
HAL Id: hal-02357379
https://hal.science/hal-02357379v1

Submitted on 10 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Synchronization of System Architecture and Safety
Models: a Proof of Concept

Michel Batteux, Jean-Yves Choley, Faida Mhenni, Tatiana Prosvirnova,
Antoine Rauzy

To cite this version:
Michel Batteux, Jean-Yves Choley, Faida Mhenni, Tatiana Prosvirnova, Antoine Rauzy. Syn-
chronization of System Architecture and Safety Models: a Proof of Concept. IEEE Interna-
tional Symposium on Systems Engineering, ISSE 2019, Oct 2019, Edinbourg, United Kingdom.
�10.1109/ISSE46696.2019.8984515�. �hal-02357379�

https://hal.science/hal-02357379v1
https://hal.archives-ouvertes.fr

Synchronization of System Architecture and Safety
Models: a Proof of Concept

Michel Batteux ∗, Jean-Yves Choley †, Faı̈da Mhenni †, Tatiana Prosvirnova ‡, Antoine Rauzy §
∗ IRT SystemX, Palaiseau, France

Email: michel.batteux@irt-systemx.fr
† Quartz Laboratoire, Supmeca, Saint-Ouen, France

Email: jean-yves.choley@supmeca.fr, faida.mhenni@supmeca.fr
‡ ONERA/DTIS, UFTMiP, Toulouse, France

Email: tatiana.prosvirnova@onera.fr
§ dept. of Mechanical and Industrial Engineering, Norwegian University of Science and Technology,

Trondheim, Norway, Email: antoine.rauzy@ntnu.no

Abstract—To face the increasing complexity of technical sys-
tems, engineers are designing models. The integration of models
coming from various engineering disciplines, such as system
architecture, multi-physics simulation, automatic code generation
as well as safety and performance analyses, is one of today’s
industrial challenges.

In this article we present model synchronization – a framework
to ensure consistency between models coming from different
engineering domains, based on S2ML (System Structure Mod-
eling Language). We illustrate our purpose using an Electro-
Mechanical Actuator (EMA) of an aileron for a small aircraft.
We show how the introduced framework can be used to handle
consistency between system architecture models (represented in
SysML) and safety models (represented in AltaRica 3.0) with
several architecture variants.

Index Terms—Model synchronization, model structuring,
SysML, AltaRica, S2ML

I. INTRODUCTION

Technical systems are getting more and more complex.
To face the increasing complexity of systems, engineers are
designing models. These models have different maturity, are
designed at different abstraction levels and for different pur-
poses. The integration of models coming from various engi-
neering disciplines, such as system architecture, control, multi-
physics simulation, automatic code generation, safety and
performances analyses, is one of today’s industrial challenges.

Collaborative data bases (PDM/PLM) and tools to set up
traceability links between models provide a support to manage
models in version and configuration, but not to ensure con-
sistency between them. Model transformation techniques [4],
[10], [15] assume a master/slaves organization of models,
which is not realistic in practice.

In this article we present model synchronization – a frame-
work to ensure consistency between models coming from
different engineering domains.

This framework is based on the thesis that systems engi-
neering modeling formalisms are made of two parts:

• An underlying mathematical framework, which aims at
capturing some aspects of the system behavior, e.g.

differential equations for Modelica [6] and Matlab-
Simulink [8], Data-Flow equations for Lustre [7],
Guarded Transition Systems for AltaRica 3.0;

• A structuring paradigm that makes it possible to build
and organize models by assembling parts into hierarchical
descriptions.

Behavioral descriptions are specific to each engineering
domain and the choice of the appropriate mathematical frame-
work for a model depends on the characteristics of the system
one wants to study. On the contrary, the structures of models
reflect to some extent the structure of the system under study.
Therefore, our framework focuses on structural comparisons
and is based on S2ML (System Structure Modeling Lan-
guage) [2].

Models from different engineering domains cannot be com-
pared directly. First, they are abstracted into a pivot language
(S2ML). Second, their abstractions are compared. To support
model synchronization we develop the SmartSync platform,
which is used to compare S2ML abstractions of heterogeneous
models.

To illustrate our proposal we use a case study – an Electro-
Mechanical Actuator (EMA) of an aileron for a small aircraft.
We show how the introduced framework can be used to handle
consistency between system architecture models (designed in
SysML [5]) and safety models (designed in AltaRica 3.0 [3])
with several alternative system architectures.

