
Private and Resource-Bounded Locally Decodable
Codes for Insertions and Deletions∗

Alexander R. Block and Jeremiah Blocki
Purdue University

Email: {block9, jblocki}@purdue.edu†

Abstract—We construct locally decodable codes (LDCs) to
correct insertion-deletion errors in the setting where the sender
and receiver share a secret key or where the channel is resource-
bounded. Our constructions rely on a so-called “Hamming-to-
InsDel” compiler (Ostrovsky and Paskin-Cherniavsky, ITS ’15 &
Block et al., FSTTCS ’20), which compiles any locally decodable
Hamming code into a locally decodable code resilient to insertion-
deletion (InsDel) errors. While the compilers were designed for
the classical coding setting, we show that the compilers still work
in a secret key or resource-bounded setting. Applying our results
to the private key Hamming LDC of Ostrovsky, Pandey, and
Sahai (ICALP ’07), we obtain a private key InsDel LDC with
constant rate and polylogarithmic locality. Applying our results
to the construction of Blocki, Kulkarni, and Zhou (ITC ’20),
we obtain similar results for resource-bounded channels; i.e., a
channel where computation is constrained by resources such as
space or time.

I. INTRODUCTION

Error-correcting codes that are resilient to insertion-deletion
(InsDel) errors have been a major focus in recent advances in
coding theory [Lev66, KLM04, GW17, HS17, GL19, GL18,
HSS18, HS18, BGZ18, CJLW18, CHL+19, CJLW19, HRS19,
Hae19, SB19, CGHL20, CL20, GHS20, LTX20]. Such codes
are a generalization of classical Hamming codes to handle the
case where symbols at arbitrary positions in the codeword can
be inserted or deleted. Insertion-deletion codes over alphabet
Σ are described by an encoding function Enc : Σk → ΣK and
decoding function Dec : Σ∗ → Σk such that for a message
x ∈ Σk, if y′ ∈ Σ∗ such that the edit distance between
Enc(x) and y′ is at most 2ρK, then Dec(y′) = x. A core
research direction is building codes with high information rate
k/K that are robust to a large constant fraction ρ of insertion-
deletion errors. Only recently have efficient (i.e., polynomial
time encoding and decoding) InsDel codes with asymptotically
good (i.e., constant) information rate and error tolerance been
well-understood [HS18, Hae19, HRS19, LTX20, GHS20].

Even less understood are locally decodable codes for in-
sertions and deletions: such error-correcting codes admit su-

∗Full-version of the work with the same title published at ISIT 2021,
available at https://doi.org/10.1109/ISIT45174.2021.9518249. ©2021 IEEE.
Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes,creating
new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

†Jeremiah Blocki was supported in part by NSF CNS #1704587, NSF CNS
#1755708 and NSF CCF #1910659. Alexander R. Block was supported in part
by NSF CCF #1910659.

per efficient (e.g., polylogarithmic time) decoding algorithms
which, by querying few locations into a received word, can
recover portions of the original message. Inspired by locally
decodable codes (LDCs) for Hamming errors [STV99, KT00],
Ostrovsky and Paskin-Cherniavsky [OPC15] introduced the
notion of locally decodable InsDel codes (InsDel LDC). A
code C[K, k] = (Enc,Dec) is an (ℓ, ρ, p)-InsDel LDC if the
decoding function Dec is a randomized algorithm that makes
at most ℓ queries to the received word and, if the edit distance
between an encoded message Enc(x) and a received word
y′ is at most 2ρ · |Enc(x)|, then Dec on input i outputs xi

with probability at least p. Here, ℓ is the locality of the
code, ρ is the error rate, and p is the success probability.
While LDCs for Hamming errors have been studied for several
decades [KW03, Yek08, Efr09, DGY10, Yek12, KS16, KM-
RZS17], the study of InsDel LDCs is scarce. Besides the
results of Ostrovsky and Paskin-Cherniavsky [OPC15] and
Block et al. [BBG+20], only Haeupler and Shahrasbi [HS18],
to the best of our knowledge, consider locality in the building
of synchronization strings, which are an important component
of optimal InsDel codes.

