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Abstract—In this paper, a new focal quality indicator, the 2D-
TKEO indicator, for the translational motion compensation is
proposed. This indicator is based on the 2D Teager-Kaiser Energy
Operator which represents the ’energy’ of an image. In Inverse
Synthetic Aperture Radar (ISAR) imaging of a non-cooperative
target, the relative motion is unknown and it is therefore
necessary to implement an autofocus approach to obtain high
resolution imaging. This step is based on an optimization problem
via the minimization of a cost function, thus making it possible to
estimate the translational kinematic (speed, acceleration, jerk. . . )
of the moving target. This paper describes the use of a new
quadratic focal quality indicator to estimate the quality of an
ISAR image. To validate our approach is presented on simulation
results of a target constituted by ideal point scatterers models.
The effectiveness of 2D-TKEO indicator is demonstrated on both
noise-free and noisy simulations and results compared to current
methods.

Index Terms—2D Teager-Kaiser energy operator, Inverse Syn-
thetic Aperture Radar, Translation motion compensation, Focal
quality indicator.

I. INTRODUCTION

In the last decades, the use of electromagnetic to image
a moving target has been extensively considered in order
to identify or to discriminate various objects (cars, aircrafts,
ships, and so on). While the recent progress of ISAR imaging
has been described in [1], [2]. The ISAR image formation
revealed its limitation as it is related to the motion of a non-
cooperative target. Indeed, generally unknown, it is necessary
to estimate the relative movement of an object to obtain high
quality ISAR images (in other words, to obtain focused ISAR
images). This estimation will be all the more necessary if the
movements of the target are complicated such as pitch, roll,
or yaw motions [2], [3].
The kinematic of a target can be decomposed as translational
and rotational motion. While the rotational kinematic of a
target is necessary to obtain an ISAR image formation, the
phase term associated to the translational kinematic (velocity,
acceleration, and jerk) is the principal source of motion error
and must be removed to obtain a highly focused ISAR image.
The current methods to estimate the kinematics of a target
are based on the motion compensation methods or autofocus
algorithms. In the literature and various fields (biological
microscopy, video, camera, radar. . . ), wide of autofocus al-
gorithms have been proposed to measure the degree of focus
[1], [2], [4].

Indeed, the translational motion can be approximated with the
Taylor polynomial model in radar imaging and the issue can
be resolved as an optimization problem. Several techniques are
therefore based on the use of image focus indicators such as
contrast approach [5], entropy approach [6] and many others
works. In this context, the main goal is understand how the
new focal quality indicator, 2D-TKEO indicator, can be used
in translational motion compensation.

We will perform such description as follow: in section
II, we will first introduce the ISAR geometry, and describe
the formation of the unprocessed ISAR spatial frequency
spectrum of a target. We also present the translational motion
compensation approach based on an optimization problem
related to a definition of a focal quality indicator (or cost
function). In the 3rd section is described a new focal quality
indicator based on the 2D Teager-Kaiser Energy Operator.
Finally, we present numerical results and comments in section
IV before conclusions and perspectives are addressed in the
last section.

II. SIGNAL MODEL

Based on the equations of Maxwell, the electromagnetic
back-scattering mechanisms can be complicated for complex
targets. However, the point-scatterer model can be used to
simply characterize the received Radar Cross-Section (RCS)
signal of a moving target [1]–[3]. In this model, the target is
modeled as a set of localized point-scatterers, the total number
is K (such as equation 2). Furthermore, the target is at the far
field of the radar and the distance between the radar and the
target is bigger than the dimensions of the object.
The movement of the target are described by a translational
and rotational motion relative to the radar. Thus, r(t) describes
the translational position of the target’s center of mass relative
to the radar, and θ(t) is the rotational position of the target
relative to xy (Fig. 1).
The transmitted signal of radar is a stepped-frequency con-
tinuous waveform (SFCW) consisting of M bursts; with each
burst containing N pulses (Fig. 2). It should be noted that the
radar Line-Of-Sight (LOS) is fixed during each burst.
The backscattered signal received by the radar receiver can be
represented as the sum of each localized point-scatterers of
the object as follow:

S(n,m) = e−
4iπfnrn,m

c H(n,m) + η(n,m) , (1)



where n = 0, ..., N − 1, m = 0, ...,M − 1, c is the speed
of light, and η(n,m) is the additive complex white Gaussian
noise of zero mean. Here, the two-dimensional (N by M
matrix) complex array, S(n,m), represents the unprocessed
(uncompensated) ISAR spatial frequency spectrum of the
target.

Fig. 1. ISAR Geometry of a rotating target.