This work continues the work on model synchronization
presented in [13] and [9]. An interesting study [11] uses model
synchronization techniques with hierarchical graphs.

The remainder of this article is organized as follows. Sec-
tion II introduces the EMA case study. Section III describes
the model synchronization framework used to ensure consis-
tency between heterogeneous models. Section IV presents the
results. Finally, section V concludes this article and discusses
future works.

II. CASE STUDY

The considered case-study is an Electro-Mechanical Actu-
ator (EMA) for a general aviation small aircraft. The EMA is
intended to actuate the aileron, replacing the usual rod, cables
and lever mechanisms. The proposed actuator is driven by the
aircraft electrical networks, controlled by the on-board FCC
(Flight Control Computers) with a set point consistent with
the pilot instructions, taking into account the aileron feedback
position and the EMA feedback (Fig.1).

Fig. 1. EMA on-board context.

There are different relevant kinematic architectures such as
a 4-bars with a crank and rod mechanism, a 3-bars with an
electric cylinder or a direct drive with a motor and a gearbox
mounted on the axis of the revolute joint between the wing
and the aileron. In this work, we will focus on the 3-bars
architecture.

This architecture is illustrated in Fig.2. Linked to the wing
and the aileron with two spherical joints, the EMA is made
up of a housing that encapsulates all the components, a DC
motor controlled by a Micro Controller Unit (MCU) (not
represented), a gearbox and a screw and nut assembly to
transform the gearbox output rotation into a translation of a
rod that will in turn push or pull the aileron.

Fig. 2. EMA 3-bars architecture.

III. MODEL SYNCHRONIZATION

A. Principle

Integration of engineering models can be achieved by model
synchronization process, i.e. the process by which one can
ensure that two possibly heterogeneous models are “speaking”
about the same system. Two models, written into two different
languages, can generally not be directly compared. The idea
is thus to abstract them into a pivot language and to compare
their abstractions (see Fig. 3). The synchronization of models

goes in three steps. The first step is the abstraction, i.e. the
extraction of the common part that can be compared from the
models. The second step is the comparison of the abstrac-
tions. The third step, the so-called concretization, consists in
possible adjustment of the initial models (in case of detected
inconsistencies).

Fig. 3. Model synchronization.

B. S2ML as a pivot language

S2ML (System Structure Modeling Language) [2] aims
at providing a structuring paradigm of systems engineering
modeling languages. It unifies concepts coming from object-
oriented [1] and prototype-oriented [12] programming lan-
guages. As heterogeneous models can be essentially compared
by their structure, S2ML is a perfect candidate as a pivot
language for the abstraction.

1) Basic concepts: S2ML is made of the following basic
elements: ports, connections, blocks and attributes. Ports are
basic objects of models (e.g. variables, events, parameters).
Connections are used to describe relations between ports
(e.g. equations, transitions, assertions). Blocks are containers
composed of ports, connections and other blocks. Attributes
are couples (name = value) used to associate information to
ports, connections and blocks.
Example: Consider a non repairable component (NRCom-
ponent) in AltaRica 3.0 having a Boolean state variable
vsWorking and a failure event evFailure. Its S2ML abstraction
would be as illustrated in Fig. 4.

class NRComponent
port vsWorking(kind="variable", type="Boolean",

init="true");
port pLambda(kind="parameter", type="Real",

value="1.0e-5");
port evFailure(kind="event",

delay="exponential(pLambda)");
connection [evFailure, vsWorking](type="transition",

guard="vsWorking", action="vsWorking := false");
end

Fig. 4. S2ML code for the block NRComponent.

The class NRComponent contains three ports vsWorking,
evFailure and pLambda having different attributes, and a

connection, which represents the transition labeled by the
event evFailure. In S2ML, ports, connections and blocks are
interpreted by themselves. But a particular modeling language,
implementing S2ML as its structuring paradigm, can give a
concrete interpretation to ports, connections and blocks. For
example, in AltaRica 3.0 variables, parameters, events and ob-
servers are interpreted by ports; transitions and assertions are
interpreted by connections, blocks and classes are interpreted
by blocks and classes.

