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Abstract

The problem of robust mean estimation in high dimensions is studied, in which a certain fraction (less than

half) of the datapoints can be arbitrarily corrupted. Motivated by compressive sensing, the robust mean estimation

problem is formulated as the minimization of the `0-‘norm’ of an outlier indicator vector, under a second moment

constraint on the datapoints. The `0-‘norm’ is then relaxed to the `p-norm (0 < p ≤ 1) in the objective, and it is

shown that the global minima for each of these objectives are order-optimal and have optimal breakdown point for

the robust mean estimation problem. Furthermore, a computationally tractable iterative `p-minimization and hard

thresholding algorithm is proposed that outputs an order-optimal robust estimate of the population mean. The proposed

algorithm (with breakdown point ≈ 0.3) does not require prior knowledge of the fraction of outliers, in contrast with

most existing algorithms, and for p = 1 it has near-linear time complexity. Both synthetic and real data experiments

demonstrate that the proposed algorithm outperforms state-of-the-art robust mean estimation methods.

Index Terms

Robust estimation, High-dimensional statistics, Global outlier pursuit, Linear time complexity algorithm

I. INTRODUCTION

Robust mean estimation in high dimensions has received considerable interest recently, and has found applications

in areas such as data analysis (e.g., spectral data in astronomy [1]), outlier detection [2], [3], [4] and distributed

machine learning [5], [6], [7]. Classical robust mean estimation methods such as coordinate-wise median and

geometric median have error bounds that scale with the dimension of the data [8], which results in poor performance

in the high dimensional regime. A notable exception is Tukey’s Median [9] that has an error bound that is independent

of the dimension, when the fraction of outliers is less than a threshold [10], [11]. However, the computational

complexity of Tukey’s Median algorithm is exponential in the dimension.
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A number of recent papers have proposed polynomial-time algorithms that have dimension independent error

bounds under certain distributional assumptions (e.g., bounded covariance or concentration properties). For a recent

comprehensive survey on robust mean estimation, we refer the interested readers to [12]. One of the first such

algorithms is Iterative Filtering [13], [14], [15], in which one finds the top eigenvector of the sample covariance

matrix and removes (or down-weights) the points with large projection scores on that eigenvector, and then repeat

this procedure on the rest of points until the top eigenvalue is small. However, as discussed in [4], the drawback of

this approach is that it only looks at one direction/eigenvector at a time, and the outliers may not exhibit unusual

bias in only one direction or lie in a single cluster. Figure 1 illustrates an example for which Iterative Filtering

might have poor empirical performance. In this figure, the inlier datapoints in blue are randomly generated from the

standard Gaussian distribution in (high) dimension d, and therefore their `2-distances to the origin are roughly
√
d

(see, e.g., Theorem 3.1 of [16]). There are two clusters of outliers in red, and their `2-distances to the origin are

also roughly
√
d. If there is only one cluster of outliers, Iterative Filtering can effectively identify them; however, in

this example, this method may remove many inlier points and perform suboptimally.

Fig. 1: Illustration of two clusters of outliers (red points). The inlier points (blue) are drawn from standard Gaussian

distribution in high dimension d. Both the outliers and inliers are at roughly
√
d distance from the origin.

There are interesting connections between existing methods for robust mean estimation and those used in

compressive sensing. The Iterative Filtering algorithm has similarities to the greedy Matching Pursuit compressive

sensing algorithm [17]. In the latter algorithm, one finds a single column of sensing matrix A that has largest

correlation with the measurements b, removes that column and its contribution from b, and repeats this procedure

on the remaining columns of A. Dong et al. [4] proposed a new scoring criteria for finding outliers, in which one

looks at multiple directions associated with large eigenvalues of the sample covariance matrix in every iteration

of the algorithm. Interestingly, this multi-directional approach is conceptually similar to Iterative Thresholding

techniques in compressive sensing (e.g., Iterative Hard Thresholding [18] or Hard Thresholding Pursuit [19]), in

which one simultaneously finds multiple columns of matrix A that are more likely contribute to b. Although iterative

thresholding techniques are also greedy, they are more accurate than the Matching Pursuit technique in practice [20],

[21].

A common assumption in robust mean estimation problem is that the fraction of the corrupted datapoints is

small. In this paper, we explicitly use this information through the introduction of an outlier indicator vector

whose `0-‘norm’ we minimize under a second moment constraint on the datapoints. This is partially motivated by
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compressive sensing and shares the same principle of ‘fitting the majority of the data’ that is common in robust

statistics. This new formulation not only enables us to leverage advanced compressive sensing techniques to solve

the robust mean estimation problem, but also allow us to design algorithms that do not require prior knowledge of

the fraction of outliers. There are some works in sparse recovery (see, e.g. [22], [23]), in which `0/`p minimization

is used to remove outliers in data. In these works, a linear model y = Ax+ e is considered, wherein y denotes the

measurements, the matrix A is known, and the unknown sparse vector e models the potential outlier corruption on

each datapoint. Consequently, the analyses in the works on sparse recovery methods heavily rely on the assumption

that the underlying model is linear (e.g., some works exploit the range-space/null-space properties of the matrix A).

On the other hand, in robust mean estimation, a general observation model (not necessarily linear) is considered. In

light of this, the analyses in the works on sparse recovery cannot be transferred in an obvious way to the robust

mean estimation problem.

We consider the setting in which the distribution of the datapoints before corruption has bounded covariance, as is

commonly assumed in many recent works (e.g., [14], [4], [24], [25]). In particular, in [24], the authors propose to

minimize the spectral norm of the weighted sample covariance matrix and use the knowledge of the outlier-fraction

ε to constrain the weights. Along this line, two very recent works [26], [27] show that any approximate stationary

point of the objective in [24] gives a near-optimal solution. In contrast, our objective is designed to minimize the

sparsity of an outlier indicator vector, and we show that any sparse enough solution is nearly optimal.

Contributions:

• At a fundamental level, a contribution of this paper is the formulation of the robust mean estimation problem

as minimizing the `0-‘norm’ of the proposed outlier indicator vector, under a second moment constraint on the

datapoints. In addition, order-optimal estimation error guarantees and optimal breakdown point (ε < 1/2) are

shown for this objective. We relax the `0 objective to `p(0 < p ≤ 1) as in compressive sensing, and establish

corresponding order-optimal estimation error guarantees. The guarantees are order-optimal with respect to the

number of datapoints(n), dimension of the data (d), and the fraction of corrupted datapoints(ε). Henceforth we

use the term ‘order-optimal’ in this sense.

• Motivated by the proposed `0 and `p objectives and their theoretical justifications, we propose a computationally

tractable iterative `p(0 < p ≤ 1) minimization and hard thresholding algorithm, and establish the order

optimality of the algorithm. Empirical studies show that the proposed algorithm significantly outperforms

state-of-the-art methods in robust mean estimation.

• The proposed algorithm (with maximal breakdown point of 1− 1/
√

2) does not require the knowledge of the

fraction of outliers (in contrast to most existing algorithms). For p = 1, the algorithm has near-linear time

complexity.

II. PROPOSED OPTIMIZATION PROBLEMS

We begin by defining what we mean by a corrupted sample of datapoints.

Definition 1. (ε-corrupted sample [4]) Let P be a distribution on Rd with unknown mean µ, and let ỹ1, ..., ỹn be

independent and identically distributed (i.i.d.) drawn from P . These datapoints are then modified by an adversary
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who can inspect all the datapoints, remove εn of them, and replace them with arbitrary vectors in Rd. We then

obtain an ε-corrupted sample, denoted as y1, ...,yn.

Throughout the rest of the paper, we adhere to the notation given above: we represent a datapoint before corruption

as ỹi, and after corruption as yi. Given a set of datapoints {xi, i = 1, . . . , n}, we term the following as sample

covariance matrix around z:
n∑
i=1

(xi − z)(xi − z)>. (1)

There are other types of contamination one can consider, e.g., Huber’s ε-contamination model [28]. The

contamination model described in Definition 1 is the strongest in the sense that the adversary is not oblivious to the

original datapoints, and can replace any subset of εn datapoints with any vectors in Rd. We refer the reader to [12]

for a more detailed discussion on contamination models.

Our primary goal is to robustly estimate the true population mean, given an ε-corrupted sample. We assume that

the underlying distribution has bounded second moment. A powerful and useful key insight that was exploited in

previous work on the problem is that if the outliers in an ε-corrupted sample (of large size) shift the average of

datapoints before corruption by Ω(ξ) in a direction ν, then the variance of the projected sample along ν increases

by Ω(ξ2/ε). Thus, intuitively, it suffices to find a large subset of the ε-corrupted sample, whose sample covariance

matrix is close to the covariance matrix of the underlying distribution. In order for such a subset to exist and for

the mean of this large subset to be close to the true mean, we need some form of concentration of the datapoints

(before corruption) around the mean of their distribution. A constrained second moment condition is sufficient to

guarantee this, and such an assumption is also used in previous works. In the following, we provide a brief high-level

explanation (details can be found in the Appendix). Suppose we are given a sufficiently large sample of datapoints

of size n, generated from a distribution with mean µ and spectral norm of the covariance matrix bounded by σ2.

