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Abstract—It has been known for a long time that the mutual
information between the input sequence and output of a binary
symmetric channel (BSC) is upper bounded by the mutual
information between the same input sequence and the output of a
binary erasure channel (BEC) with the same capacity. Recently,
Samorodintsky discovered that one may also lower bound the
BSC mutual information in terms of the mutual information
between the same input sequence and a more capable BEC. In
this paper, we strengthen Samordnitsky’s bound for the special
case where the input to the channel is distributed uniformly over
a linear code. Furthermore, for a general (not necessarily binary)
input distribution PX and channel WY |X , we derive a new lower
bound on the mutual information I(X;Y n) for n transmissions
of X ∼ PX through the channel WY |X .

I. INTRODUCTION

Let P = PY |X and Q = QZ|X be two channels with

a common input alphabet X and output alphabets Y,Z ,

respectively. Three common criteria for comparing/partially-

ordering them are [1]–[3]:

• We say that P is degraded with respect to Q if there

exists a third channel W =WY |Z with input alphabet Z
and output alphabet Y such that P = W ◦Q, that is, P
is the composition of W and Q.

• We say that P is more noisy than Q if for any distribution

PUX we have that I(U ;Y ) ≤ I(U ;Z), where Y is

obtained by feedingX to P , and Z is obtained by feeding

X to Q.

• We say that P is less capable than Q if for any distri-

bution PX we have that I(X ;Y ) ≤ I(X ;Z), where Y
is obtained by feeding X to P , and Z is obtained by

feeding X to Q.

Clearly if P is degraded with respect Q, it is also more

noisy than it, and similarly, if P is more noisy than Q, it is

also less capable than it. Furthermore, we have the following

tensorization property for the three criteria: If P is degraded

with respect to (respectively, more noisy, less capable than)

Q, then P⊗n is degraded with respect to (respectively, more

noisy, less capable than) Q⊗n [1, Problem 6.18], [4], [5]. Here,

P⊗n denotes the product channel from Xn to Yn obtained by

applying P independently on each coordinate of Xn.

The above criteria are useful whenever computing mutual

information expressions involving P is hard, whereas comput-

ing the same expressions with a channel Q which dominates

P under the criterion relevant to the problem, is significantly

easier. A canonical choice for Q is the erasure channel, which

outputs Z = X with probability 1− e and outputs Z =? with

probability e. This is a convenient choice because computing

mutual information expressions involving the erasure channel

is often a feasible task, and furthermore, finding the “dirtiest”

erasure channel (that is, the erasure channel with the largest e)
that is less noisy than P is equivalent to computing the strong

data processing inequality (SDPI) coefficient of the channel

P [4]. The SDPI coefficient of a channel PY |X is defined as

η(PY |X) = sup
PUX

I(U ;Y )

I(U ;X)
,

where the supremum is with respect to all Markov triplets

U −X
PY |X

− Y .

Computation of η(PY |X) reduces to computation of the

SDPI coefficients of all binary sub-channels induced by PY |X ,

i.e., all channels obtained by restricting the input to two

symbols {x0, x1} ⊂ X [6], for which closed-form expressions

and bounds exist [4].

A special case that has received considerable attention in the

literature is taking the channel PY |X as a binary symmetric

channel (BSC) with capacity t ∈ [0, 1]. Let

h(p) = −p log p− (1− p) log(1− p),

and let h−1 be its inverse restricted to [0, 1/2], where through-

out the paper all logarithms are taken to base 2. It is well

known [2, Example 5.4] that this channel is degraded with

respect to a binary erasure channel (BEC) with capacity

1 − 2h−1(1 − t), is more noisy than a BEC channel with

capacity (1 − 2h−1(1 − t))2, and is less capable than a BEC

with capacity t. In particular, for any input distribution Xn

and 0 ≤ t ≤ t1 ≤ 1, we have that

I
(t)
BSC(X

n;Y n) ≤ I
(t1)
BEC(X

n;Y n),
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where I
(t)
BSC(X

n;Y n) denotes the mutual information between

Xn and the output of a memoryless BSC channel with capacity

t, and I
(t1)
BEC(X

n;Y n) the mutual information between Xn and

the output of a memoryless BEC channel with capacity t1.