2) Relations: S2ML introduces several structural relations
to build and organize models.

class Motor
extends NRComponent;
port vfFromMCU (type ="Boolean", reset = "false");
port vfToGearbox (type="Boolean", reset = "false");
connection assertion [vfToGearbox, vsWorking, vfFromMCU];

end
class MCU
extends NRComponent;
port vfFromElectricPower (type="Boolean", reset="false");
port vfFromInstructions (type="Boolean", reset="false");
port vfFromIncidenceSensor (type="Boolean",

reset="false");
port vfToMotor (type = "Boolean", reset = "false");
connection assertion [vfToMotor,
vsWorking, vfFromElectricPower, vfFromInstructions,

vfFromIncidenceSensor];
end
block EMASystem_2
// ports
block ElectricPower
extends NRComponent;
port vfToMCU (type = "Boolean", reset = "false");
connection assertion[vfToMCU, vsWorking];

end
block Line1
embeds main.ElectricPower as EP;
MCU MCU1;
Motor Motor1;
connection assertion[EP.vfToMCU,

MCU1.vfFromElectricPower];
end
clones Line1 as Line2;
// the remainder of the block EMASystem_2

end

Fig. 5. S2ML abstraction of the AltaRica 3.0 model of the EMA system with
duplicated MCUs and Motors.

a) Composition: The simplest structural relation is the
composition: a system composes a component means that the
component “is part of” the system. In S2ML, the composition
is represented by adding different components within the code
of the system as shown in the example below.
Example: In the example given in Fig. 5, the block EMASys-
tem 2 contains the blocks ElectricPower, Line1 and Line2 and
also different ports and connections not represented here.

b) Inheritance: Inheritance makes it possible to an el-
ement (block or class) to acquire all the properties of an-
other element without explicitly duplicating them. Inheritance
implements the “is a” relation between modeling elements.
In S2ML, the inheritance is represented by the keyword
“extends”.
Example: In the AltaRica 3.0 model of the EMA system, all
the components extend the class NRComponent (see Fig. 4) as
they may fail in operation. In the example given in Fig. 5, the
block ElectricPower extends the class NRComponent defined
previously. It contains all the ports and connections of the class

NRComponent and adds a port vfToMCU and a connection
assertion.

c) Prototype/Cloning: A block is a container for ports,
connections and other blocks. Each block is a prototype, i.e. it
has a unique occurrence in the model. A system may contain
similar components or subsystems. To avoid duplicating the
description of a block, it is possible to clone an already
existing one. In S2ML, the cloning of a block is obtained
by the keyword “clones”.
Example: In the example given in Fig. 5, the block EMASys-
tem 2 contains two identical blocks Line1 and Line2, com-
posed of a Motor and a MCU each. In order not to duplicate
the code, the block Line1 is cloned to obtain the block Line2.

d) Class/Instance: A second way to avoid duplicating
the description of a block consists in declaring a model of
the duplicated block in a separate modeling entity, the so-
called class, and then in instantiating this class wherever we
need to use it again. Obviously, the class is referred to by
the keyword “class” in S2ML. Each instance of the class is
obtained by writing the name of the class followed by names
of the created instances.
Example: In the example given in Fig. 5 two classes Motor
and MCU are defined. They are instantiated inside the block
Line1 of the block EMASystem 2.

e) Aggregation: Aggregation is a “uses” relation between
modeling components. It makes it possible to represent com-
ponents which are not a part of the subsystem and may be
shared by several subsystems. The clause “embeds” in S2ML
refers to an aggregation.
Example: In the example given in Fig. 5, the component
ElectricPower is used by the Line1 and the Line2. It is
aggregated by both subsystems via the clause ”embeds”.

3) Unfolded model: Any hierarchical model is semantically
equivalent to an unfolded (also called instantiated) one. An
unfolded S2ML model is a model made of a hierarchy of
nested or aggregated blocks, connections and ports. This
model is obtained by applying recursively rewriting rules,
the so-called unfolding rules. These rules resolve inheritance,
classes instantiation, blocks cloning and paths of aggregated
elements.

An unfolded (or instantiated) model is used in the compar-
ison step of model synchronization.
Example: Consider the S2ML model given in Fig. 5. The
equivalent unfolded block for EMASystem 2 is presented in
Fig. 6.