The H(n,m) target echo transfer function is the ideal transla-
tional motion compensated ISAR spatial frequency spectrum,
and is given by:

H(n,m) =

K∑
k=1

ρk e
−4iπ fnc [xkcosθn,m+yksinθn,m] , (2)

where (xk, yk) is the position of the kth point-scatterer and
ρk is the backscattered field amplitude of this point. The
frequency, fn, of the nth pulse in a mth burst is given by:

fn = f0 + nδf , (3)

where f0 is the frequency of the first pulse and δf is the
frequency step from pulse to pulse.

Fig. 2. Representation of SFCW radar signal.

The equations for translational and rotational movements of
the object at a specific time point is illuminated by the
(n,m)th pulse and can be defined as:

rn,m = r0 + v0tn,m +
1

2
a0t

2
n,m +

1

6
j0t

3
n,m , (4)

where rn,m is the instantaneous target range, and
(r0, v0, a0, j0) are the initial values of slant-range, velocity,
acceleration, and jerk respectively.
Similarly:

θn,m = θ0 + ω0tn,m +
1

2
α0t

2
n,m , (5)

where θn,m is the instantaneous target angular displacement,
and (θ0, ω0, α0) the initial values of the angular displacement,
velocity, and acceleration respectively.
The sampling time, tn,m, is given by:

tn,m = (n+mN)δt , (6)

where δt is the time interval between adjacent pulses.

In principle, to reconstruct the ISAR image of the target,
the conventional algorithms are based on the two-dimensional
Fourier Transform (FT):

I(p, q) = F2D {S(n,m)} , (7)

where F2D denotes the two-dimensional Fourier Transform of
S(n,m), and p = 0, ..., N − 1, q = 0, ...,M − 1, and |I(p, q)|
is a range-Doppler matrix (ISAR image) that represents the
reflectivity of the target.
It should be noted that the phase term rn,m in (Eq. 7) with
(Eq. 1) and (Eq. 4) contained the quantities (r0, v0, a0, j0).
The constant value r0 has not really impacting on the imaging
procedure. It assigns the centering of the target in the image
without introducing any defocusing. An estimated value of
r0 can be selected easily to adjust the center of the target.
By contrast, v0, a0, and j0 give additional components
called Doppler-shift error. This motion parameters cause
degradation; distortions and blur that alter the appearance of
the ISAR image (Fig. 9 and 10).

To reduce the distortions in the ISAR image, the principal
objective of the translation motion compensation algorithm is
to estimate the translational kinematic quantities (ṽ, ã, j̃) to
obtain an estimate H̃(n,m; ṽ, ã, j̃) in (Eq. 2):

H̃(n,m; ṽ, ã, j̃) = S(n,m)F (n,m; ṽ, ã, j̃) , (8)

where F (n,m) function is obtained by:

F (n,m; ṽ, ã, j̃) = e
+ 4iπfn

c [

r̃m,n︷ ︸︸ ︷
ṽtn,m +

1

2
ãt2n,m +

1

6
j̃t3n,m]

, (9)

with ṽ, ã, and j̃ the estimated motion parameters of a moving
target: v0, a0, and j0 respectively. After correction of the
translation motion, the quality of the ISAR image is drastically
improved, and the expression (Eq. 7) can be replaced by:

I(p, q) = F2D

{
H̃(n,m; ṽ, ã, j̃)

}
. (10)

As a result, the ISAR image estimated from (Eq. 10) will be
more localized with less blurring. In fact, the precision of the
translational kinematic quantities estimation is essential to



enhance the quality of ISAR image formation. As such, the
next paragraph introduces a classical scheme to estimate the
motion parameters (ṽ, ã, j̃).

Various ISAR autofocus approaches have been proposed
[2], a few are based on the notion of image focus indicators
such as matching pursuit [1], [7], contrast [5] and, entropy
approaches [6]. These methods suppose that the translational
kinematic of the target can be approximated by a polynomial
model (see Eq. 4). The estimation of the parameters is then
reduced to a relatively simple optimization. In our case, it
is equivalent to a problem of minimizing (or maximizing1) a
cost function, called focal quality indicator, including the three
motion parameters as follows:

(ṽ, ã, j̃) = arg min
(v,a,j)∈Ω

{fcost(v, a, j)} , (11)

with fcost(.) the cost function, Ω = {V,A, J}, and (V,A, J)
the search spaces of (ṽ, ã, j̃) values respectively with V =
[ṽmin, ṽmax], A = [ãmin, ãmax], and J = [j̃min, j̃max].
It should be noted that the variables are discrete. The
expression (Eq. 11) therefore describes a discrete optimization
problem and can be resolved using an exhaustive search (brute
force approach). Of course, there are various optimization
techniques to effectively resolve this problem such as
algorithms based on Gradient approaches, Nelder-Mead
algorithm [8], or Genetic algorithm [9].