Thus, in cases where the mutual information between the

input vector and the output of a BEC channel can be com-

puted/estimated, we immediately obtain upper bounds on the

mutual information for the case of a BSC channel.

In fact, it is well-known that among all binary-input memo-

ryless output-symmetric (BMS) channels (see Definition 1 be-

low) with the same capacity, the BEC is the most capable, and

the BSC is the least capable [7]. This implies that for any input

distribution Xn, any BMS channel, and 0 ≤ t− ≤ t ≤ t+ ≤ 1
we have

I
(t−)
BSC(X

n;Y n) ≤ I
(t)
BMS(X

n;Y n) ≤ I
(t+)
BEC(X

n;Y n).

Thus, obtaining bounds in the other direction, i.e., lower

bounds on I
(t)
BSC(X

n;Y n) in terms of I
(t0)
BEC(X

n;Y n) is de-

sirable, as it enables to bound I
(t)
BMS(X

n;Y n) from above and

below using only mutual information expressions involving the

BEC.

However, deriving such bounds is a more challenging task.

The main reason for this is that for t ∈ (0, 1), there is no

0 < t0 for which the BEC with capacity t0 is less capable

than the BSC with capacity t.

While lower bounds of the form I
(t)
BSC(X

n;Y n) ≥

I
(t0)
BEC(X

n;Y n) that hold for any Xn are impossible to obtain,

in [8] Samorodnitskty had the somewhat counter-intuitive ob-

servation that we can nevertheless lower bound I
(t)
BSC(X

n;Y n)
using the mutual information between Xn and the output of a

less noisy BEC. In particular, he has shown that for any Xn

and any t1 ≥ ηt = (1− 2h−1(1 − t))2, it holds that

I
(t)
BSC(X

n;Y n) ≥ n · ψt

(

I
(t1)
BEC(X

n;Y n)

nt1

)

, (1)

where ψt : [0, 1] → [0, t] is some increasing strictly convex

function, to be explicitly specified later.1

One of the most interesting applications of Samorodnitsky’s

result is for the case where Xn is uniformly distributed on

some linear code. In this case, the result implies that a code

will attain high mutual information when transmitted over

the BSC channel, if it attains high mutual information when

transmitted over a BEC channel (though with a different

capacity). Our main result in this paper is an improvement

of Samorodnitsky’s result for this special case where Xn ∼
Unif(C) and C ⊂ {0, 1}n is a linear code. For this special

case, we improve Samorodnitsky’s bound from (1) to

I
(t)
BSC(X

n;Y n) ≥ n · ψ̄t

(

I
(t1)
BEC(X

n;Y n)

nt1

)

,

where ψ̄t(x) : [0, 1] → [0, t] = t · x is the upper concave

envelope of ψt(x).

1In fact, [8] establishes this only for t1 = ηt, but by Lemma 1 proved in
the appendix, this holds for all t1 ≥ ηt.

An important special case of a linear code is the repetition

code. A uniform distribution on this code corresponds to

Xn = (X, · · · , X) where X ∼ Bern(1/2). For this case

the problem of comparing I
(t)
BSC(X

n;Y n) = I
(t)
BSC(X ;Y n) to

I
(t1)
BEC(X

n;Y n) = I
(t1)
BEC(X ;Y n) is referred to as the informa-

tion combining problem, which has been studied extensively

in the literature [9], [10]. While the case of X ∼ Bern(1/2)
transmitted through n copies of a BSC channel is handled

by our main result, we further derive a lower bound for the

general case where X ∼ PX is transmitted n times through a

channel W⊗n, and show that

I(X ;Y n) ≥
I(PX ;W )