C. SmartSync platform

The proposed platform for model synchronization Smart-
Sync is illustrated in Fig. 7. The first step of the model
synchronization is the abstraction, which consists in translating
models into S2ML. This step is still done manually for
the moment but it can be automated. In the next step, the
abstractions of the different models are compared two by two
and a report of these comparisons is generated. This report
is then analyzed by the members of the different teams that
built the initial models. Together, they produce a matching

block EMASystem_2
// ports
block ElectricPower
port vsWorking (kind = "variable", type="Boolean", init

= "true");
port pLambda (kind ="parameter", type = "Real", value =

"1.0e-5");
port evFailure (kind = "event", delay =

"exponential(pLambda)");
port vfToMCU (type = "Boolean", reset = "false");
connection transition[evFailure, vsWorking];
connection assertion[vfToMCU, vsWorking];

end
block Line1
embeds main.ElectricPower as EP;
block MCU1
port vsWorking(kind="variable", type="Boolean",

init="true");
port pLambda(kind="parameter", type="Real",

value="1.0e-5");
port evFailure(kind="event",

delay="exponential(pLambda)");
port vfFromElectricPower (type="Boolean",

reset="false");
port vfFromInstructions (type="Boolean", reset="false"

);
port vfFromIncidenceSensor (type="Boolean",

reset="false");
port vfToMotor (type = "Boolean", reset = "false");
connection assertion[vfToMotor,
vsWorking, vfFromElectricPower, vfFromInstructions,
vfFromIncidenceSensor];
connection transition[evFailure, vsWorking];

end
block Motor1
port vsWorking (kind="variable", type="Boolean",

init="true");
port pLambda (kind="parameter", type="Real",

value="1.0e-5");
port evFailure (kind="event",

delay="exponential(pLambda)");
port vfFromMCU (type="Boolean", reset="false");
port vfToGearbox (type="Boolean", reset="false");
connection transition[evFailure, vsWorking];
connection assertion [vfToGearbox, vsWorking,

vfFromMCU];
end
connection assertion[main.ElectricPower.vfToMCU,

MCU1.vfFromElectricPower];
end
block Line2
// the body of the block Line2 (copy of the block Line1)
end
// the remainder of the block EMASystem_2

end

Fig. 6. Unfolded S2ML model of the EMASystem 2.

Fig. 7. Models synchronization process.

file that matches the same elements in the two models. When
there is no correspondence the keyword ”forget” is used. The
next step of the comparison process consists in comparing
the initial models using the matching file. Another report is
then generated that contains a list of inconsistencies. This
report is analyzed again by the members of both teams. The

matching file is updated with new corresponding elements.
The updated matching file is used again in the comparison of
the model abstractions and so on. The process iterates until
all the inconsistencies have been resolved. At each iteration,
if an inconsistency is detected, one or both models should be
updated.

The outcome of the model synchronization is twofold. First,
it allows to detect model inconsistencies in which case models
need to be updated. Second, it allows to validate the model
consistency. Models can then be used to produce performance
indicators and so on.

1) Comparison: Different types of comparators (see [14]
for an interesting survey on model comparison techniques)
for S2ML models can be defined, for instance:

• Dictionary, which consists in matching the names of
different elements (ports, nested/aggregated blocks and
connections);

• Structural, which consists in matching the names of
different elements and the structure of the model;

• Topological, which consists in matching the names of
different elements, the structure of the model and the
connections between ports.

Note that the choice of abstractors and comparators depends
on the system under development and the level of maturity of
the project.

The comparison of S2ML models is done as follows. First,
S2ML models are unfolded/instantiated, i.e. transformed into a
hierarchy of nested/aggregated blocks, ports and connections
as described in Section III-B3. Second, the unfolded S2ML
models are compared using the matching file. Matching blocks
and ports is quite similar. For each block/port of the first model
(and vice-versa):

• if there is a correspondence in the matching file (which
is different from “forget”) then

– if the corresponding block/port exists in the sec-
ond model (and vice-versa) then the consistency is
checked;

– otherwise an inconsistency is detected;
• if the correspondence is “forget” then there is nothing to

do;
• otherwise, an inconsistency is detected.

IV. EMA SYSTEM: MODEL SYNCHRONIZATION

In this section we apply model synchronization to the case
study presented in Section II. We present a collaborative design
of the EMA system. The collaboration is between two teams:
system architecture and safety analysis. Each team performs
different activities. The first activity is modeling which is
performed separately by members of each team using different
modeling languages and tools. The second activity is model
synchronization, i.e. the verification of consistency between
models that ensures that both models are describing the same
system. This activity is performed by the members of both
teams and involves the SmartSync platform.