Then, with high probability, there exists a large subset of the sample with spectral norm of the sample covariance

matrix around µ bounded by O(σ2). Hence, after corruption, with high probability there still exists a sufficiently

large subset, say G∗, of the resulting ε-corrupted sample, of size (1− ε′)n (where ε′ → ε as n→∞), such that the

spectral norm of the sample covariance matrix around µ is bounded by O(σ2). Utilizing this, the concentration of

the sample before corruption around µ, and a fundamental result [27, Lemma C.2] about closeness of population

mean and conditional mean, it can be shown that the distance between µ and the sample average of G∗ is O(σ
√
ε′).

Based on this motivation, we propose an `0-minimization problem to find the largest subset, whose sample

covariance matrix exhibits bounded spectral norm. We first introduce an outlier indicator vector h: for the i-th

datapoint, hi indicates that whether it is an outlier (hi = 1) or not (hi = 0). Given an ε-corrupted sample of size n,

we propose the following optimization problem, for which the solution in x should yield a robust estimate of the

mean:

min
h,x
‖h‖0 s.t. hi ∈ {0, 1},∀i, (2)

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ c21σ2n,
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where c1 is a constant that controls the inflation of the constraint with respect to the bound (σ2) on the spectral

norm of the covariance matrix of the underlying distribution.

We further relax the problem to the following:

min
h,x
‖h‖0 s.t. 0 ≤ hi ≤ 1,∀i, (3)

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ c21σ2n.

Note that any globally optimal solution of (2) is also globally optimal solution of (3). To see this, let h̃ be a global

optimum of (3). Let h′ be the vector obtained after setting the non-zero values of h̃ to 1. Note that h′ has the same

`0-norm as h̃, and is also a feasible point of (2). Since the constraint set of (3) is larger than (2), the optimum

value of (2) must be greater than or equal to the optimum value of (2). This implies that h′ is a global optimum

of (2). Hence, the claim holds. We show in Theorem 1, that any sparse enough feasible pair including the global

optimum of (3) achieves order-optimality in terms of the error in estimating the mean.

However, minimizing the above `0 objective is not computationally tractable. Motivated by compressive sensing,

we further propose to relax the `0-‘norm’ to the `p-norm (0 < p ≤ 1), which leads to the following optimization

problem:

min
h,x
‖h‖p s.t. 0 ≤ hi ≤ 1,∀i, (4)

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ c21σ2n.

We show in Theorem 2, that even in this case any ‘good’ feasible pair including the global optimum is order-optimal

in terms of the error in estimating the mean.

In the approaches taken in prior works (see, e.g., [27]), the robust mean estimation problem is the following

feasibility problem:

Find h s.t. hi ∈ [0, 1],

n∑
i=1

hi ≤ εn, λmax(

n∑
i=1

(1− hi)(yi − x)(yi − x)>) ≤ Cσ2n. (5)

Most works (see, e.g., [4], [24]) consider the following problem (or its variant), which is obtained by changing the

feasibility problem into the following optimization problem:

minλmax(

n∑
i=1

(1− hi)(yi − x)(yi − x)>) s.t. hi ∈ [0, 1],

n∑
i=1

hi ≤ εn (6)

where x is either fixed or is the weighted average of yi’s with weights as 1 − hi. Landscape results related to

the optimization problem (6) were obtained in [24] and [27]. Our formulation (4), for the special case of p = 1,

corresponds to minimizing the feasibility condition related to the sum of "weights" in (5). We provide landscape

results for the optimization problem given in (4) (Theorems 1 and 2). An advantage of our formulation, which we

will exploit in Algorithm 1, is that it does not require knowledge of the fraction of outliers ε.

We now provide theoretical guarantees for the estimator which is given by the solution of the optimization problem

(3). We show that given an ε-corrupted sample of sufficiently large size, then with high probability, the `2-norm of
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the estimator’s error is O
(
σ

√
ε+ d log d

n

1−2(ε+ d log d
n )

)
. We formalize this in the following theorem. It is well known that

an information-theoretic lower bound on the `2-norm of any estimator’s error ‖x̂−µ‖2 is Ω
(
σ
√

ε
1−2ε

)
(see [27]).

Thus, the estimator is order-optimal in terms of the error as α→ 0 and n→∞.

Theorem 1. Let P be a distribution on Rd with unknown mean µ and unknown covariance matrix Σ � σ2I . Let

δ ∈ (0, 1/4) and c1 > 1 be fixed. Let c′1 = c21 min
{
c21 log c21 + 1− c21, 1

}
, n > 2e

c′1δ
2 d log(d/δ) and α = ed log(d/δ)

nδ2c′1
.

Let ε ∈ (0, 1/2− α) and ε′ = ε+ α. Given an ε-fraction corrupted set of n datapoints from P , let

S =

{
(h,x) : ‖h‖0 < (1− ε′)n;x =

∑
{i:hi=0} yi

|{i : hi = 0}|

}
. (7)

Then the following holds with probability at least 1− 4δ:

1) Any feasible pair (ĥ, x̂) for the optimization problem (3) such that (ĥ, x̂) ∈ S satisfies

‖x̂− µ‖2 ≤

√ c21σ
2

1− ε′
+

√√√√ c21σ
2

1− ‖ĥ‖0n


√√√√√max

{
ε′, ‖ĥ‖0n

}
1− ε′ − ‖ĥ‖0n

+

√
c21σ

2

1− α
.
ε

1− ε
+ σ
√
αδ

(
1 + 2

√
c′1

e log(dδ )

)
. (8)

2) A global optimum (hopt,xopt) of (3) lies in S with ‖hopt‖0 ≤ ε′n.

The proof is deferred to the Appendix. A high-level sketch of the proof of Theorems 1 is as follows. We use

the idea in [27, Lemma 2.2] stated in Lemma 2. Informally, if two probability distributions on a set of datapoints

are close in total variation distance, then the weighted means of the distributions are close. Consider the uniform

distribution on the set {yi : ĥi = 0} (say P1). Note that the estimator x̂ in Theorem 1 is the mean of P1. We show

that the total variation distance between P1 and the uniform distribution (say P ′) on the set of inlier datapoints

(that are within a distance of σ
√

d
αδ = σ

√
nδc′1

e log(d/δ) from µ), is small. Therefore one can show that the distance

between x̂ and the mean of P ′ is O

σ√max
{
ε′,
‖ĥ‖0
n

}
1−ε′− ‖ĥ‖0n

. Using Lemma 2, we show that the distance between

the mean of P ′ and µ is O(σ
√
ε′). Using triangle inequality, it follows that the distance between x̂ and µ is

O

σ√max
{
ε′,
‖ĥ‖0
n

}
1−ε′− ‖ĥ‖0n

.

Remark 1. Theorem 1 shows that, as long as we find a feasible point ĥ that is sparse enough, i.e., ‖ĥ‖0 ≤ (ε+α)n,

the average of the estimated inliers
∑
{i:ĥi=0} yi

|{i:ĥi=0}|
is close to the true mean in the optimal sense. It is not necessary

to reach the global optimum of the objective (3).

We now provide a similar order-optimal error guarantee for the solution of the optimization problem in (4).

Theorem 2. Let P be a distribution on Rd with unknown mean µ and unknown covariance matrix Σ � σ2I .Let

δ ∈ (0, 1/4), c1 > 1 and p ∈ (0, 1] be fixed. Let c′1 = c21 min
{
c21 log c21 + 1− c21, 1

}
, n > 2e

c′1δ
2 d log(d/δ) and

α = ed log(d/δ)
nδ2c′1

. Let ε ∈ (0, 1/2− α) and ε′ = ε+ α. Given an ε-fraction corrupted set of n datapoints from P , let

S ′ =

{
(h,x) : ‖h‖pp < (1− ε′)n; x =

∑n
i=1(1− hi)yi∑n
i=1(1− hi)

}
. (9)
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Then the following holds with probability at least 1− 4δ:

1) Any feasible pair (ĥ, x̂) of (4) such that (ĥ, x̂) ∈ S ′ satisfies

‖x̂− µ‖2 ≤

√ c21σ
2

1− ε′
+

√√√√ c21σ
2

1− ‖ĥ‖
p
p

n


√√√√√max

{
ε′,
‖ĥ‖pp
n

}
1− ε′ − ‖ĥ‖

p
p

n

+

√
c21σ

2

1− α
.
ε

1− ε

+ σ
√
αδ

(
1 + 2

√
c′1

e log(dδ )

)
.

(10)

2) A global optimum (hopt,xopt) of (4) lies in S ′ with ‖hopt‖pp ≤ ε′n.

The proof is deferred to the Appendix. The high-level idea is similar to that of the proof of Theorem 1. We

consider the distribution on the α-corrupted samples with (normalized) probability weights 1− hi (say P2). Note

that the estimator x̂ in Theorem 2 is the mean of P2. We show that the total variation distance between P2 and the

uniform distribution (say P ′) on the set of inlier datapoints (that are within a distance of σ
√

d
αδ = σ

√
nδc′1

e log(d/δ) from

µ), is small. Therefore one can show that the distance between x̂ and the mean of P ′ is O

σ
√√√√max

{
ε′,
‖ĥ‖pp
n

}
1−ε′− ‖ĥ‖

p
p

n

.

Using Lemma 2, we show that the distance between the mean of P ′ and µ is O(σ
√
ε′). Using triangle inequality, it

follows that the distance between x̂ and µ is O

σ
√√√√max

{
ε′,
‖ĥ‖pp
n

}
1−ε′− ‖ĥ‖

p
p

n

.