Ostrovsky and Paskin-Cherniavsky [OPC15] and Block
et al. [BBG+20] both give a so-called “Hamming-to-InsDel”
compiler: given any classical Hamming LDC as input, this
compiler outputs an InsDel LDC. This reduction preserves the
information rate and the error rate of the original Hamming
LDC (up to constant factors), and the locality only grows
by a polylogarithmic factor (in the length of a codeword).
Note this reduction holds for any classical Hamming LDC.
However, there have been recent advances in examining
Hamming LDCs in non-classical [OPS07, CLZ20, BKZ20]
or relaxed [BGGZ19] settings. For example, there is a line
of work studying Hamming codes in which the channel is
computationally bounded [Lip94, MPSW05, GS16, SS16]. In
such settings the corruption pattern is selected adversarially by
a resource bounded channel (e.g., the channel is probabilistic
polynomial time), or has other resource constraints such as
space or computation depth (i.e., sequential time), restricting
the computations that can be performed. It has been argued
that any real world communication channel can be reasonably
modeled as a resource-bounded channel [Lip94, BKZ20].
The notion of resource-bounded channels is well-motivated
by channels in the real world, which all have some sort of
limitations on their computations, and one can reasonably
expect error patterns encountered in nature to be modeled by

ar
X

iv
:2

10
3.

14
12

2v
4

 [
cs

.I
T

]
 2

1
Se

p
20

21

https://doi.org/10.1109/ISIT45174.2021.9518249

some (not necessarily known) probabilistic polynomial time
algorithm. Thus, the study of Hamming and InsDel codes in
non-classical and relaxed settings is well-motivated.

Mirroring the Hamming code results, the non-classical and
relaxed settings offer much better tradeoffs than classical
LDCs, at the cost of different assumptions in the adversarial
models, or by allowing the decoder to fail on a small fraction
of inputs. For example, codes constructed using secret-key
cryptography (i.e., the encoder and decoder share a secret
key) admit constant-rate Hamming LDCs with polylogarithmic
locality (in the security parameter) [OPS07]. Similarly, when
assuming the adversarial channel is resource-constrained in
some way (e.g., the channel is a low-depth circuit), there are
constructions of constant-rate Hamming LDCs with polyloga-
rithmic locality [BKZ20]. Further, it is not out of the question
for a shared secret-key assumption, and it has been argued
that resource-constrained adversarial channels can model real-
world channels reasonably well [Lip94, BKZ20]. Thus we ask

Can we extend non-classical Hamming LDCs to the
insertion-deletion setting?

A. Our Results

We answer the question in the affirmative for two classes
of non-classical Hamming LDCs. First, we consider private
locally decodable codes (private LDCs). Introduced by Ostro-
vsky, Pandey, and Sahai [OPS07], private LDCs leverage cryp-
tographic assumptions to construct locally decodable Ham-
ming codes against probabilistic polynomial time adversaries.
In particular, private LDCs leverage a (pseudorandom) secret
key that is shared between the encoder and the decoder,
and assumes that any adversary does not receive this secret
key. These codes are additionally parameterized by a security
parameter λ and a secret key generation function Gen. Second,
we consider Hamming LDCs that are secure against resource-
bounded adversaries. Blocki, Kulkarni, and Zhou [BKZ20]
introduce resource-bounded LDCs as an extension of clas-
sical Hamming codes in resource-bounded settings [Lip94,
MPSW05, GS16, SS16]. These LDCs are secure against any
class of adversaries C that admit some safe function that is
uncomputable by any adversary A ∈ C. For example, in the
(parallel) random oracle model any polynomial time algorithm
running in sequential time T provably cannot evaluate the
function HT+1(·) so the function would be a safe function
against the class C of probabilistic polynomial time algorithms
with sequential time at most T .

We obtain a binary private InsDel LDC from any private
Hamming LDC and a binary resource-bounded InsDel LDC
from any resource-bounded Hamming LDC by applying the
Hamming-to-InsDel compiler of Block et al. [BBG+20].

Informal Theorem 1 (see Theorem 1): Let C[K, k] be an
(ℓ, ρ, p)-private Hamming LDC. There exists a binary (ℓ ·
polylog(K),Θ(ρ), O(p))-private InsDel LDC with codeword
length Θ(K).

Ostrovsky, Pandey, and Sahai [OPS07] construct a private
Hamming LDC over any constant-sized alphabet that achieves

constant-rate, ω(log(λ)) locality, constant error rate, and suc-
cess probability 1 − negl(λ), where λ is the security param-
eter and negl(·) = o(1/|p(·)|) for any non-zero polynomial
p. Combining [OPS07] with Informal Theorem 1 yields a
constant-rate private InsDel LDC with polylogarithmic locality,
constant error rate, and high success probability.