Finally, the validated safety model is analyzed, and as
the initial architecture is not robust enough, the safety team
proposes two alternative architectures to the design team.

A. EMA system variant 1

1) Modeling:
a) System architecture: System architecture models are

created using SysML [5] with a particular focus on system
physical architecture part.

The internal block diagram representing the first variant
(without redundancies) of the EMA physical architecture is
given Fig. 8. It has been done using SysML plugin of
MagicDraw modeling tool.

Fig. 8. EMA system physical architecture (variant 1).

This model does not represent the system environment. The
incidence sensor is supposed to be a part of the block Motor;
it is represented by a port Motor Position of the block Motor
connected to the port Motor Position of the block MCU.

b) Safety: The failure condition of interest is the loss of
the aileron incidence control. It can be caused by failures in
the EMA itself or failures in the linking joints to the aileron.
As this architecture has no redundancies, a single failure of a
component leads to the occurrence of the failure condition.

The safety model is created using AltaRica 3.0 modeling
language [3] and the OpenAltaRica platform 1. AltaRica 3.0
is a high level formal modeling language dedicated to safety
analyses. It is a textual language but graphical representations
can be associated to textual models.

Fig. 9 shows the graphical representation of the AltaRica 3.0
model of the first variant of the EMA system. This model is
an extended reliability block diagram, where blocks represent
system components and their failures and connections between
blocks represent the propagation of failures. The block Ob-
server models the failure condition.

2) Synchronization:

1https://www.openaltarica.fr/

Fig. 9. Graphical representation of the AltaRica 3.0 model of the EMA system
(variant 1).

a) Abstraction: First, both models are abstracted, i.e.
transformed into S2ML.

For AltaRica 3.0 the transformation is straightforward, as
the language uses S2ML as its structural paradigm. State
and flow variables, events and parameters are abstracted to
S2ML ports; transitions and assertions are transformed into
connections; different structural constructs like inheritance,
cloning, instantiation, etc. are transformed into their equiv-
alents in S2ML. As an example, an S2ML abstraction of a
non repairable component is given Fig. 4.

For SysML internal block diagrams the transformation is
also quite simple: parts are transformed into S2ML blocks,
ports into S2ML ports and connections between ports are
transformed into S2ML connections between corresponding
S2ML ports.

b) Comparison: In the next step, the abstractions are
compared and a report is generated. This report is analyzed
by members of both teams. The following differences are
detected:

• Different names of blocks (e.g. the block BallscrewAnd-
NutAssembly in the SysML model corresponds to the
block BallsCrewNutAssembly in the AltaRica 3.0 model);

• Different names of ports (e.g. the port
Motor.RegulatedElectricPower in the SysML model
corresponds to the port Motor.vfFromMCU in the
AltaRica 3.0 model);

• Elements of system architecture model not represented in
the safety model (e.g. Motor.MechanicalActionHM has no
correspondence in the safety model);

• Elements of the safety model not represented in the
system architecture model (e.g. state variables, failure
events, parameters, etc. have no equivalent in the system
architecture model).

All the differences are listed in the matching file, which
makes it possible to establish the correspondence between
the two models. Table I shows an extract of a matching file.
The first column is the element type (port, block, aggregated
block or connection). The second column is the name of the
element of the first model, the third column is the name of
the corresponding element in the second model. When there is
no correspondence, the keyword forget is used. It is possible
to add a fourth column with comments to justify matching
decisions. As we can see in Table I, the block Observer of the
safety model has no correspondence in the system architecture

TABLE I
EMA SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING

(VARIANT 1), ITERATION 1.