Remark 2. The breakdown point of the estimators in Theorems 1 and 2 is nearly the maximal possible 1/2 (as

α→ 0 and n→∞), that is the estimator can tolerate any corruption level ε < 1/2, assuming that the number of

samples n satisfies the lower bound.

Remark 3. From Lemma 6 in the Appendix, we know that given any feasible pair of (4) with ‖ĥ‖p ≤ (ε′n)1/p,

we have that

ĥ, n∑
i=1

(1−ĥi)yi
n∑
i=1

(1−ĥi)

 is also a feasible pair, and therefore it lies in the set S ′ defined in (9). Theorem 2

further shows that this weighted average of the datapoints

n∑
i=1

(1−ĥi)yi
n∑
i=1

(1−ĥi)
is close to the true mean. Again, we note

that it is not necessary to reach the global optimum of the objective (4); we only need to find a feasible point h

of (4) whose `p-norm is small enough.

III. ALGORITHM

A. `p minimization and thresholding

Motivated by the `p objective and its theoretical guarantee, we propose an iterative `p minimization algorithm.

The algorithm, which is detailed in Algorithm 1, alternates between updating the outlier indicator vector h via
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Algorithm 1 Robust Mean Estimation via `p Minimization and Thresholding

Inputs:

1) An ε-corrupted set of datapoints {yi}ni=1 ∈ Rd generated by a distribution whose covariance matrix satisfies

Σ � σ2I .

2) Upper bound on corruption level: ε̌

3) Upper bound on spectral norm of Σ: σ2.

4) Threshold: 0 < τ ≤ 1 such that f(τ) > ε̌, where f(τ) is defined in (13), if such a τ exists.

5) Set c1 > 1.

6) Set 0 < p ≤ 1 in `p.

Initialize:

1) x(0) as the coordinate-wise median of {yi}ni=1.

2) c(0)
2 = 3

√
d+ 2c1.

3) Iteration number t = 0.

Do:

Step 1: Given x(t), update h:

h(t) ∈ H(x(t), c
(t)
2 ), where H is defined in (11).

Step 2: Given h(t), update x:

x(t+1) =
∑n
i=1(1−h(t)

i )1{h(t)
i ≤τ}yi∑n

i=1(1−h(t)
i )1{h(t)

i ≤τ}
.

c
(t+1)
2 = γ(ε̌)c

(t)
2 + β(ε̌),

where γ and β are defined in (14) and (15)

t = t+ 1.

While: t < T = 1 +
log c

(0)
2

log|γ(ε̌)| and c(t)2 < c
(t−1)
2

Output: x(T )

minimizing its `p-norm and updating the estimated mean x. To describe Algorithm 1, let H be the set defined by

H(x, c2) := arg min
h
‖h‖p (11)

s.t. 0 ≤ hi ≤ 1,∀i,

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ (c21 + c22)σ2n.

When updating the estimated mean x in Step 2 of Algorithm 1, we add an option to threshold the hi by τ , so

one can use the weighted average of the estimated ‘reliable’ datapoints (i.e., those for which hi ≈ 0) to estimate x.

This is motivated by the analysis of the original `0 objective in Theorem 1, where the average of the estimated

‘reliable’ datapoints
∑
{i:ĥi=0} yi

|{i:ĥi=0}|
is close to the true mean as long as the outlier indicator vector ĥ is sparse enough.

The breakdown point of Algorithm 1 depends on the threshold τ and is given by f(τ) (see (13)). The maximal

breakdown point corresponds to no thresholding, i.e., f(1) = 1− 1/
√

2. Algorithm 1 requires an upper bound ε̌ on

the true fraction of outliers. This upper bound can be set arbitrarily close to (but less than) the breakdown point.
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With this intuitive updating rule in Step 2, Algorithm 1 has following order-optimal guarantee.

Theorem 3. Let P be a distribution on Rd with unknown mean µ and unknown covariance matrix Σ � σ2I .

Let δ ∈ (0, 1/5), c1 > 1 and p ∈ (0, 1] be fixed. Let τ ∈ (0, 1], c′1 = c21 min
{
c21 log c21 + 1− c21, 1

}
, n >

max
{

90, e
c′1δ

2f(τ)d
}

log(d/δ), α = ed log(d/δ)
nδ2c′1

. Let ε ≥ 0 be such that 0 < ε′ := ε + α ≤ ε̌ < f(τ). Given an

ε-fraction corrupted set of n datapoints from P , with probability at least 1− 5δ, all the iterates of Algorithm 1 (for

t ≥ 1) satisfy

‖x(t) − µ‖2 ≤σ
[
γ(ε′)

(
c
(0)
2 γ(ε̌)t−1 +

1− γ(ε̌)t−1

1− γ(ε̌)
β(ε̌)

)
+ β(ε′)

]
+ c1σ

√
ε

(1− α)(1− ε)

+ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

) (12)

where c(0)
2 is given in Algorithm 1, and

f(τ) =
3τ + τ2 −

√
τ4 + 2τ3 + 5τ2

2(1 + τ)
(13)

γ(ε) =

√
ε/τ

(1− ε/τ)(1− ε− ε/τ)
(14)

β(ε) = c1

(
(1− ε/τ)−1/2 + (1− ε)−1/2

)√ ε/τ

1− ε− ε/τ
. (15)

The output of Algorithm 1 at the end of T = 1 +
log c

(0)
2

| log γ(ε̌)| = O
(

log d
| log ε̌|

)
(when c

(0)
2 ≥ β(ε̌)

1−γ(ε̌) ) or T = 1 (when

c
(0)
2 < β(ε̌)

1−γ(ε̌) ) iterations is order-optimal:

‖x(T ) − µ‖2 ≤ σ
[
γ(ε′)

(
1 +

β(ε̌)

1− γ(ε̌)

)
+ β(ε′)

]
+ c1σ

√
ε

(1− α)(1− ε)
+ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

)

= O(σ
√
ε′).

(16)

The proof is deferred to the Appendix, but we briefly discuss the design of the algorithm and the high-level

approach. Let x̄∗ be the average of the set of inlier datapoints that are within a distance of σ
√

d
αδ from µ. We use

induction to show that ‖x(t) − x̄∗‖ ≤ c
(t)
2 σ. We show in the Appendix that the coordinate-wise median satisfies

‖x(0) − µ‖2 ≤ c
(0)
2 σ with high probability. Firstly, observe that in Step 1 of Algorithm 1, the constraint on the

spectral norm of the weighted covariance matrix around x(t) is
(
c21 + (c

(t)
2 )2

)
σ2n instead of c21σ

2n as in (4). This

ensures that with high probability that the optimization problem in Step 1 has a feasible point, and that the optimum

solution satisfies ‖h(t)‖p ≤ (ε′n)1/p. Secondly, we exploit the boundedness of ‖h(t)‖p and the fact that the spectral

norm of the weighted covariance matrix around x(t) is bounded (similar to the idea used in Theorem 2), along with

some concentration bounds to show that in each iteration the iterate x(t+1) in Step 2 moves closer to µ than x(t).

Specifically, we show that ‖x(t+1) −µ‖2 ≤ γ‖x(t) −µ‖2 + βσ ≤ (γc
(t)
2 + β)σ = c

(t+1)
2 σ, where γ < 1. From the

proof we can see that it is not necessary to reach the global optimum in Step 1, we only need to find a feasible

point whose `p-norm is small enough.

December 8, 2022 DRAFT



10

Remark 4. The results of Theorems 1, 2 and 3 can be easily extended to establish the estimators’ closeness to the

average of the datapoints before corruption, µ̃ = 1
n

n∑
i=1

ỹi, using the fact that µ̃ is close to µ, which is shown in the

Appendix (see (32)). We obtain the following extension to the above theorems with the same probability guarantees:

‖x̂− µ̃‖2 ≤ ‖x̂− µ‖2 + σ

√
d

nδ
. (17)

Moreover, it can be also shown that the estimators are close to the average of inliers, that are at most a distance of

σ
√

d
αδ = σ

√
nδc′1

e log(d/δ) from µ.

Remark 5. The initialization c
(0)
2 = 3

√
d + 2c1 can be replaced by a smaller value as long as it is possible to

guarantee ‖x(0) − µ‖2 ≤ c(0)
2 σ with high probability.

An important aspect of the proposed algorithm is that it does not require the true fraction of outliers ε and is still

order-optimal. To the best of our knowledge no other algorithm for our corruption model has this property.

B. Solving Step 1 of Algorithm 1

When we set p = 1 in the objective ‖h‖p in Step 1 of Algorithm 1, the resulting problem is convex, and can be

reformulated as the following packing SDP [29] with wi , 1− hi, and ei being the i-th standard basis vector in

Rn. The details can be found in the Appendix.

max
w

1>w s.t. wi ≥ 0,∀i (18)

n∑
i=1

wi

eie>i
(yi − x)(yi − x)>

 �
In×n

cnσ2Id×d


When 0 < p < 1, the equivalent objective function ‖h‖pp =

∑
i h

p
i is concave, not convex. So it may be difficult

to find its global minimum. Nevertheless, we can iteratively construct and minimize a tight upper bound on this

objective function via iterative re-weighted `2 [30], [31] or `1 techniques [32] from compressive sensing.1 And it is

well-known in compressive sensing that such iterative re-weighted approaches often performs better than `1 [32],

[30].