III. RADIAL MOTION COMPENSATION USING 2D
TEAGER-KAISER ENERGY OPERATOR

In the 1990s, Kaiser and al. proposed to compute the
energy of a system using Teager-Kaiser Energy Operator
(TKEO) [10]. Despite its simple definition (Eq. 15), this
quadratic operator is used in many field of signal processing
such as Time-Frequency analysis [11] and, demodulation
of AM-FM signals [12] . . . Some various generalizations
have also been recently proposed such as for complex-valued
signals [13], [14], and also for two dimensions image both
real-valued [15]–[18] or complex-valued [19].

The 2D Teager-Kaiser Energy Operator TKEO, 2D-TKEO,
is close to a local mean weighted 2D-Laplacian-filter and is
defined as:

Ψ2R[I] , ‖∇I‖2 − I∆I , (12)

where I ≡ I(x, y) is a real-valued 2D image, (x, y) are the
spatial coordinates of the pixel. ∇ and ∆=∇2 stand for the
gradient and the Laplacian respectively:

‖∇I‖2 =

(
∂I

∂x

)2

+

(
∂I

∂y

)2

, ∆I =
∂2I

∂x2
+
∂2I

∂y2
(13)

From this definition, it follows directly that:

Ψ2R[I] = ΨR[I](x) + ΨR[I](y) , (14)

1to maximize fcost(.) is equivalent to minimize the negation of fcost(.)

where ΨR[I](x) (or ΨR[I](y)) is a classical form of Teager-
Kaiser Energy Operator of 1D signal f(t):

ΨR[f ](t) ,
[
ḟ(t)

]2
− f(t)f̈(t) , (15)

Ψ2R[I] is a sum of each 1D energy component applied along
the two directions x and y. By extending few of its properties:

Ψ2R[I + J ] = Ψ2R[I] + Ψ2R[J ]− J∆I − I∆J + 2∇I.∇J
Ψ2R[IJ ] = I2Ψ2R[J ] + J2Ψ2R[I]

Ψ2R[cI] = c2Ψ2R[I]

Ψ2R[I + c] = Ψ2R[I]− c∆I
Ψ2R[c] = 0

where c is a constant image, and I , J real images. The symbol
′.′ denotes inner product. The next paragraph introduces a
common method to estimate a discrete version of Ψ2R[I].

For a discrete image I(p, q)0≤p≤(N−1), 0≤q≤(M−1), the
expression (Eq. 12) becomes:

ΨA
2R[I(p, q)] = 2I2(p, q)− I(p− 1, q)I(p+ 1, q)

− I(p, q − 1)I(p, q + 1) . (16)

This equation (Eq. 16) is obtained by applying the one-sample
difference operation along both the vertical and the horizontal
directions. Note that this is only one among many suitable
techniques used to obtain a discrete version of Ψ2R[I]. Another
extension can be obtained along diagonal directions:

ΨB
2R[I(p, q)] = 2I2(p, q)− I(p− 1, q + 1)I(p+ 1, q − 1)

− I(p− 1, q − 1)I(p+ 1, q + 1) . (17)

As a result, the energy of an image I at location (p, q) can be
determined by:

Ψ2R [I(p, q)] = max
(
ΨA

2R[I(p, q)], ΨB
2R[I(p, q)]

)
. (18)

This max(.) operator reflects more precisely the local activity
of the pixel rather than, for example, the amplitude of the
gradient [18], [19].

Finally, it is possible to define a new focal quality indicator,
2D-TKEO indicator, based on Ψ2R[.], applied to the ISAR
image:

(ṽ, ã, j̃) = arg min
(v,a,j)∈Ω

{
−
N−1∑
p=0

M−1∑
q=0

Ψ2R
[
Ī(p, q; v, a, j)

]}
,

(19)
where the power normalized ISAR image is defined as:

Ī(p, q; v, a, j) =
|I(p, q; v, a, j)|2

N−1∑
p=0

M−1∑
q=0
|I(p, q; v, a, j)|2

, (20)

and I(p, q; v, a, j) is the ISAR spectrum using the 2D-Fourier
Transform of H̃(n,m; v, a, j) (Eq. 10). Note that this is only
one among other possible expressions and another extension
can be obtained based on a maximum or even a standard
deviation form.



IV. RESULTS

In this section, several simulations are presented in
order to evaluate the performances of ISAR imaging after
compensation of translation motion based on 2D-TKEO
indicator (Eq. 19).