Type Model1 (SysML) Model2 (AltaRica 3.0)
block EMASystem 1 EMASystem 1
port AileronMechanicalAction forget
port ElectricalPower ElectricPower.vfToMCU
port InstructionAndFeedback Instructions.vfToMCU
port WingMechanicalAction forget
block forget Observer
block BallScrewAndNutAssembly BallScrewNutAssembly
block EMAAileronJoint EMAAileronJoint
port AileronMechanicalAction vfOut
port MechanicalTransmissionPower forget
port forget evFailure
port forget pLambda
port forget vsWorking
block EMAWingJoint EMAWingJoint
port MechanicalActionHW forget
port WingMechanicalAction vfOut
port forget evFailure
port forget pLambda
port forget vsWorking
block Gearbox Gearbox
.

model because it represents safety related information (i.e.
the failure condition to study). The port ElectricalPower in
the SysML model corresponds to the port vfToMCU of the
block ElectricPower in the AltaRica 3.0. It is important to
note that the block ElectricPower of the safety model has no
equivalent in the architecture model. In the system architecture
model this block is not represented as it belongs to the system
environment, whilst the safety analyst decided to represent it
in his model because the failure of the electric power causes
the occurrence of the failure condition.

The produced matching file is used to compare the abstrac-
tions of system architecture and safety models. In the next
step of the comparison, new differences are detected. They are
analyzed again and the matching file is populated with new
matching information summarized in Table II. Models are then
compared again. Finally, no more differences are detected. The
consistency between system architecture and safety models
is verified. The matching file establishes the correspondence
between the two models and elements which do not have any
correspondence but it is validated by the teams.

TABLE II
EMA SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING

(VARIANT 1), ITERATION 2.

Type Model1 (SysML) Model2 (AltaRica 3.0)
block main.EMASystem 1 main.EMASystem 1
block BallScrewAndNutAssembly BallScrewNutAssembly
port AdaptedMechanicalRotPower vfFromGearbox
port MechanicalTransmissionPower vfToEMAAileronJoint
port forget evFailure
port forget pLambda
port forget vsWorking

3) Analysis: The validated safety model is analyzed by
generation of a Fault Tree and calculation of minimal cut

sets, which are listed below. As expected, single failures of
components lead to the occurrence of the failure condition.
The safety team proposes two alternative architectures with
redundancies:

V2: two redundant MCUs and two redundant motors;
V3: two redundant MCUs and a double winding motor.

Their models and analyses are presented below.

Minimal Cut Sets (MCS)
1 ElectricPower.evFailure
2 IncidenceSensor.evFailure
3 Instructions.evFailure
4 MCU.evFailure
5 Motor.evFailure
6 Gearbox.evFailure
7 BallScrewNutAssembly.evFailure
8 EMAAileronJoint.evFailure
9 EMAWingJoint.evFailure
10 Housing.evFailure

B. EMA system variant 2

1) Modeling:

Fig. 10. EMA system physical architecture (variant 2).

a) System architecture: Fig. 10 shows the internal block
diagram representing the physical architecture of the second
variant of the EMA system. Compared to the first variant
of the architecture, it contains two redundant motors (Mo-
tor and RedundantMotor), two redundant MCUs (MCU and
RedundantMCU) and an epicyclic gearbox with two inputs
(MechRotPower and MechRotPower2).

b) Safety: The graphical representation of the corre-
sponding safety model is given in Fig. 11. Compared to the
previous AltaRica 3.0 model, it contains:

• two blocks for redundant MCUs (MCU1 and MCU2),
• two blocks for redundant Motors (Motor1 and Motor2),
• two blocks to represent incidence sensors (IncidenceSen-

sor1 and IncidenceSensor2) and
• a new block Gearbox with two inputs (vfFromMotor1 and

vfFromMotor2).
2) Synchronization: First, both SysML and AltaRica 3.0

models are transformed into S2ML as described previously.
Then, the matching file produced for the first variant of the
architecture is used directly to compare S2ML models of the

Fig. 11. Graphical representation of the AltaRica 3.0 model of the EMA
system (variant 2).

second variant. The report produced by the tool contains only
the differences between the two variants.

TABLE III
EMA SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING

(VARIANT 2).

Type Model1 (SysML) Model2 (AltaRica 3.0)
block EMASystem 2 EMASystem 2
block Gearbox Gearbox
port MechanicalRotPower vfFromMotor1
port MechanicalRotPower2 vfFromMotor2
block MCU1 MCU1
port ElectricalPower vfFromElectricPower
port InstructionAndFeedback vfFromInstructions
port MotorPosition vfFromIncidenceSensor
port RegulatedElectricalPower vfToMotor
port forget evFailure
port forget pLambda
port forget vsWorking
block MCU2 MCU2
.
block Motor1 Motor1
port MechanicalAction forget
port MechanicalRotPower vfToGearbox
port MotorPosition IncidenceSensor1.vfToMCU
port RegulatedElectricalPower vfFromMCU
port forget evFailure
port forget pLambda
port forget vsWorking
block Motor2 Motor2
.