C. Complexity analysis

Theorem 3 guarantees that the total number of iterations of Algorithm 1 required to achieve optimality is upper

bounded by O( log d
log|ε̌| ). In each iteration, the computational complexity of Step 2 is O(nd). It follows easily from

the proof of Theorem 3, that it suffices to solve the SDP in step 1 of Algorithm 1 (with p = 1) to a constant

precision. As a result, the error is affected by a constant and thus remains order-optimal and the time complexity

is Õ(nd) parallelizable work using positive SDP solvers [33] (the notation Õ(m) hides the poly-log factors:

Õ(m) = O(m.polylog(m))). A comparison of our theoretical results with those in state-of-the-art works is given in

Table I.

1We observe that iterative re-weighted `2 achieves better empirical performance.
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If we use `p with 0 < p < 1 in Step 1, we iteratively construct and minimize a tight upper bound on the `p

objective via iterative re-weighted `2 [30], [31] or iterative re-weighted `1 techniques [32]2. Minimizing the resulting

weighted `1 objective can be also solved very efficiently to a constant precision by formulating it as a Packing SDP

(see Appendix) with computational complexity of Õ(nd) [33]. If we use iterative re-weighted `2, minimizing the

resulting weighted `2 objective is a SDP constrained least squares problem, whose computational complexity is in

general polynomial in both d and n. We will explore more efficient solutions for this objective in future work.

Algorithm Time complexity Error guarantee Breakdown point Requires ε

Tukey median [11] NP-hard O(σ
√
ε) 1

d+1
No

IF [14] Õ(nd2) O(σ
√
ε) NA Yes

GF [27] Õ(n2d) O
(
σ
√
ε

1−2ε

)
1
2

Yes

CDG [24] Õ
(
nd
ε6

)
O(σ
√
ε) 1

3
Yes

QUE [4] Õ(nd) O(σ
√
ε) NA Yes

Proposed optimization problems (`p, p ∈ [0, 1]) NA O
(
σ
√

ε
1−2ε

)
1
2

No

Proposed algorithm (p = 1) Õ(nd) O(σ
√
ε) 1− 1√

2
≈ 0.3 No

TABLE I: Theoretical comparison

IV. EMPIRICAL STUDIES

In this section, we present empirical results on the performance of Algorithm 1 and compare with the following

state-of-the-art high dimension robust mean estimation methods: Iterative Filtering (IF) [14], Generalized Filtering

(GF) [27, Algorithm 2], the method proposed in [8] (denoted as LRV), the method for bounded covariance distributions

in [24] (denoted as CDG), and Quantum Entropy Scoring (QUE) [4], which scores the outliers based on multiple

directions. We briefly discuss the implementation details of these algorithms. We implemented the QUE method by

utilizing the code provided in [4]. In [24], the authors provide a way to implement the CDG method approximately;

we provide results for an exact implementation of the CDG method. Since the number of datapoints considered in

the following simulations is less than the minimum requirement, a reasonable approach to compare the performance

of the algorithms is to tune the hyper-parameters of all algorithms to get the best possible error. For example, the

hyper-parameter c4 that appears in CDG method [24], is set to be 1.05, which produced the smallest empirical error.

The value of σ provided to the algorithms is not the theoretical value, but the empirical one (precisely, the spectral

norm of the sample covariance matrix of G∗ (see Section II)). For evaluation purposes, we report the recovery

error, which we define it as the `2 distance of the estimated mean to the oracle solution, i.e., the average of the

uncorrupted datapoints after corruption.

A. Synthetic data

We consider two experimental settings. For the first setting we follow [4]. The dimension of the data is d, and the

number of datapoints is n. The inlier datapoints are generated i.i.d. according to the standard Gaussian distribution

2We run fewer than 10 re-weighted iterations in our implementation.
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with zero mean. Randomly (uniformly) chosen ε fraction of the datapoints are replaced by outliers. For the outliers,

half of them are set to be (
√
d/2,

√
d/2, 0, ..., 0)>, and the other half are set as (

√
d/2,−

√
d/2, 0, ..., 0)>, so that

their `2 distances to the population mean (0, ..., 0)> are all
√
d, similar to that of the inlier points. These are two

clusters of outliers, and their `2 distances to the true mean x are similar to that of the inlier points. In Algorithm 1,

we set the threshold τ = 0.6, c1 = 1.1, and we initialize c(0)
2 as the `2 error of the coordinate-wise Median relative

to the true mean. We implemented the IF method for sub-Gaussian parameters [14, Theorem 3.1]. We vary the

total fraction ε of the outliers and report the average recovery error of each method over 10 trials in Table II with

d = 100, n = 1000. The proposed `1 and `0.5 methods show significant improvements over the competing methods,

and the `0.5 method performs the best.

TABLE II: Recovery error of each method under different fraction ε of the outlier points (d = 100, n = 1000)

ε IF GF QUE LRV CDG `1 `0.5

10% 0.124 0.098 0.429 0.367 0.064 0.013 0.006

20% 0.131 0.115 0.492 0.659 0.084 0.013 0.007

We also tested the performance of each method for different numbers of datapoints. The dimension of the data is

fixed to be 100. The fraction of the corrupted points is fixed to be 20%. We vary the number of datapoints from

100 to 1000, and report the average recovery error for each method over 50 trials in Table III. We can see that the

performance of all methods get better when the number of datapoints is increased. Again, our proposed methods

consistently perform better than the other methods.

TABLE III: Recovery error of each method w.r.t. different number of samples (d = 100, ε = 0.2)

n IF GF QUE LRV CDG `1 `0.5

100 0.493 0.293 1.547 1.423 0.316 0.060 0.033

200 0.313 0.239 1.038 1.084 0.198 0.036 0.021

500 0.186 0.170 0.680 0.794 0.148 0.021 0.012

1000 0.131 0.115 0.492 0.659 0.084 0.013 0.007

The second experimental setting is as follows. The dimension of the data is d, and the number of datapoints

is n. The inlier datapoints are generated i.i.d. such that each coordinate follows the Pareto distribution with scale

parameter as 1 and shape parameter as 2.5. This implies that each coordinate has bounded second moment but no

higher moments. All outliers are set to be the same vector v which is chosen as follows. Let g be the average of the

`2 norms of the datapoints. The vector v is set as (2 +
√
g/d, 2 +

√
g/d, . . . , 2 +

√
g/d)>. Randomly (uniformly)

chosen ε fraction of the datapoints are replaced by outliers. The LRV method is applicable only to cases where

distributions have bounded fourth moment, and hence is not applicable to this setting. The CDG method was not

implemented due to the high computational complexity of its implementation. We implemented the IF method

for bounded second moment parameters [14, Theorem 3.2]. We implemented Algorithm 1 with p = 1, τ = 1(no

thresholding during the iterations), c1 = 1 and c(0)
2 = 3

√
d+ 2c1. However, we threshold the last iterate h(T ) with
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threshold 0.6. We vary the total fraction ε of the outliers and report the average recovery error of each method over

100 trials in Table IV with d = 1000, n = 100000. The proposed `1 method show significant improvement over the

competing methods. We also tested the performance of each method for two different numbers of datapoints. The

dimension of the data is fixed to be 1000. The fraction of the corrupted points is fixed to be 20%. We consider the

number of datapoints to be 10000 and 100000, and report the average recovery error for each method over 100

trials in Table V. Again, the proposed method consistently perform better than the other methods.

TABLE IV: Recovery error of each method under different fraction ε of the outlier points (d = 1000, n = 100000)

ε IF GF QUE `1

10% 0.0164 0.0550 0.1096 0.0161

20% 0.0845 0.0726 0.2489 0.0190

TABLE V: Recovery error of each method w.r.t. different number of samples (d = 1000, ε = 0.2)

n IF GF QUE `1

10000 0.3027 0.0780 0.3991 0.0257

100000 0.0845 0.0726 0.2489 0.0190

B. Corrupted image dataset

Here we use a dataset of real face images to test the effectiveness of the robust mean estimation methods. The

average face of particular regions or certain groups of people is useful for many social and psychological studies [34].

Here we use 100 frontal human face images from the Brazilian face database3 as inliers. For the outliers, we choose

15 face images of cats and dogs from the CIFAR10 [35] database. In order to be able to run the CDG method [24],

we scale the size of images to 18 × 15 pixels, so the dimension of each datapoint is 270. The oracle solution is the

average of the 100 human faces. Table VI reports the recovery error, which is the `2 distance of the estimated mean

to the oracle solution, for each method. The proposed methods achieve smaller recovery error than the state-of-the-art

methods. The sample inlier and outlier images as well as the estimated mean for each method can be found in the

Appendix.