Informal Theorem 2 (see Theorem 2): Let C[K, k] be an
(ℓ, ρ, p)-Hamming LDC secure against class C. There exists a
binary (ℓ·polylog(K),Θ(ρ), O(p))-InsDel LDC secure against
class C with codeword length Θ(K).

Blocki, Kulkarni, and Zhou [BKZ20] recently construct a
Hamming LDC over any constant-sized alphabet, in the ran-
dom oracle model (i.e., the encoding and decoding functions
make use of a cryptographic hash function), that achieves
constant-rate, polylog(λ) locality, constant error rate, and
success probability 1 − negl(λ), for security parameter λ. In
the random oracle model their construction provably yields
a secure code for any channel class C admiting a safe
function. Combining [BKZ20] with Informal Theorem 2 yields
a constant rate InsDel LDC secure against class C with
polylogarithmic locality, constant error rate, and high success
probability.

B. Technical Overview

The key technical component of our constructions is the
use of a “Hamming-to-InsDel” compiler [OPC15, BBG+20]
which transforms any classical Hamming LDC to an InsDel
LDC with polylogarithmic blow-up in the locality. The com-
piler of Block et al. [BBG+20] is a reproving of Ostrovsky
and Paskin-Cherniavsky’s result, using different techniques
and analysis. For simplicity, we use the compiler of Block
et al. in this work, which we refer to as the BBGKZ compiler.

The BBGKZ compiler at its core consists of two functions:
Compile and RecoverBit. The function Compile takes as
input a codeword y ∈ ΣK that is resilient to ρ-fraction
of Hamming errors and outputs a codeword Y ∈ {0, 1}n
that is resilient to ρ′-fraction of insertion-deletion errors. The
compiled encoding function operates as follows: it encodes
a message x using the given Hamming LDC to obtain the
Hamming codeword y, then it applies the function Compile

to y and outputs the final InsDel codeword Y . The function
RecoverBit, when given query access to some Y ′ ∈ {0, 1}∗,
on input i makes polylog(|Y ′|) queries to Y ′ and attempts
to recover yi, the ith bit of the Hamming codeword y. The
BBGKZ compiler guarantees that if ED(Y, Y ′) ≤ ρ′ then for
most indices i ∈ [K], RecoverBit outputs the correct bit yi
with high probability.

The challenge in applying the BBGKZ compiler to a private
Hamming LDC or a resource-bounded LDC is that we cannot
assume that decoding will be correct for every corrupted
codeword with small Hamming distance. Instead, we require
that the channel cannot produce a codeword which fools
the decoding algorithm except with negligible probability. In
particular, if y is our encoding of a message x then we say
that a corrupted codeword y′ fools the decoder if:

2

1) the (Hamming/Edit) distance between y and y′ is small;
and

2) for some index i, the probability that the local decoder,
given oracle access to y′, outputs the correct bit xi is less
than p.

The security requirement is that any adversary A produces
such a fooling codeword y′ with probability at most ε. The
difficulty here is proving that applying the BBGKZ compiler
to a private code or resource-bounded code preserves the
security of the underlying code. Proving the security of our
compiled private/resource-bounded code lies in the algorithm
RecoverBit: given an adversary A against the compiled
InsDel code, we construct a new adversary A′ against the
original Hamming code which does the following:

1) obtains challenge message x and Hamming codeword y;
2) obtains InsDel codeword Y = Compile(y);
3) obtains Y ′ ← A(x, Y); and
4) obtains y′j ← RecoverBitY

′
(j) for all j.

Applying the key property of RecoverBit one can show
that the Hamming distance between y and y′ is suitably
small. Furthermore, if Y ′ fools our local InsDel decoder
then one can argue that (w.h.p.) y′ fools our local Hamming
decoder. Thus, the compiler transforms secret key Hamming
LDCs into secret key InsDel LDCs and resource bounded
Hamming LDCs into resource bounded InsDel LDCs. For
resource bounded channels, there is another subtlety we must
account for. Our Hamming adversary A′ requires slightly
more resources than the original InsDel adversary A; i.e., we
need to run RecoverBit for each index j (though this can
be accomplished in parallel to minimize computation depth).
Thus, to obtain an InsDel LDC secure against the channel
class C we need to start with a Hamming LDC secure against
a slightly larger class C′.