The matching file is populated with the new matching
information from the Table III. It is used to compare again
the abstractions. No more differences are detected. The consis-
tency between system and safety models of the second variant
of the EMA system is verified. As we can see, the reuse of
matching file of the first variant of the architecture greatly
simplifies the consistency verification for the second variant
of the architecture.

3) Analysis: The validated safety model is analyzed by
generation of a Fault Tree and calculation of minimal cut sets,
which are listed below. This architecture is more robust. Single
point failures remain only on the mechanical and joint-attach
part of the system. But another variant of the architecture also
needs to be evaluated.

Minimal Cut Sets (MCS)
1 ElectricPower.evFailure
2 Instructions.evFailure
3 Gearbox.evFailure
4 BallScrewNutAssembly.evFailure
5 EMAAileronJoint.evFailure
6 EMAWingJoint.evFailure
7 Housing.evFailure
8 IncidenceSensor1.evFailure, IncidenceSensor2.evFailure
9 IncidenceSensor1.evFailure, MCU2.evFailure
10 IncidenceSensor1.evFailure, Motor2.evFailure
11 IncidenceSensor2.evFailure, MCU1.evFailure
12 MCU1.evFailure, MCU2.evFailure
13 MCU1.evFailure, Motor2.evFailure
14 IncidenceSensor2.evFailure, Motor1.evFailure
15 MCU2.evFailure, Motor1.evFailure
16 Motor1.evFailure, Motor2.evFailure

C. EMA system variant 3

1) Modeling:
a) System architecture: Fig. 12 shows the internal block

diagram representing the physical architecture of the third
variant of the EMA system. Compared to the first variant of
the architecture, it contains two redundant MCUs (MCU and
RedundantMCU) and a double winding motor (DoubleWind-
ingMotor) composed of two motor windings (MotorWinding1
and MotorWinding2) and a motor shaft (MotorShaft).

Fig. 12. EMA system physical architecture (variant 3).

b) Safety: Graphical representation of the corresponding
safety model is given in Fig. 13. Compared to the AltaRica 3.0
model of the first variant, it contains:

• two blocks for redundant MCUs (MCU1 and MCU2), and
• a new block Motor with two inputs (vfFromMCU1 and

vfFromMCU2) composed of two blocks representing
windings and their failures (Winding1 and Winding2).

2) Synchronization: First, both SysML and AltaRica 3.0
models are transformed into S2ML as explained previously.
Then, the matching file produced for the first variant of the
architecture is used directly to compare S2ML models of the
third variant. System architect and safety analyst only need to
match the differences between the two variants.

After the first iteration, the results of matching activity are
given in Table IV. The block DoubleWindingMotor.MotorShaft

Fig. 13. Graphical representation of the AltaRica 3.0 model of the EMA
system (variant 3).

TABLE IV
EMA SYSTEM ARCHITECTURE AND SAFETY MODELS MATCHING

(VARIANT 3).

Type Model1 (SysML) Model2 (AltaRica 3.0)
block EMASystem 3 EMASystem 3
block DoubleWindingMotor Motor
port MechanicalAction forget
port MechanicalRotPower vfToGearbox
port MotorPosition IncidenceSensor.vfToMCU
port RegulatedElectricalPower1 vfFromMCU1
port RegulatedElectricalPower2 vfFromMCU2
block MotorShaft
block MotorWinding1 Winding1
block MotorWinding2 Winding2

does not have any correspondence in the safety model. In this
case, an inconsistency is detected in the safety model: failure
of the motor shaft should be taken into account. The safety
model needs to be updated.

D. Summary

The conducted experience shows that models produced by
different systems engineering disciplines are different but it
is possible to establish a correspondence between them. The
correspondence is saved in the so-called matching file, which
is populated iteratively. It can also be reused for model syn-
chronization of new variants of the system architecture which
greatly simplifies the consistency verification. As we can see,
model synchronization makes it possible not only to check
consistency between models but also to detect inconsistencies.