TABLE VI: Recovery error of the mean face by each method

Sample average IF LRV CDG `1 `0.5

141 63 83 81 38 46

3https://fei.edu.br/ cet/facedatabase.html

December 8, 2022 DRAFT



14

V. CONCLUSION

We formulated the robust mean estimation problems as the minimization of the `0-‘norm’ of the introduced

outlier indicator vector, under a second moment constraint on the datapoints. We further relaxed the `0 objective to

an `p (0 < p ≤ 1) objective, and theoretically justified the new objective. The proposed `0 and `p optimization

problems do not need to know ε, and still achieve information-theoretically order-optimal error bounds with optimal

breakdown points. Then we proposed a computationally tractable iterative `p(0 < p ≤ 1) minimization and hard

thresholding algorithm, which significantly outperforms state-of-the-art robust mean estimation methods, and is

order-optimal. In the empirical studies, we observed strong numerical evidence that using the `p (0 < p ≤ 1) norm

in the optimization leads to sparse solutions; theoretically justifying this phenomenon is also of interest. It is worth

noting that almost all previous polynomial-time methods (with dimension-independent error bound) need to know

ε, while our Algorithm 1 does not require to know ε. It has a maximal breakdown point of 1 − 1/
√

2, and has

near-linear time complexity for p = 1.
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VI. APPENDIX

A. Technical preliminaries

We introduce the following parameters that control the minimum number of datapoints needed, error and confidence

level. Let δ > 0, c1 > 1 and c′1 = [c21 min
{
c21 log c21 + 1− c21, 1

}
]. Let n > ed log(d/δ)

δ2c′1
and α = ed log(d/δ)

nδ2c′1
. Let

S = {ỹ1, . . . , ỹn} be a set of n datapoints drawn from a distribution P with mean µ and covariance matrix Σ � σ2I .

We now define G as the set of datapoints which are less than σ
√

d
αδ = σ

√
nδc′1

e log(d/δ) distance away from µ:

I =

{
i : ‖ỹi − µ‖2 ≤ σ

√
d

αδ

}
(19)

G = {ỹi : i ∈ I}. (20)

It follows from Lemma 4 that for the event

E1 = {|I| ≥ n− αn}, (21)

P(E1) ≥ 1− δ. (22)

Let E2 be the event:

E2 =

{
λmax

(∑
i∈I

(ỹi − µ)(ỹi − µ)>

)
≤ c21σ2n

}
. (23)

It follows from Lemma 5 that

P(E2) ≥ 1− δ. (24)

Thus, we have that

P(E1 ∩ E2) ≥ 1− 2δ. (25)

For analysis purposes, we consider the far away uncorrupted datapoints S \G as outliers also.

Let {y1, . . . ,yn} be an ε-corrupted version of the set S. Let h∗ be such that h∗i = 1 for the outliers (both far

away uncorrupted datapoints and corrupted datapoints), and h∗i = 0 for the rest of uncorrupted datapoints, i.e.,

h∗i =

1, if yi 6= ỹi or ỹi ∈ S \G

0, otherwise
(26)

Let the set of inliers be given by G∗:

I∗ = {i : h∗i = 0} (27)

G∗ = {yi : i ∈ I∗} = {ỹi : i ∈ I∗} (28)

Note that I∗ ⊆ I and G∗ ⊆ G. Since (ỹi − µ)(ỹi − µ)> is positive semi-definite (PSD), we must have

λmax

(
n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ λmax

(∑
i∈I

(ỹi − µ)(ỹi − µ)>

)
.
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This implies that {
λmax

(
n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ c21σ2n

}
⊇ E2. (29)

Then, we have:

P

{
λmax

(
n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ c21σ2n

}
≥ P(E2) ≥ 1− δ. (30)

Our intended solution is to have hi = 0 for the inlier points and hi = 1 for the outlier points.

Let x̄ and x̄∗ be the averages of datapoints in G and G∗ respectively. Applying Lemma C.2 from [27], we have

‖x̄− x̄∗‖2 ≤

√
c21σ

2

1− α
.
ε

1− ε
. (31)

We now introduce some more events (c.f. [14, Lemma A.18]):

E3 =

{∥∥∥∥∥ 1

n

n∑
i=1

(ỹi − µ)

∥∥∥∥∥
2

≤ σ
√

d

nδ

}
(32)

E4 =

{∥∥∥∥∥ 1

n

n∑
i=1

(zi − E[z1])

∥∥∥∥∥
2

≤ σ
√

d

nδ

}
, (33)

where zi = (ỹi − µ)1

{
‖ỹi − µ‖2 > σ

√
d
αδ

}
. From Lemma 4, we get that

P(E3) ≥ 1− δ, and P(E4) ≥ 1− δ. (34)

Let E be the event given by

E = E1 ∩ E2 ∩ E3 ∩ E4. (35)

Let ∆n,ξ be the set of probability vectors given by:

∆n,ξ =

{
w ∈ Rn : 0 ≤ wi ≤

1

1− ξ
,

n∑
i=1

wi = 1

}
. (36)

Let TV(., .) denote the total variation distance between probability measures.

TABLE VII: Description of variables

Variable Description

µ Mean (expected value) of population distribution

µ̃ Average of all datapoints before corruption

G Set of datapoints within σ
√

d
αδ

= σ

√
nδc′1

e log(d/δ)
of µ before corruption

G∗ Maximal subset of G which is uncorrupted by adversary

x̄ Average of vectors in G, the set of datapoints within σ
√

d
αδ

= σ

√
nδc′1

e log(d/δ)
of µ

x̄∗ Average of vectors in G∗, the set of inliers within G
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B. Technical Lemmas

Lemma 1 (Lemma 2.2 [27]). For a finite set of datapoints {yi}ni=1, let xw =
∑
i∈[n]

wiyi and Σw =
∑
i∈[n]

wi(yi −

xw)(yi − xw)> be the weighted average and weighted covariance with respect to a probability weight vector w.

Let w1 and w2 be two probability weight vectors such that TV(w1,w2) ≤ ζ. Then,

‖xw1
− xw2

‖2 ≤
(√

λmax(Σw1
) +

√
λmax(Σw2

)
)√ ζ

1− ζ
(37)

Lemma 2 (Lemma 2.3 [27]). Let w1 ∈ ∆n,ε1 and w2 ∈ ∆n,ε2 . Then

TV(w1,w2) ≤ max{ε1, ε2}
1−min{ε1, ε2}

. (38)

Lemma 3. Let P be a distribution on Rd with mean µ and covariance matrix Σ � σ2I . Let ε ≤ 1/3. Given an

ε-fraction corrupted set of n datapoints from P , the coordinate-wise median of the corrupted set, x̂, satisfies with

probability at least 1− d exp(−n/90) that

‖x̂− µ‖2 ≤ 3σ
√
d. (39)

Proof. We first show that with high probability the error in each dimension is bounded by 3σ. Fix a coordinate,

and let ỹi, yi, µ and x̂ be the component of ỹi, yi, µ and x̂ respectively in that coordinate. By Markov’s inequality,

we have

P(|ỹi − µi| ≥ 3σ) ≤ 1/9. (40)

Let bi = 1{|ỹi − µi| ≥ 3σ}. By Chernoff’s inequality, we obtain

P

(
n∑
i=1

bi ≥ n/6

)
≤ exp

(
− (0.5)2n

9(2 + 0.5)

)
= exp(−n/90). (41)

Thus with high probability more than five-sixth of the datapoints satisfy |ỹi − µi| ≤ 3σ, which implies that even

if ε ≤ 1/3 fraction of datapoints are corrupted, we would have

|x̂− µ| ≤ 3σ. (42)

Applying union bound, we get that with probability at least 1− d exp(−n/90), the error in each dimension is

bounded by 3σ and hence ‖x̂− µ‖2 ≤ 3σ
√
d holds.

Lemma 4. Let 0 < δ ≤ 1. Let E1, E3 and E4 be the events as described in (21), (32) and (33). Then,

P(E1) ≥ 1− δ, P(E3) ≥ 1− δ, and P(E4) ≥ 1− δ,

Proof. By Markov’s inequality we have
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P(|Gc| > αn) ≤ E[|Gc|]
αn

(43)

=

E

[
n∑
i=1

1

{
‖ỹi − µ‖2 > σ

√
d
αδ

}]
αn

(44)

=

P

(
‖ỹ1 − µ‖2 > σ

√
d
αδ

)
α

. (45)

Applying Markov’s inequality again, we have

P

(
‖ỹ1 − µ‖2 > σ

√
d

αδ

)
≤
αδ E

[
‖ỹ1 − µ‖22

]
σ2d

(46)

=
αδTr(E[(ỹ1 − µ)(ỹ1 − µ)>])

σ2d
(47)

≤ αδσ2d

σ2d
(48)

= αδ. (49)

Thus, we get

P(|Gc| > αn) ≤ δ (50)

P(|G| ≥ (1− α)n) ≥ 1− δ. (51)

This proves the result for E1. Applying Markov’s inequality again, we obtain

P

(∥∥∥∥∥ 1

n

n∑
i=1

(ỹi − µ)

∥∥∥∥∥
2

≤ σ
√

d

nδ

)
≤

E

[∥∥∥∥ 1
n

n∑
i=1

(ỹi − µ)

∥∥∥∥2

2

]
σ2d
nδ

(52)

=
nδ

σ2d

d∑
k=1

E
[
(µ̃k − µk)2

]
(53)

≤ nδ

σ2d
.
dσ2

n
(54)

= δ. (55)

This proves the result for E3. By similar reasoning, the result for E4 follows.

Lemma 5. Let 0 < δ ≤ 1, c1 > 1, c′1 = [c21 min
{
c21 log c21 + 1− c21, 1

}
], n > ed log(d/δ)

δ2c′1
and α = ed log(d/δ)

nδ2c′1
. Let

E2 be the event described in (23). Then

P(E2) ≥ 1− δ.