C. Related Work

Levenstein [Lev66] initiated the study of codes for inser-
tions and deletions. Since this initiation, there has been a
large body of works examining InsDel codes (see surveys
[Slo02, Mit08, MBT10]). Recently, [SB19] constructed k-
deletion correcting binary codes with optimal redundancy,
which was extended to systematic binary codes and q-ary
codes in [SGB20a, SGB20b]. This line of work answered
long standing open problems in the construction of k-deletion
correcting codes with optimal redundancy. Random codes with
positive information rate and correcting a large fraction of
deletion errors were studied in [KLM04, GW17], and effi-
ciently encodable and decodable codes with constant rate and
resilient to a constant fraction of insertion-deletion errors were
studied extensively in [SZ99, GW17, HS17, CJLW18, HS18,
CHL+19, GL19, BGZ18, CGHL20, CL20, GHS20]. Recently,
there has been interest in extending “list-decoding” to the
setting of InsDel codes. These codes are resilient to a larger
fraction of insertion-deletion errors at the cost of outputting
a small list of potential codewords (i.e., the loss of unique
decoding) [HSS18, LTX20, GHS20]. Another direction due to

Haeupler and Shahrasbi [HS18] involves constructing explicit
synchronization strings which can be “locally decoded” in the
following sense: each index of the string can be computed
using values located at a small number of other indices.
These explicit and locally decodable synchronization strings
are used to imply near linear time interactive coding schemes
for insertion-deletion errors.

Cheng, Li and Zheng [CLZ20] propose the notion of
locally decodable codes with randomized encoding, in both
the Hamming and edit distance regimes. They study such
codes in various settings, including where the encoder and
decoder share randomness, or the channel is oblivious to the
codeword, and hence adds error patterns non-adaptively. For
insertion-deletion errors they obtain codes with K = O(k) or
K = k · log(k) and polylog(k) locality for message length k.

Blocki, Gandikota, Grigorescu, and Zhou [BGGZ19] con-
struct relaxed locally correctable and locally decodable Ham-
ming codes in computationally bounded channels. Here, local
correction states that a corrupt codeword c′ can be corrected
to codeword c by only querying c′ at a bounded number of
locations, and relaxed means that the correcting or decoding
algorithm is allowed to output the value ⊥ for a small fraction
of inputs. Their construction requires a public parameter setup
for a collision-resistant hash function, and they obtain relaxed
binary locally correctable and decodable Hamming codes
with constant information rate and polylogarithmic locality.
Recently, Blocki, Kulkarni, and Zhou [BKZ20] introduced
Hamming LDCs that are secure against resource-bounded
adversaries, in the random oracle model. Here, they construct
codes (in the random oracle model) which are resilient to
classes of adversaries C for which there exists a function f
that is uncomputable by any A ∈ C. They obtain explicit
Hamming LDCs with constant information rate and polyloga-
rithmic locality against various classes C of resource-bounded
adversaries.

II. PRELIMINARIES

We let λ ∈ N denote the security parameter. For n ∈ Z+,
we let [n] denote the set {1, 2, . . . , n}. A function ϑ : N →
R≥0 is said to be negligible if ϑ(n) = o(1/|p(n)|) for any
fixed non-zero polynomial p. We write PPT as a shorthand for
probabilistic polynomial time. For any (randomized) algorithm
A, we let y ← A(x) denote the result of running A on some
input x.

We consider the fractional Hamming distance and the frac-
tional Edit Distance metrics, which we denote by HAM and
ED, respectively. For two strings x, y ∈ ΣK for some K, we
define HAM(x, y) := |{i : xi ̸= yi}i∈[K]|/K. For two strings
x ∈ ΣK and y ∈ Σ∗, we define ED(x, y) is the minimum
number of insertions and deletions required to transform x
into y (or vice versa), normalized by 2K.

Definition 1 (Error-correcting Codes): A coding scheme
C[K, k, q1, q2] = (Enc,Dec) is a pair of encoding and decod-
ing algorithms Enc : Σk

1 → ΣK
2 and Dec : Σ∗

2 → Σk
1 , where

|Σi| = qi. A code C[K, k, q1, q2] is a (ρ, dist) error-correcting
code for ρ ∈ [0, 1] and fractional distance dist if for all x ∈ Σk

1

3

and y ∈ Σ∗
2 such that dist(Enc(x), y) ≤ ρ, we have that

Dec(y) = x. Here, ρ is the error rate of C. If q1 = q2, we
simply denote this by C[K, k, q1]. If dist = HAM, then C is a
Hamming code; if dist = ED, then C is an insertion-deletion
code (InsDel code).