η(PX ,W )
(1 − (1− η(PX ,W ))n), (2)

where Y n is the output of the channel when X is transmitted

n times, I(PX ,W ) = I(X ;Y1), and

η(PX ,W ) = sup
PU|X

I(U ;Y )

I(U ;X)
(3)

is the input-dependent SDPI coefficient of the channel W with

input PX . Note that we can further lower bound (2) as

I(X ;Y n) ≥
1− e−n·η(PX ,W )

η(PX ,W )
· I(PX ,W ), (4)

which is close to the obvious upper bound nI(PX ;W ) for

n · η(PX ,W ) ≪ 1. Thus, our bound essentially shows that

when n · η(PX ,W ) ≪ 1 each measurement contributes about

I(PX ,W ) bits of information to I(X ;Y n) (as is the case for

i.i.d. transmission).

II. MAIN RESULT

For a random vector Xn on {0, 1}n, we denote by

I
(t)
BEC(X

n;Y n), respectively I
(t)
BSC(X

n;Y n), the mutual in-

formation between Xn and the output of a memoryless BEC

channel, respectively BSC channel, with capacity t. We denote

the strong data processing inequality (SDPI) coefficient of a

BSC channel with capacity t by [11]

ηt = (1− 2h−1(1 − t))2. (5)

We further denote the ratio between the capacity and the SDPI

coefficient by

αt =
t

ηt
=

t

(1− 2h−1(1− t))2
. (6)

It can be verified that for all 0 ≤ t ≤ 1 we have t ≤ ηt, and

consequently, αt ≤ 1. Furthermore, for all 0 < t ≤ 1,

αt >
log2(e)

2
.

Our main result is the following.

Theorem 1: Let C ⊂ {0, 1}n be a linear code, u ∈ {0, 1}n

be some shift, and Xn = Xn
C,u ∼ Uniform(C + u). Then

I
(t)
BSC(X

n;Y n) ≥ t ·
I
(ηt)
BEC(X

n;Y n)

ηt
= αt · I

(ηt)
BEC(X

n;Y n).

(7)



Remark 1: We may rewrite (7) as

I
(t)
BSC(X

n;Y n)

nt
≥
I
(ηt)
BEC(X

n;Y n)

nηt
, (8)

indicating that for (shifted) linear codes, the fraction of ca-

pacity over the BSC with capacity t is at least as large as the

fraction of capacity over a BEC with capacity ηt.
Remark 2: In [8, Theorem 12] (see also [4] and [12]),

Samorodnitsky proved that for the BSC with capacity t, for

any input Xn on {0, 1}n it holds that

H(Y n) ≥ n · ϕt

(

I
(ηt)
BEC(X

n;Y n)

n · ηt

)

, (9)

where ϕt(x) = h
(

h−1(1− t) ⋆ h−1(x)
)

is the function from

Mrs. Gerber’s Lemma [13]. Here, a⋆b = a(1−b)+b(1−a) is

the convolution between two numbers a, b ∈ [0, 1]. Subtracting

n(1− t) from both sides of (9), we obtain

I
(t)
BSC(X

n;Y n) = H(Y n)−H(Y n|Xn) = H(Y n)− n(1− t)

≥ n · ϕt

(

I
(ηt)
BEC(X

n;Y n)

n · ηt

)

− n(1− t)

= n · ψt

(

I
(ηt)
BEC(X

n;Y n)

n · ηt

)

, (10)

where ψt(x) = ϕt (x)−(1−t) is defined for 0 ≤ x ≤ 1. Since

x 7→ ϕt(x) is convex, so is x 7→ ψt(x). Noting further that

ψt(0) = 0 and ψt(1) = t, convexity implies that ψt(x) ≤ t ·x.

In particular,

ψt

(

I
(ηt)
BEC(X

n;Y n)

n · ηt

)

≤ t ·
I
(ηt)
BEC(X

n;Y n)

n · ηt
. (11)

Comparing this with Theorem 1, we see that our bound is

always at least as good as Samorodnitsky’s. However, while

Samorodnitsky’s lower bound on I
(t)
BSC(X

n;Y n) is valid for

any input Xn, our bound is only valid for Xn uniform on a

shifted linear code. In fact, it is easy to verify that Theorem 1

does not hold if one does not impose any assumptions on Xn.