Proof. We adopt the approach in [14, Lemma A.18 (iv)]. Lemma A.19 from [14] states that the following: Let

{Xi}ni=1 be d × d positive semi-definite random matrices such that λmax(Xi) ≤ L almost surely for all i. Let

S =
n∑
i=1

Xi and M = λmax(E[S]). Then, for any θ > 0,

E[λmax(S)] ≤ (eθ − 1)M/θ + L log(d)/θ, (56)
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and for any η > 0,

P(λmax(S) ≥ (1 + η)M) ≤ d
(

eη

(1 + η)1+η

)M/L

. (57)

We apply this result by assigning Xi = (ỹi−µ)(ỹi−µ)>1

{
‖ỹi − µ‖2 ≤ σ

√
d
αδ

}
. Note that λmax(Xi) ≤ L = σ2d

αδ

for all i ∈ [n], and M ≤ nλmax(E[X1]) ≤ nσ2. We consider two mutually exclusive cases:

1) Suppose that M < e−1δc21σ
2n. Applying (56) with θ = 1, we obtain

E[λmax(S)] ≤ (e− 1)M + L log d. (58)

Applying Markov’s inequality, we obtain

P(λmax(S) ≥ c21σ2n) ≤ E[λmax(S)]

c21σ
2n

(59)

≤ (e− 1)δc21σ
2n

ec21σ
2n

+
σ2d log d

αδc21σ
2n

(60)

≤ (e− 1)δ

e
+
δ

e
(61)

= δ. (62)

The inequality in (60) follows from the assumption that M < e−1δc21σ
2n and the inequality in (61) follows from

the fact that α = ed log(d/δ)
nδ2c′1

and c′1 ≤ c21.

2) Suppose that M ≥ e−1δc21σ
2n. Applying (57) with η = c21 − 1, we obtain

P(λmax(S) ≥ c21σ2n) ≤ P(λmax(S) ≥ c21M) (63)

≤ d

(
ec

2
1−1

(c21)c
2
1

) δc21σ
2n

e . αδ
σ2d

(64)

≤ δ. (65)

The inequality in (63) follows from the fact that M ≤ nσ2, the inequality in (65) follows from the fact that

eα < (1 + α)1+α for any α > 0, and the fact that α = ed log(d/δ)
nδ2c′1

and c′1 = [c21 min
{
c21 log c21 + 1− c21, 1

}
].

Lemma 6. Given a set of points yi ∈ Rd, i = 1, . . . , n, then for any w ∈ Rn we have

xw ,

n∑
i=1

wiyi

‖w‖1
∈ arg min

x
λmax

(
n∑
i=1

wi(yi − x)(yi − x)>

)
(66)
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Proof. We have

min
x
λmax

(
n∑
i=1

wi(yi − x)(yi − x)>

)
= min

x
max

ν:‖ν‖2=1

n∑
i=1

wi〈yi − x,ν〉2 (67)

≥ max
ν:‖ν‖2=1

min
x

n∑
i=1

wi〈yi − x,ν〉2 (68)

= max
ν:‖ν‖2=1

n∑
i=1

wi〈yi − xw,ν〉2 (69)

=λmax

(
n∑
i=1

wi(yi − xw)(yi − xw)>

)
. (70)

The equality (69) follows from the fact that the minimum in the RHS of (68) is attained at xw =

n∑
i=1

wiyi

‖w‖1 .

Consequently, (66) holds.

Lemma 7. Let n > ed log(d/δ)
δ2c′1

and α = ed log(d/δ)
nδ2c′1

. Suppose ‖x−x̄∗‖2 ≤ c2σ, where x̄∗ is the average of datapoints

in G∗, defined in (28). Then on event E2 defined in (23), h∗ satisfies

λmax

(
n∑
i=1

(1− h∗i )(yi − x)(yi − x)>

)
≤ (c21 + c22)σ2n. (71)

Proof. Let I and I∗ be the sets defined in (19) and (27). We have

λmax

(
n∑
i=1

(1− h∗i )(yi − x)(yi − x)>

)
(72)

=λmax

(∑
i∈I∗

(yi − x)(yi − x)>

)
(73)

=λmax

(∑
i∈I∗

(yi − x̄∗ + x̄∗ − x)(yi − x̄∗ + x̄∗ − x)>

)
(74)

≤λmax

(∑
i∈I∗

(yi − x̄∗)(yi − x̄∗)>
)

+ λmax

(∑
i∈I∗

(x− x̄∗)(x− x̄∗)>
)

(75)

+ 2λmax

(∑
i∈I∗

(yi − x̄∗)(x̄∗ − x)>

)
(76)

=λmax

(∑
i∈I∗

(yi − x̄∗)(yi − x̄∗)>
)

+ |I∗|‖x− x̄∗‖2 + 0 (77)

≤c21σ2n+ c22σ
2n. (78)

The last inequality follows from the definition of E2 in (23) and Lemma 6.

Lemma 8. Let n > ed log(d/δ)
δ2c′1

and α = ed log(d/δ)
nδ2c′1

. Let ỹ1, . . . , ỹn be i.i.d. datapoints drawn from a distribution

with mean µ and covariance matrix Σ 4 σ2I . Let G be the set defined in (20). Let x̄ be the average of datapoints

in G. Then the following holds on the event E1 ∩ E3 ∩ E4, where the events are defined in (21), (32) and (33):

‖x̄− µ‖2 ≤ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

)
. (79)
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Proof. Note that

∥∥∥∥ |G|n (x̄− µ)

∥∥∥∥
2

(80)

=

∥∥∥∥∥ 1

n

n∑
i=1

(ỹi − µ)− 1

n

n∑
i=1

(ỹi − µ)1

{
‖ỹi − µ‖2 > σ

√
d

αδ

}∥∥∥∥∥
2

(81)

≤

∥∥∥∥∥ 1

n

n∑
i=1

(ỹi − µ)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

zi

∥∥∥∥∥
2

(82)

≤

∥∥∥∥∥ 1

n

n∑
i=1

(ỹi − µ)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

(zi − E[z1])

∥∥∥∥∥
2

+ ‖E[z1]‖2 , (83)

where zi = (ỹi − µ)1

{
‖ỹi − µ‖2 > σ

√
d
αδ

}
.

The last term is upper bounded as follows,

‖E[z1]‖2 =

∥∥∥∥∥E
[

(ỹ1 − µ)1

{
‖ỹ1 − µ‖2 > σ

√
d

αδ

}]∥∥∥∥∥
2

(84)

= max
‖v‖2=1

v>E

[
(ỹ1 − µ)1

{
‖ỹ1 − µ‖2 > σ

√
d

αδ

}]
(85)

= max
‖v‖2=1

E

[
v>(ỹ1 − µ)1

{
‖ỹ1 − µ‖2 > σ

√
d

αδ

}]
(86)

(a)
≤ max
‖v‖2=1

√√√√E[v>(ỹ1 − µ)]2P

(
‖ỹ1 − µ‖2 > σ

√
d

αδ

)
(87)

=

√√√√λmax (Σ)P

(
‖ỹ1 − µ‖2 > σ

√
d

αδ

)
(88)

(b)
≤
√
σ2αδ (89)

=σ
√
αδ. (90)

The inequality (a) follows from Cauchy-Schwarz inequality, and (b) follows from Markov’s inequality.

From (83), (22), (34), and (90), we get that on the event E1 ∩ E3 ∩ E4,

‖x̄− µ‖2 ≤ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

)
. (91)

Lemma 9. Let 0 < τ ≤ 1. Suppose h ∈ Rn such that ∀i, 0 ≤ hi ≤ 1, and ‖h‖1 ≤ εn for some ε ∈ [0, 1). Then
n∑
i=1

(1− hi)1{hi ≤ τ} ≥
(

1− ε

τ

)
n. (92)
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Proof. We first show that
n∑
i=1

1{hi > τ} ≤ εn
τ . Observe that

εn ≥
n∑
i=1

hi =

n∑
i=1

hi1{hi ≤ τ}+

n∑
i=1

hi1{hi > τ} (93)

≥ τ
n∑
i=1

1{hi > τ}. (94)

Hence, we have
n∑
i=1

1{hi > τ} ≤ εn

τ
. (95)

Consequently, we obtain
n∑
i=1

(1− hi)1{hi ≤ τ} =

n∑
i=1

(1− hi)−
n∑
i=1

(1− hi)1{hi > τ} (96)

≥
n∑
i=1

(1− hi)− (1− τ)

n∑
i=1

1{hi > τ} (97)

≥ (1− ε)n− (1− τ)εn

τ
(98)

=
(

1− ε

τ

)
n. (99)

C. Proof of Theorem 1

Proof. Let (ĥ, x̂) be a feasible pair for (3) lying in S . Note that we get a corresponding feasible pair lying in S by

only setting non-zero ĥi to be 1. With slight abuse of notation, let (ĥ, x̂) be this feasible pair.