Definition 2 (Locally Decodable Codes): A coding scheme
C[K, k, q1, q2] = (Enc,Dec) is an (ℓ, ρ, p, dist)-locally de-
codable code (LDC) if for all x ∈ Σk

1 and y ∈ Σ∗
2 such that

dist(Enc(x), y) ≤ ρ, the algorithm Dec, with query access to
word y, on input index i ∈ [k], makes at most ℓ queries to y
and outputs xi with probability at least p over the randomness
of the decoder. Here, ℓ is the locality of C and p is the success
probability.

Private locally-decodable codes were introduced by Ostro-
vsky, Pandey, and Sahai [OPS07]. The encoding and decoding
algorithms of these codes additionally share a secret key that
is hidden from any adversarial channel. Intuitively, these codes
ensure that (except with small probability) any channel who
does not have the secret key will fail to produce a corrupted
codeword y′ which fools the local decoder.

Definition 3 (One-Time Private LDC): Let λ be the security
parameter. A code C[K, k, q1, q2, λ] consisting of a tuple of
PPT algorithms (Gen,Enc,Dec) is a (ℓ, ρ, p, ε,dist)-one time
private locally decodable code (private LDC) if:

• Gen(1λ) is the key generation algorithm that takes 1λ as
input and outputs a secret key sk ∈ {0, 1}∗, for security
parameter λ;

• Enc : Σk
1 ×{0, 1}

∗ → ΣK
2 is the encoding algorithm that

takes as input a message x ∈ Σk
1 and a secret key sk and

outputs a codeword y ∈ ΣK
2 ; and

• Decy
′
: {0, 1}log k × {0, 1}∗ → Σ1 is the decoding algo-

rithm that takes as input index i ∈ [k] and secret key
sk, and is additionally given query access to a corrupted
codeword y′ ∈ ΣK′

2 and outputs b ∈ Σ1 after making at
most ℓ queries to y′.

We define a predicate Fool(y′, ρ, p, sk, x, y) = 1 if and only if

1) dist(y, y′) ≤ ρ; and
2) ∃i ∈ [k] such that Pr[Decy

′
(i, sk) = xi] < p, where the

probability is taken over the random coins of Dec.
We require that for all adversaries A and all x ∈ Σk

1 ,

Pr[Fool(A(y), ρ, p, sk, x, y) = 1] ≤ ε,

where y ← Enc(x, sk) and the probability is taken over
the random coins of A and Gen and Enc (if encoding is
randomized).

For all of our code definitions, when q2 = 2 we say that
the code is a binary code.

A. Codes for Resource-Bounded Channels

Recently, Blocki, Kulkarni, and Zhou [BKZ20] studied
error-correcting codes against channels which have some re-
source bound; e.g., the channel is a low-depth circuit, or is a
one-tape Turing machine. Intuitively, these codes ensure that
(except with small probability) any adversary with insufficient

resources will fail to produce a corrupt codeword y′ which
fools the local decoder.

Definition 4 (C-secure LDC): A code C[K, k, q1, q2] =
(Enc,Dec) is a (ℓ, ρ, p, ε,dist,C)-locally decodable code
against class C if Dec takes as input index i ∈ [k], is addi-
tionally given query access to a corrupted codeword y′ ∈ ΣK′

2 ,
and outputs b ∈ Σ1 after making at most ℓ queries to y′. We
define predicate Fool(y′, ρ, p, x, y) = 1 if and only if

1) dist(y, y′) ≤ ρ; and
2) ∃i ∈ [k] such that Pr[Decy

′
(i) = x1] < p,

where the probability is taken over the random coins of Dec;
otherwise Fool(y′, ρ, p, x, y) = 0. We require that for all
adversaries A ∈ C and all x ∈ Σk

1 ,

Pr[Fool(A(y), ρ, p, y) = 1] ≤ ε,

where the probability is taken over the random coins of A and
the generation of the codeword y ← Enc(x).

B. Hamming-to-InsDel Compiler

Ostrovsky and Paskin-Cherniavsky [OPC15] give a com-
piler which transforms any Hamming LDC to an InsDel
LDC with a polylogarithmic blowup in locality. Block et al.
[BBG+20] give another compiler which transforms any Ham-
ming LDC into an InsDel LDC with polylogarithmic blow-
up in locality, reproving the result of [OPC15] with different
techniques and analysis. We use the compiler of Block et al.
in this work.