Indeed, by the convexity of t 7→ g(t) = h(p ⋆ h−1(1 − t)) −
(1− t), and the fact that g(0) = 0 and g(1) = h(p), it follows

that g(t) ≤ th(p). Thus, for Xn ∼ Bern⊗n(p) we have

I
(t)
BSC(X

n;Y n)

t
=
ng(t)

t
≤ nh(p) =

I
(ηt)
BEC(X

n;Y n)

ηt
. (12)

Definition 1 (BMS channels): A memoryless channel with

binary inputX and output Y is called binary-input memoryless

output-symmetric (BMS) if there exists a sufficient statistic

T (Y ) = (X ⊕ ZA, A) for X , where (A,ZA) are statistically

independent of X , and ZA is a binary random variable with

Pr(ZA = 1|A = a) = a.

It is well known and easy to verify that among all BMS

channels with capacity t, the BEC is the most capable one,

whereas the BSC is the least capable, see e.g. [7]. Thus, the

following is a straightforward corollary of Theorem 1.

Corollary 1: Under the assumptions of Theorem 1, for any

BMS channel with capacity t we have

αt · I
(ηt)
BEC(X

n;Y n) ≤ I
(t)
BMS(X

n;Y n) ≤ I
(t)
BEC(X

n;Y n).

Furthermore, since t ≤ ηt, we have that the BEC with

capacity t is degraded with respect to the BEC with capacity

ηt. Thus, the following statement immediately follows from

Corollary 1.

Corollary 2: Under the assumptions of Theorem 1,

αt · I
(t)
BEC(X

n;Y n) ≤ I
(t)
BMS(X

n;Y n) ≤ I
(t)
BEC(X

n;Y n)

where αt, defined in (6), satisfies αt > log2(e)
2 , for all

0 < t ≤ 1.

Proof of Theorem 1. We may assume without loss of general-

ity that rank(C) > 0, since otherwise Xn is deterministic, so

that I
(ηt)
BEC(X

n;Y n) = I
(t)
BSC(X

n;Y n) = 0 and the statement

holds trivially.

Since Xn is uniform over a shifted linear code with positive

rank, we have that Xi ∼ Bern(1/2) for all i = 1, . . . , n, and

in particular

I
(ηt)
BEC(Xi;Yi) = ηt, I

(t)
BSC(Xi;Yi) = t, ∀i = 1, . . . , n.

(13)

This also implies the statement for n = 1. We proceed by

induction. Assume the statement holds for all linear codes and

shifts in {0, 1}n−1.

Note that for any memoryless channel, and in particular for

the BEC and the BSC, we have that

I(Xn;Y n) = I(Xn−1, Xn;Y
n−1, Yn)

= I(Xn−1;Y n−1, Yn) + I(Xn;Y
n−1, Yn|X

n−1)

= I(Xn−1;Y n−1) + I(Xn−1;Yn|Y
n−1) + I(Xn;Yn|X

n−1)

= I(Xn−1;Y n−1) + I(Xn;Yn)− I(Y n−1;Yn). (14)

By (13), for the BEC, we therefore have that

I
(ηt)
BEC(X

n;Y n) = I
(ηt)
BEC(X

n−1;Y n−1) + ηt − I
(ηt)
BEC(Y

n−1;Yn)

= I
(ηt)
BEC(X

n−1;Y n−1) + ηt − ηtI
(ηt)
BEC(Y

n−1;Xn), (15)

while for the BSC, we have that

I
(t)
BSC(X

n;Y n) = I
(t)
BSC(X

n−1;Y n−1) + t− I
(t)
BSC(Y

n−1;Yn)

≥ I
(t)
BSC(X

n−1;Y n−1) + t− ηtI
(t)
BSC(Y

n−1;Xn). (16)