V. CONCLUSION AND PERSPECTIVES

In this article, we presented experiments on the synchroniza-
tion of system architecture and safety models of an electro-
mechanical actuator for an aileron of a small aircraft. We
showed that model synchronization can be used to ensure
the consistency of heterogeneous models, designed within
different formalisms and different modeling environments.

To support model synchronization, we developed the Smart-
Sync platform, which relies on S2ML as pivot language. With
SmartSync, we studied several alternative architectures of the
EMA system. We checked consistency between architecture
and safety models for the first and second variants and detect

an inconsistency in the safety model of the third variant of
architecture.

The process of making models consistent is iterative and
involves representatives of the engineering disciplines at stake.
The SmartSync platform helps not only to check the consis-
tency between models, but also to detect inconsistencies within
models and to support the dialog between stakeholders.

As future works, we plan to improve SmartSync, notably
by developing new comparison algorithms and abstraction
methods.

REFERENCES

[1] Mauricio Abadi and Luca Cardelli. A Theory of Objects. Springer-
Verlag, New-York, USA, 1998.

[2] M. Batteux, T. Prosvirnova, and A.Rauzy. From models of structures to
structures of models. In 4th IEEE International Symposium on Systems
Engineering, ISSE 2018, Rome, Italy, October 2018.

[3] M. Batteux, T. Prosvirnova, and A.Rauzy. Altarica 3.0 in 10 modeling
patterns. International Journal of Critical Computer-Based Systems
(IJCCBS), 9:133, 2019.

[4] Pierre David, Vincent Idasiak, and Frederic Kratz. Reliability study
of complex physical systems using sysml. Reliability Engineering &
System Safety, 95(4):431–450, 2010.

[5] Sanford Friedenthal, Alan Moore, and Rick Steiner. A Practical Guide
to SysML: The Systems Modeling Language. Morgan Kaufmann. The
MK/OMG Press, San Francisco, CA 94104, USA, 2011.

[6] Peter Fritzson. Principles of ObjectOriented Modeling and Simulation
with Modelica 3.3: A CyberPhysical Approach. Wiley-IEEE Press,
Hoboken, NJ 07030-5774, USA, 2015.

[7] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud.
The synchronous dataflow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320, 1991.

[8] Harold Klee and Randal Allen. Simulation of Dynamic Systems with
MATLAB and Simulink. CRC Press, Boca Raton, FL 33431, USA,
February 2011.

[9] Anthony Legendre, Agnes Lanusse, and Antoine Rauzy. Toward Model
Synchronization Between Safety Analysis and System Architecture
Design in Industrial Contexts. In Yiannis Papadopoulos Marco Bozzano,
editor, Model-Based Safety and Assessment, volume 10437, pages 35–
49. Springer, 2017. Proceedings of the 5th International Symposium,
IMBSA 2017, Trento, Italy, September 11–13, 2017,.

[10] Pierre Mauborgne, Samuel Deniaud, Eric Levrat, Eric Bonjour, Jean-
Pierre Micaëlli, and Dominique Loise. Operational and system hazard
analysis in a safe systems requirement engineering process application
to automotive industry. Safety Science, 87:256–268, August 2016.

[11] S. Missaoui, F. Mhenni, J. Choley, and N. Nguyen. Verification and
validation of the consistency between multi-domain system models. In
2018 Annual IEEE International Systems Conference (SysCon), pages
1–7, April 2018.

[12] James Noble, Antero Taivalsaari, and Ivan Moore. Prototype-Based
Programming: Concepts, Languages and Applications. Springer-Verlag,
Berlin and Heidelberg, Germany, 1999.

[13] Tatiana Prosvirnova, Estelle Saez, Christel Seguin, and Pierre Virelizier.
Handling consistency between safety and system models. In IMBSA
2017 (International Symposium on Model-Based and Assessment), pages
pp. 19–34, Trento, Italy, September 2017.

[14] Matthew Stephan and James R. Cordy. A survey of model comparison
approaches and applications. In MODELSWARD 2013 - Proceedings
of the 1st International Conference on Model-Driven Engineering and
Software Development, Barcelona, Spain, 19 - 21 February, 2013, pages
265–277, 2013.

[15] Nataliya Yakymets, Yupanqui Munoz Julho, and Agnes Lanusse. Sophia
framework for model-based safety analysis. In Actes du congrès
Lambda-Mu 19 (actes électroniques), Dijon, France, October 2014.
Institut pour la Maı̂trise des Risques.