Let ε′ , α + ε. Let ŵ = 1−ĥ
n−‖ĥ‖0

and β = ‖ĥ‖0/n. Note that ŵ ∈ ∆n,β . Consider h∗ as defined in (26). Let

x̄∗ be the average of datapoints in the set G∗ defined in (28) and let w∗ = 1−h∗
n−‖h∗‖0 . Observe that on event E1,

w∗ ∈ ∆n,ε′ . From Lemma 2, we obtain

TV(ŵ,w∗) ≤ max(β, ε′)

1−min(β, ε′)
. (100)

As a consequence of Lemma 6, on event E1 ∩ E2, we have

λmax(Σw∗) ≤ λmax

(
1

|I∗|

n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ c21σ

2n

|I∗|
≤ c21σ

2

1− ε′
(101)

λmax(Σŵ) ≤ λmax

(
1

n− ‖ĥ‖0

n∑
i=1

(1− ĥi)(yi − x̂)(yi − x̂)>

)
≤ c21σ

2n

n− ‖ĥ‖0
=

c21σ
2

1− β
. (102)

Consider the case β ≤ ε′ < 1/2. This implies TV(ŵ,w∗) ≤ ε′

1−β < 1. From Lemma 1, on event E1 ∩ E2, we get

‖x̂− x̄∗‖2 ≤

√ c21σ
2

1− ε′
+

√
c21σ

2

1− β

√ ε′

1− ε′ − β
(103)

≤ 2c1σ
√
ε′√

(1− ε′)(1− 2ε′)
. (104)
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Consider the case ε′ ≤ β < 1− ε′. This implies TV(ŵ,w∗) ≤ β
1−ε′ < 1. From Lemma 1, on event E1 ∩ E2, we

get

‖x̂− x̄∗‖2 ≤

√ c21σ
2

1− ε′
+

√
c21σ

2

1− β

√ β

1− ε′ − β
. (105)

Consequently, on the event E defined in (35), using Lemma 8, (31) and applying triangle inequality, we obtain

that with probability at least 1− 4δ

‖x̂− µ‖2 ≤ ‖x̂− x̄∗‖2 +

√
c21σ

2

1− α
.
ε

1− ε
+ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

)
.

It follows from (29) that on the event E2, E2, (h∗, x̄∗) is feasible. We also have that E1 = {|I| ≥ (1 − α)n} ⊆

{n− ‖h∗‖0 ≥ (1− ε′)n} = {‖h∗‖0 ≤ ε′n}. Note that for any globally optimal solution of (3), by setting all its

non-zero hi to be 1, we can always get corresponding feasible and globally optimal (hopt,xopt) with hopt
i ∈ {0, 1}

and xopt =

∑
{i:hopt

i
=0} yi

|{i:hopt
i =0}| (i.e., xopt is the average of the yi’s corresponding to hopt

i = 0), and the objective value

remains unchanged. Since (hopt,xopt) is globally optimal, and (h∗,µ) is feasible, we have ‖hopt‖0 ≤ ‖h∗‖0 ≤ ε′n.

Hence, (hopt,xopt) ∈ S ′ with ‖hopt‖0 ≤ ε′n.

D. Proof of Theorem 2

Proof. Let (ĥ, x̂) ∈ S ′ be a feasible pair for (4) with some 0 < p ≤ 1. We have

‖ĥ‖p ≤ ((1− ε′)n)1/p. (106)

Since 0 ≤ ĥi ≤ 1 for all i, we have[
n∑
i=1

ĥi

]1/p

≤

[
n∑
i=1

ĥpi

]1/p

≤ ((1− ε′)n)1/p. (107)

This implies the following

‖ĥ‖1 ≤ ‖ĥ‖pp ≤ (1− ε′)n (108)

‖1− ĥ‖1 ≥ n− ‖ĥ‖pp ≥ ε′n. (109)

Let ŵ = 1−ĥ
‖1−ĥ‖1

and β = ‖ĥ‖pp/n. Note that ŵ ∈ ∆n,β . Consider h∗ as defined in (26). Let x̄∗ be the average

of datapoints in the set G∗ defined in (28) and let w∗ = 1−h∗
n−‖h∗‖0 . Observe that on event E1, w∗ ∈ ∆n,ε′ . As a

consequence of Lemma 6, on event E1 ∩ E2, we have

λmax(Σw∗) ≤ λmax

(
1

|I∗|

n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ c21σ

2n

|I∗|
≤ c21σ

2

1− ε′
(110)

λmax(Σŵ) ≤ λmax

(
1

n− ‖h‖1

n∑
i=1

(1− ĥi)(yi − x̂)(yi − x̂)>

)
≤ c21σ

2n

n− ‖h‖pp
=

c21σ
2

1− β
. (111)

From Lemma 2, we obtain

TV(ŵ,w∗) ≤ max(β, ε′)

1−min(β, ε′)
. (112)
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Consider the case β ≤ ε′ < 1/2. This implies TV(ŵ,w∗) ≤ ε′

1−β < 1. From Lemma 1, on event E1 ∩ E2, we get

‖x̂− x̄∗‖2 ≤

√ c21σ
2

1− ε′
+

√
c21σ

2

1− β

√ ε′

1− ε′ − β
(113)

≤ 2c1σ
√
ε′√

(1− ε′)(1− 2ε′)
. (114)

Consider the case ε′ ≤ β < 1− ε′. This implies TV(ŵ,w∗) ≤ β
1−ε′ < 1. From Lemma 1, on event E1 ∩ E2, we

get

‖x̂− x̄∗‖2 ≤

√ c21σ
2

1− ε′
+

√
c21σ

2

1− β

√ β

1− ε′ − β
. (115)

Consequently, on the event E defined in (35), using Lemma 8, (31) and applying triangle inequality, we obtain

that with probability at least 1− 4δ

‖x̂− µ‖2 ≤ ‖x̂− x̄∗‖2 +

√
c21σ

2

1− α
.
ε

1− ε
+ σ
√
αδ

(
1 + 2

√
c′1

e log(d/δ)

)
.

Let (hopt,xopt) be an optimal solution to (4). From Lemma 6 we have that

hopt,

n∑
i=1

(1−hopt
i )yi

n∑
i=1

(1−hopt
i )

 is also an

optimal solution. Note that on the event E , we have that (h∗,µ) is a feasible pair for (4). Hence,

‖hopt‖p ≤ ‖h∗‖p ≤ (ε′n)1/p. (116)

This implies hopt,

n∑
i=1

(1− hopt
i )yi

n∑
i=1

(1− hopt
i )

 ∈ S ′. (117)

E. Proof of Theorem 3

Proof. We prove the result by the method of induction.

Let x(0) be the coordinate-wise median of the corrupted sample. It is easy to check that under the conditions

stated in Theorem 3, it follows that c3 ≤ c1 and ε ≤ (1− α)(1− ε). Note that if n ≥ 90 log
(
d
δ

)
, then by Lemma 3,

Lemma 8, (31) and triangle inequality, we have that the following holds with probability at least 1− δ:

‖x(0) − x̄∗‖2 = ‖x(0) − µ+ µ− x̄+ x̄− x̄∗‖2 (118)

≤ ‖x(0) − µ‖2 + ‖µ− x̄‖2 + ‖x̄− x̄∗‖2 (119)

≤ 3σ
√
d+ σc3 + σ

√
c21σ

2

1− α
.
ε

1− ε
≤ σ(3

√
d+ 2c1) = σc

(0)
2 . (120)

Let E ′ be the event

‖x(0) − x̄∗‖2 ≤ σc(0)
2 . (121)
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All the following statements hold on the event E ∪E ′, where E is defined in (35). Also note that P(E ∪E ′) ≥ 1−5δ,

when n ≥ max
{

90, 2e
c′1δ

2 d
}

log
(
d
δ

)
.

Suppose ‖x(t) − x̄∗‖2 ≤ c(t)2 σ and ‖h(t−1)‖pp ≤ ε′n. Let h(t) be an optimal solution to

min
h
‖h‖p (122)

s.t. λmax

(
n∑
i=1

(1− hi)(yi − x(t))(yi − x(t))>

)
≤
(
c21 + (c

(t)
2 )2

)
σ2n (123)

0 ≤ hi ≤ 1, ∀i ∈ [n]. (124)

From Lemma 7, we have that h∗ is a feasible point for the above optimization problem. Hence,

‖h(t)‖p ≤ ‖h∗‖p ≤ (ε′n)1/p. (125)

Since 0 ≤ h(t)
i ≤ 1 for all i, we have[

n∑
i=1

h
(t)
i

]1/p

≤

[
n∑
i=1

(
h

(t)
i

)p]1/p

≤ (ε′n)1/p. (126)

This implies

‖h(t)‖1 ≤ ε′n. (127)

Let w be such that

wi =
(1− h(t)

i )1{h(t)
i ≤ τ}

n∑
i=1

(1− h(t)
i )1{h(t)

i ≤ τ}
. (128)

By Lemma 9, we have that w ∈ ∆n, ε
′
τ

. Now we follow the proof of Theorem 2. Let x(t+1) =
n∑
i=1

wiyi. Observe

that w∗ ∈ ∆n,ε′ . As a consequence of Lemma 6, we have

λmax(Σw∗) ≤ λmax

(
1

|I∗|

n∑
i=1

(1− h∗i )(yi − µ)(yi − µ)>

)
≤ c21σ

2n

|I∗|
≤ c21σ

2

1− ε′
, (129)