In the last inequality we have used the strong data processing

inequality (SDPI), stating that for any U − Xn − Yn, where

PYn|Xn
is a BSC of capacity t, we have that I(U ;Yn) ≤

ηtI(U ;Xn). Since Y n−1−Xn−Yn forms a Markov chain in

this order, we can indeed apply the SDPI with U = Y n−1 and

obtain I
(t)
BSC(Y

n−1;Yn) ≤ ηtI
(t)
BSC(Y

n−1;Xn). We continue

by noting that, since Xn − Xn−1 − Y n−1 forms a Markov

chain in this order, we have

I
(t)
BSC(Y

n−1;Xn)

= I
(t)
BSC(Y

n−1;Xn−1)− I
(t)
BSC(Y

n−1;Xn−1|Xn).
(17)



Substituting (17) into (16), gives

I
(t)
BSC(X

n;Y n) = (1− ηt)I
(t)
BSC(X

n−1;Y n−1) + t

+ ηtI
(t)
BSC(Y

n−1;Xn−1|Xn). (18)

The random variable Xn−1 is uniformly distributed over the

projection of C + u to the first n − 1 coordinates. Since

this projection is a shifted linear code in {0, 1}n−1, by the

induction hypothesis, we have

I
(t)
BSC(X

n−1;Y n−1) ≥ αtI
(ηt)
BEC(X

n−1;Y n−1). (19)

Furthermore, conditioned on Xn = 0 or Xn = 1, we also have

that Xn−1 is uniformly distributed over a shifted linear code

in {0, 1}n−1 (though those shifted linear codes may differ for

Xn = 0 and Xn = 1). Thus, again by the induction hypothesis

I
(t)
BSC(X

n−1;Y n−1|Xn)

=
1

2
I
(t)
BSC(X

n−1;Y n−1|Xn = 0)

+
1

2
I
(t)
BSC(X

n−1;Y n−1|Xn = 1)

≥
αt

2
I
(ηt)
BEC(X

n−1;Y n−1|Xn = 0)

+
αt

2
I
(ηt)
BEC(X

n−1;Y n−1|Xn = 1)

= αtI
(ηt)
BEC(X

n−1;Y n−1|Xn)

= αt

(

I
(ηt)
BEC(X

n−1;Y n−1)− I
(ηt)
BEC(Xn;Y

n−1)
)

(20)

where the last equality holds since Y n−1−Xn−1−Xn forms

a Markov chain in this order, as in (17). Substituting (19)

and (20) into (18), we obtain

I
(t)
BSC(X

n;Y n) ≥ αt(1 − ηt)I
(ηt)
BEC(X

n−1;Y n−1) + t

+ αtηt

(

I
(ηt)
BEC(X

n−1;Y n−1)− I
(ηt)
BEC(Xn;Y

n−1)
)

= αtI
(ηt)
BEC(X

n−1;Y n−1) + t− αtηtI
(ηt)
BEC(Xn;Y

n−1)

= αt

[

I
(ηt)
BEC(X

n−1;Y n−1) + ηt − ηtI
(ηt)
BEC(Xn;Y

n−1)
]

= αtI
(ηt)
BEC(X

n;Y n), (21)

where in the last equality we have used (15) and the fact that

αt =
t
ηt

. This completes the proof.

III. INFORMATION COMBINING

Let X ∼ PX , and let W = WY |X be some channel

with input alphabet X and output alphabet Y . Assume X
is transmitted n times through W , and the output is Y n =
(Y1, . . . , Yn). What can we say about I(X ;Y n)? Since the

channel from Xn = (X, . . . , X) to Y n is memoryless, we

have that

I(X ;Y n) ≤

n
∑

i=1

I(X ;Yi) = nI(X ;Y ) = nI(PX ,W ). (22)

Combining this with the trivial upper bound

I(X ;Y n) ≤ H(X) = H(PX), we have that

I(X ;Y n) ≤ min{H(PX), nI(PX ,W )}. Denote by ECe

the erasure channel with input X whose output is X with

probability 1− e and ? with probability e. Let

CMC = CMC(W )

= min{1− e ∈ [0, 1] : W is less capable than ECe}.