In all our simulations, the geometry of the airplane is
depicted Fig. 3. This synthetic target is the MIG25 dataset
described in [2] which consists of 120 point scatterers of
equal reflectivity. For clarity, the simulation parameters of
radar and target are reported table I. The values of N and
M are set at 256 to ensure that figures (Fig. 9, 10, and 11)
better reflect the potentials of the method. We use an exhaus-
tive optimization procedure over a three dimensional (v, a, j)
search space confined to the region V = [−6.02,−2.02]m/s,
A = [13.2, 15.2]m/s2, and J = [−0.05, 0.15]m/s3.
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Fig. 3. Geometry of the target.

Figure 4 shows the results of the exhaustive search based
on the cost function of 2D-TKEO indicator. The convexity
near the center of the search space corresponds to the
position of the minimum. Figure 5 shows translational
velocity, acceleration, and jerk slices through the 2D-TKEO
indicator surface described in equation (19). The green
vertical curve in these subplots show the true values. Clearly,
optimization techniques can be used to find the translation
motion parameters that correspond to the global minimum.

Fig. 4. Cost function of 2D-TKEO indicator with translational jerk j =
0.05m/s3.

TABLE I
RADAR AND TARGET PARAMETERS.

Parameter name Symbol Value

Number of pulses N 64 (256)

Number of Burst M 64 (256)

Step frequency δf 2.13 MHz

Initial frequency f0 0.372 GHz

Pulse Repetition Interval δt 1.59 ms

Translational kinematic
[m,m/s,m/s2,m/s3]

[r0, v0, a0, j0] [4400,−4.02, 14.2, 0.05]

Rotational kinematic
[rad, rad/s, rad/s2]

[θ0, ω0, α0] [1.58, 0.057, 1.8e−4]

Fig. 5. Translational velocity, acceleration, and jerk surface slices.

For comparing the 2D-TKEO indicator approach with
matching pursuit, contrast and entropy methods, the simula-
tions have been corrupted by additive complex white Gaussian
noise (Eq. 1). To characterize the performances, a total of 500
trials have been used for each SNR value, and associated Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE)
are computed. RMSE and MAE are defined as:

RMSE =

√√√√ 1

W

W∑
w=1

|x̃w − xw|2 , (21)

MAE =
1

W

W∑
w=1

|x̃w − xw| , (22)

where W is the number of Monte-Carlo simulation (here W
is set as 500), x̃ is the prediction and x is the true value.

From figures 6, 7, and 8, the proposed approach performs
better than matching pursuit method. When comparing to the
two others approaches (contrast and entropy), the new method
is nearly equivalent except that the 2D-TKEO indicator com-
putes less outliers values (Fig. 6). From both figures 7 and 8, it
should be noted that the computed curves (RMSE and MAE)
based on entropy and contrast methods are superimposed.

Although the problematic of the rotational motion compen-
sation is not studied in this article, it is interesting to note that
there are also many algorithms such as interpolation methods



(a) Velocity estimation.

(b) Acceleration estimation.

(c) Jerk estimation.

Fig. 6. Boxplots of the translational kinematic estimations.

Fig. 7. RMSE comparison between various methods for the estimation of
v(left), a(middle), and j(right).

Fig. 8. MAE comparison between various methods for the estimation of
v(left), a(middle), and j(right).

[2] and, Time-Frequency Transforms [3], [20]. Figures 11(a)
and 11(b) show one frame ISAR image formation using
Spectrogram and NSBEMD-TFD algorithm respectively. The
NSBEMD-TFD is a new method based on Non uniformly
Sampled Bivariate Empirical Mode Decomposition Time-
Frequency Distribution [21]. From these simulation results,
we can see that these approaches allow for the compensation
of the rotational motion of a target.
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(a) Range profile.
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(b) ISAR using 2D-FT.

Fig. 9. Range profile and ISAR image of uncompensated target.
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(a) Range profile.
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(b) ISAR using 2D-FT.

Fig. 10. Range profile and ISAR image of translation motion compensated
target.

(a) ISAR using Spectrogram. (b) ISAR using NSBEMD-TFD.

Fig. 11. ISAR images using Time-Frequency methods after translation motion
compensated target (frame 120).

V. CONCLUSIONS

In this paper, a new focal quality indicator based on Teager-
Kaiser Energy Operator is used to estimate the translational
kinematic of a moving target. The results show the validity
of the approach proposed. The efficiency of ISAR imaging
after the translational motion compensation is very interesting
and is well adapted to non-stationary signals. To confirm the
presented results, more simulations must be studied, prefer-
entially using real dataset, and the results compared to other
published algorithms.
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