λmax(Σw) = λmax

 1
n∑
i=1

(1− h(t)
i )1{h(t)

i ≤ τ}

n∑
i=1

(1− h(t)
i )1{h(t)

i ≤ τ}(yi − x
(t+1))(yi − x(t+1))>

 (130)

≤ λmax

 1
n∑
i=1

(1− h(t)
i )1{h(t)

i ≤ τ}

n∑
i=1

(1− h(t)
i )1{h(t)

i ≤ τ}(yi − x
(t))(yi − x(t))>

 (131)

≤ λmax

(
1

(1− ε′/τ)n

n∑
i=1

(1− h(t)
i )(yi − x(t))(yi − x(t))>

)
(132)

≤

(
c21 + (c

(t)
2 )2

)
σ2

1− ε′/τ
. (133)

From Lemma 2, we obtain

TV(w,w∗) ≤ max(ε′/τ, ε′)

1−min(ε′/τ, ε′)
=

ε′/τ

1− ε′
. (134)
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From Lemma 1, we get

‖x(t+1) − x̄∗‖ ≤ (
√
λmax(Σw) +

√
λmax(Σw∗))

√
TV(w,w∗)

1− TV(w,w∗)
(135)

≤


√√√√(c21 + (c

(t)
2 )2

)
σ2

1− ε′

τ

+

√
c21σ

2

1− ε′


√

ε′/τ

1− ε′ − ε′/τ
(136)

≤

(
(c1 + c

(t)
2 )σ√

1− ε′/τ
+

c1σ√
1− ε′

)√
ε′/τ

1− ε′ − ε′/τ
(137)

= σ(γ(ε′)c
(t)
2 + β(ε′)) (138)

≤ σ(γ(ε̌)c
(t)
2 + β(ε̌)) (139)

= σc
(t+1)
2 . (140)

We established that ‖x(t+1) − x̄∗‖2 ≤ σc
(t+1)
2 and ‖h(t)‖pp ≤ ε′n. Hence, by the principle of mathematical

induction, the result follows. It is easy to check that γ(ε̌) < 1 holds if and only if ε̌ < f(τ). Furthermore, ε̌ < f(τ)

implies ε̌ < τ . Thus, we have that

‖x(t) − x̄∗‖2 ≤ σ
(
γ(ε′)c

(t−1)
2 + β(ε′)

)
(141)

= σ

[
γ(ε′)

(
c
(0)
2 γ(ε̌)t−1 +

1− γ(ε̌)t−1

1− γ(ε̌)
β(ε̌)

)
+ β(ε′)

]
. (142)

Consequently, using Lemma 8, (31) and applying triangle inequality, we obtain that with probability at least

1− 5δ

‖x(t) − µ‖2 ≤ σ
[
γ(ε′)

(
c
(0)
2 γ(ε̌)t−1 +

1− γ(ε̌)t−1

1− γ(ε̌)
β(ε̌)

)
+ β(ε′)

]
+ c1σ

√
ε

(1− α)(1− ε)
+ c3σ.

It is easy to see that for T = 1 +
log c

(0)
2

| log γ(ε̌)| , we have

‖x(T ) − µ‖2 ≤ σ
[
γ(ε′)

(
1 +

β(ε̌)

1− γ(ε̌)

)
+ β(ε′)

]
+ c1σ

√
ε

(1− α)(1− ε)
+ c3σ = O(σ

√
ε′). (143)

F. Solving `1 objective via Packing SDP

min
h
‖h‖1 (144)

s.t. 0 ≤ hi ≤ 1,∀i,

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ cnσ2.

December 8, 2022 DRAFT



28

Define the vector w with wi , 1 − hi. Since 0 ≤ hi ≤ 1, we have 0 ≤ wi ≤ 1. Further, ‖h‖1 =
∑n
i=1 hi =∑n

i=1(1− wi) = n−
∑n
i=1 wi = n− 1>w. Therefore, solving (144) is equivalent to solving the following:

max
w

1>w (145)

s.t. 0 ≤ wi ≤ 1,∀i,

λmax

(
n∑
i=1

wi(yi − x)(yi − x)>

)
≤ cnσ2.

Then, we rewrite the constraints 0 ≤ wi ≤ 1,∀i as 0 ≤ wi, and
∑
wieie

>
i � In×n, where ei is the i-th standard

basis vector in Rn. This establishes the equivalence between (145) and (18).

G. Minimizing `p via iterative re-weighted `2

Consider `p (0 < p < 1) in Step 1 of Algorithm 1. We have the following equivalent objective:

min
h
‖h‖pp (146)

s.t. 0 ≤ hi ≤ 1,∀i,

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ cσ2n.

Note that ‖h‖pp =
∑n
i=1 h

p
i =

∑n
i=1(h2

i )
p
2 . Consider that we employ the iterative re-weighted `2 technique [30],

[31]. Then at (k + 1)-th inner iteration, we construct a tight upper bound on ‖h‖pp at h(k)2
as

n∑
i=1

[(
h

(k)
i

2) p2
+
p

2

(
h

(k)
i

2) p2−1 (
h2
i − h

(k)
i

2)]
. (147)

We minimize this upper bound:

min
h

n∑
i=1

(
h

(k)
i

2) p2−1

h2
i (148)

s.t. 0 ≤ hi ≤ 1,∀i,

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ cnσ2,

Define ui =
(
h

(k)
i

) p
2−1

, the objective in (148) becomes
∑n
i=1 u

2
ih

2
i . Define the vector w with wi , 1− hi. Since

0 ≤ hi ≤ 1, we have 0 ≤ wi ≤ 1. Further,
∑n
i=1 u

2
ih

2
i =

∑n
i=1 u

2
i (1−wi)2 =

∑n
i=1(ui−uiwi)2. So, solving (148)

is equivalent to solving the following:

min
w

n∑
i=1

(ui − uiwi)2 (149)

s.t. 0 ≤ wi ≤ 1,∀i,

λmax(

n∑
i=1

wi(yi − x)(yi − x)>) ≤ cnσ2.
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Further, define the vector z with zi , uiwi. Then solving (149) is equivalent to solving the following:

min
z
‖u− z‖22 (150)

s.t. 0 ≤ zi ≤ ui,∀i,

λmax

(
n∑
i=1

zi[(yi − x)(yi − x)>/ui]

)
≤ cnσ2.

Then, we rewrite the constraints 0 ≤ zi ≤ ui,∀i as 0 ≤ zi, and
∑n
i=1 zieie

>
i � diag(u), where ei is the i-th

standard basis vector in Rn. Finally, we can turn (150) into the following least squares problem with semidefinite

cone constraints:

min
z
‖u− z‖22 (151)

s.t. zi ≥ 0,∀i,

n∑
i=1

zi

eie>i
(yi − x)(yi − x)>/ui

 �
diag(u)

cnσ2Id×d

 .
H. Solving weighted `1 objective via Packing SDP

Consider `p (0 < p < 1) in Step 1 of Algorithm 1 (see objective (146)). If we employ iterative re-weighted `1

approach [32], [30], we need to solve the following problem:

min
h

n∑
i=1

uihi (152)

s.t. 0 ≤ hi ≤ 1,∀i,

λmax

(
n∑
i=1

(1− hi)(yi − x)(yi − x)>

)
≤ cnσ2,

where ui is the weight on corresponding hi. Define the vector w with wi , 1− hi. Since 0 ≤ hi ≤ 1, we have

0 ≤ wi ≤ 1. Further,
∑n
i=1 uihi =

∑n
i=1 ui(1− wi) =

∑n
i=1 ui −

∑n
i=1 uiwi. So, solving (152) is equivalent to

solving the following:

max
w

u>w (153)

s.t. 0 ≤ wi ≤ 1,∀i,

λmax

(
n∑
i=1

wi(yi − x)(yi − x)>

)
≤ cnσ2.

Then, we rewrite the constraints 0 ≤ wi ≤ 1,∀i as 0 ≤ wi, and
∑
wieie

>
i � In×n, where ei is the i-th standard

basis vector in Rn. Finally, we can turn (153) into the following Packing SDP:

max
w

u>w (154)

s.t. wi ≥ 0,∀i,

n∑
i=1

wi

eie>i
(yi − x)(yi − x)>

 �
In×n

cnσ2Id×d

 .
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I. Corrupted image dataset

We use real face images to test the effectiveness of the robust mean estimation methods. The average face of

particular regions or certain groups of people is useful for many social and psychological studies [34]. Here we use

100 frontal human face images from Brazilian face database4 as inliers. For the outliers, we choose 15 face images

of cat and dog from CIFAR10 [35]. In order to run the CDG method [24], we scale the size of images to 18 × 15

pixels, so the dimension of each datapoint is 270. Fig. 2 and Fig. 3 show the sample inlier and outlier images. Fig. 4

shows the oracle solution (the average of the 100 inlier human faces) and the estimated mean by each method, as

well as their `2 distances to the oracle solution. The proposed `1 and `p methods achieve smaller recovery error

than the state-of-the-art methods. The estimated mean faces by the proposed methods also look visually similar to

the oracle solution, which illustrates the efficacy of the proposed `1 and `p methods.

Fig. 2: Sample inlier human face images.

Fig. 3: Sample outlier cat and dog face images from CIFAR10.

Fig. 4: Reconstructed mean face and its recovery error by each method.

4https://fei.edu.br/ cet/facedatabase.html
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