By tensorization of the more capable partial order, we have

I(X ;Y n) = I(PX ,W
⊗n) ≤ I(P,EC⊗n

1−CMC
)

= (1− (1 − CMC)
n)H(PX).

(23)

Our main result is a lower bound on I(X ;Y n) taking a similar

form to (23) .

Theorem 2: Let X ∼ PX and W = WY |X be an

input distribution and a channel with input-dependant SDPI

coefficient satisfying η(PX ,W ) ≤ η. Assume X is transmitted

n times through W , and the output is Y n = (Y1, . . . , Yn).
Then,

I(X ;Y n) ≥ α(1 − (1− η)n)H(PX), (24)

where

α =
I(PX ,W )

ηH(PX)
. (25)

Proof. For n = 1 the claim holds with equality. We proceed

by induction. Starting from (14), we have

I(X ;Y n) = I(X ;Y n−1) + I(PX ,W )− I(Y n−1;Yn)

≥ I(X ;Y n−1) + I(PX ,W )− ηI(Y n−1;X) (26)

= (1− η)I(X ;Y n−1) + I(PX ,W ), (27)

where (26) follows from the strong data processing inequality,

as Y n−1 − X − Yn forms a Markov chain in this order.

Using the induction hypothesis I(X ;Y n−1) ≥ α(1 − (1 −
η)n−1)H(PX), we further lower bound (27) as

I(X;Y n) ≥ α(1 − (1− η)n−1)(1− η)H(PX) + I(PX ,W )

= α

[

(1− (1− η)n−1)(1 − η)H(PX) +
I(PX ;W )

α

]

= α
[

(1− (1 − η)n−1)(1 − η)H(PX) + ηH(PX)
]

= α(1 − (1− η)n)H(PX), (28)

which establishes the claim.

Remark 3: Recall that the information bottleneck curve

corresponding to (X,Y ) ∼ PXY is defined as

IBPXY
(R) = max {I(U ;Y ) : I(U ;X) ≤ R,U −X − Y } .

Since R 7→ IBPXY
(R) ∈ [0, H(PX)] is concave [14],

[15], and satisfies IBPXY
(0) = 0 and IBPXY

(H(PX)) =

I(PX ;W ), we have that IBPXY
(R) ≥ I(PX ;W )

H(PX ) R. This

implies that2

η(PX ,W ) = sup
R∈(0,H(PX )]

IBPXY
(R)

R
≥
I(PX ;W )

H(PX)
. (29)

2In fact, the supremum in (29) is attained for R → 0 [16], [17]



This, in turn, shows that α ≤ 1.

Remark 4 (Special case of PX = Bern(1/2) and W =
BSC): Note that for the special case of X = {0, 1},

PX = Bern(1/2), and W taken as a BSC with capacity t
the conclusion of Theorem 2 follows from Theorem 1. This

follows since in this case Xn = (X, · · · , X) can be viewed as

a random codeword in the repetition code (which is of course

linear), and furthermore, for this choice of W and PX we

have [11] that η(PX ,W ) = η(W ) = (1− 2h−1(t))2. We may

further relax Theorem 2, as in Corollary 2, lower bounding

ηt = (1−2h−1(1−t))2 by t, to obtain that for X ∼ Bern(1/2)
we have

αt · I
(t)
BEC(X ;Y n) ≤ I

(t)
BSC(X ;Y n) ≤ I

(t)
BEC(X ;Y n). (30)

Recalling that αt ≥ log(e)
2 for all 0 < t ≤ 1, we obtain the

uniform bound

I
(t)
BSC(X ;Y n) ≥

log(e)

2
I
(t)
BEC(X ;Y n) =

log(e)

2
(1− (1− t)n).

