by DL traffic
is shown in Fig. 7. From these figures, we can see that using
the proposed algorithm, each SCBS is able to capture the
traffic conditions autonomously while adapting its switching
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Fig. 3. Packet throughput performance in case of cells having the same
UL-to-DL ratio for a network with 4 SCBSs.
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Fig. 4. Packet throughput performance in case of cells having opposite
UL-to-DL ratios for a network with 4 SCBSs.

point to match the estimated traffic load. Switching point 5
which corresponds to the highest possible UL duty cycle,
has the highest probability in the first cell, whereas in the
second cell, switching point 1 is selected with the highest
probability, which corresponds to the highest DL duty cycle.
Interestingly, SCBSs are able to implicitly coordinate their UL
and DL transmissions, with no information exchange. From
Fig. 6 and Fig. 7, we can see that less than 200 iterations
are needed for the proposed algorithm to achieve convergence.
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V. CONCLUSIONS

In this paper, we have proposed a dynamic uplink and
downlink configuration scheme that takes into account both the
UL and DL loads as well as the interference from neighboring
small cells. The proposed algorithm is distributed and relies
only on the local observations to perform the UL and DL
adaptation. Our results have shown that using the proposed
algorithm, an SCBS is able to learn and estimate its current
load then use it to optimize its strategy of selecting the proper
UL/DL switching point. Simulation results have shown that the
proposed approach significantly improves the network perfor-
mance, in terms of the average packet throughput, compared
to conventional fixed and random TDD deployments. Future
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Fig. 7. Probability distribution of the actions set for the second SCBS.

work will investigate the problem of small cell clustering,
power control, and the case in which the small cells adopt
an open access policy.
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