(31)

Equation (31) may be tightened. Specifically, numerical evi-

dence suggests that I(X ;Y n) > 0.92(1− (1− t)n), which is

significantly tighter than the uniform lower bound (31) (recall

that
log(e)

2 ≈ 0.72). To pursue such improvements, one may

tighten the inequality in (26) by bounding I(Y n−1;Yn) ≤
IBPXY

(I(Y n−1;X) which has a closed-form solution [18] for

PX = Bern(1/2) and W = BSC.

IV. APPLICATIONS

Definition 2: We say that a code C ⊂ {0, 1}n of rate R
is ε-information-capacity achieving for the BEC, if for any

t > R we have that I
(t)
BEC(X

n;Y n) ≥ n(R− ε), where Xn ∼
Uniform(C).

We show that for codes that are ε-information-capacity achiev-

ing for the BEC, the corresponding mutual information over

the BSC cannot be too small. Results in similar spirit have

been obtained in [19], see also [20].

Theorem 3: Let C ⊂ {0, 1}n be a linear code of rate R,

that is ε-information-capacity achieving for the BEC. Then,

I
(t)
BSC(X

n;Y n) ≥ n
(

1−
ε

R

)

·







t t < 1− h
(

1−
√
R

2

)

tR
ηt

t ≥ 1− h
(

1−
√
R

2

) .

(32)

Proof. Let t∗ = 1− h
(

1−
√
R

2

)

, be such that ηt∗ = R. Then,

I
(ηt∗ )
BEC (Xn;Y n)

ηt∗
≥
n(R − ε)

R
= n

(

1−
ε

R

)

. (33)

By Lemma 1 in the Appendix,

t 7→
I
(t)
BEC(X

n;Y n)

t
(34)

is non increasing, and hence, for all t ≤ t∗, it holds that
I
(ηt)
BEC(Xn;Y n)

ηt
≥ n

(

1− ε
R

)

. By Theorem 1, we therefore have

that

I
(t)
BSC(X

n;Y n) ≥ nt
(

1−
ε

R

)

, t ≤ t∗. (35)

For t > t∗ we have that I
(t)
BEC(X

n;Y n) > nR(1 − ε), by

the assumption that C is a rate R code that is ε-information-

capacity achieving for the BEC. Thus, by Theorem 1

I
(t)
BSC(X

n;Y n) ≥ t ·
nR (1− ε)

ηt
, t > t∗, (36)

which establishes our claim.

APPENDIX

Lemma 1: Fix an input distribution Xn on {0, 1}n. The

mapping t 7→
I
(t)
BEC(Xn;Y n)

t
is non increasing.

Proof. Let 0 ≤ t1 ≤ t ≤ 1. Note that a BEC with capacity

t1 can be obtained by concatenating a BEC with capacity t,
denoted P⊗n

Y |X and a EC1−t′ , where t′ = t1
t

, denoted W⊗n
Z|Y ,

where X = {0, 1} and Y = Z = {0, ?, 1}. Let St ⊂ {0, 1}n

denote the (random) set of indices not erased by P⊗n
Y |X and

St′ the (random) set of indices not erased by W⊗n
Y |X . For a set

S ⊂ {0, 1}n we denote by XS the restriction of Xn to the

indices included in S. We have

I(Xn;Zn) = I(Xn;XSt∩St′
, St ∩ St′)

= I(Xn;XSt∩St′
|St ∩ St′) (37)

= H(XSt∩St′
|St ∩ St′)

= H(XSt∩St′
|St, St′), (38)

where (37) follows since (St, St′) are statistically independent

of Xn. We have

H(XSt∩St′
|St, St′) = Est∼PSt

[H(XS′
t∩st |St′ , St = st)]

≥ t′ · Est∼PSt
[H(Xst |St = st)] (39)

= t′ ·H(XSt
|St)

= t′ · I(Xn;Y n), (40)

where in (39) we have used Shearer’s Lemma, see e.g. [3,

Theorem 1.8]. Recalling that t′ = t1
t

, we have therefore

obtained that

I(Xn;Zn)

t1
≥
I(Xn;Y n)

t
, (41)

as claimed.
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