Let C = (Enc,Dec) be a Hamming LDC. Then the
compiler works as follows. The compiled encoder is defined as
Encf(x) := Compile(Enc(x)) for any message x. The decoder
Decf contains a subroutine RecoverBit which, given query
access to some Y ′ ∈ {0, 1}n

′
, on input index i makes at

most O(log4(n′)) queries and with high probability recovers
the ith-bit of c correctly for most indices of c = Enc(x) as
long as ED(Y, Y ′) is sufficiently small. The decoder Decf
then runs Dec and simulates oracle access to c by using
algorithm RecoverBit. We formally capture the properties
of the compiler in the following lemma.

Lemma 1 (Block et al. [BBG+20]): There exist functions
Compile and RecoverBit such that for any constant ρ > 0
and any Hamming LDC C[K, k, q1, q2] = (Enc,Dec) with
locality ℓ, there exists ρf = Θ(ρ) such that for any message x
and any c′ with ED(c′, y) ≤ ρf for y = Compile(Enc(x)) ∈
{0, 1}∗:

1) Decf has locality ℓ·O(log4(K ·log(q2))) and |y| = Θ(K ·
log(q2));

2) For c′′ = RecoverBitY
′
(1) ◦ · · · ◦ RecoverBitY ′

(K ·
log(q2)), we have Pr[Decc

′

f (i) = xi] ≥ Pr[Decc
′′
(i) =

xi]− ϑ1(K · log(q2)); and
3) if ED(c′,Encf(x)) ≤ ρf then, except with probability

ϑ2(K · log(q2)), HAM(c′′,Enc(x)) ≤ ρ.
Here, ϑ1 and ϑ2 are fixed negligible functions, Compile is
computable in parallel time polylog(K), and c′′ is computable
in parallel time polylog(K).

4

III. ONE-TIME PRIVATE LOCALLY DECODABLE CODES
FOR INSERTION-DELETION CHANNELS

Theorem 1: Let C[K, k, q1, q2, λ] be a (ℓ, ρ, p, ε,HAM)-one
time private Hamming LDC for constants ρ, p > 0. There
exists a binary code Cf [n, k, q1, 2] that is a (ℓf , ρf , pf , εf ,ED)-
one time private InsDel LDC, where ℓf = ℓ ·O(log4(n)), ρf =
Θ(ρ), pf < p, εf = ε/(1 − (pf/p) − (ϑ1(n)/p) − ϑ2(n)),
and n = Θ(K · log(q2)). Here, ϑ1, ϑ2 are fixed negligible
functions.

Proof: Let C[K, k, q1, q2, λ] = (Gen,Enc,Dec) be a
(ℓ, ρ, p, ε,HAM)-one time private Hamming LDC. We define
Genf(1

λ) := Gen(1λ). Then for any message x and secret
key sk we define Encf(x, sk) := Compile(Enc(x, sk)). Fixing
the secret key sk and applying Lemma 1 to the encod-
ing scheme, we see that Decf has locality ℓ · O(log4(n))
and the output length of Encf is n = Θ(K log q2) bits.
The main challenge is proving the security. Suppose to-
wards contradiction that there exists an adversary Af such
that Pr[Fool(Af(Y), ρf , pf , sk, x, Y) = 1] > εf for Y ←
Encf(x, sk). Then we construct an adversary A such that
Pr[Fool(A(y), ρ, p, sk, x, y) = 1] > ε for y ← Enc(x, sk).
Adversary A works as follows:

1) A obtains as input x, y, λ, ρ, p, k, and K, where y =
Enc(x, sk);

2) A then obtains Y = Compile(y); and
3) A then obtains Y ′ ← Af(x, Y, λ, ρf , pf , k, n).

By assumption ED(Y, Y ′) ≤ ρf and with probability at least
εf there exists index i ∈ [k] such that

Pr[DecY
′

f (i, sk) = xi] < pf .

A then outputs word

y′ = RecoverBitY
′
(1) ◦ · · · ◦ RecoverBitY

′
(K · log(q2)).

Suppose that Fool(Y ′, ρf , pf , sk, x, Y) = 1. Then we have
that ED(Y, Y ′) ≤ ρf and there exists i ∈ [k] such that

Pr[DecY
′

f (i, sk) = xi] < pf .

By Lemma 1, we have that HAM(y, y′) ≤ ρ with probability
at least 1 − ϑ2(n). By definition of Decf and Lemma 1, we
have that

pf > Pr[DecY
′

f (i, sk) = xi]

≥ Pr[Decy
′
(i, sk) = xi]− ϑ1(n),

where the randomness of the second term is taken over the
coins of Dec and the coins used by RecoverBit to generate
y′, and the randomness of the first term is taken only over the
coins of Decf . Define the predicate Bp(y

′) = 1 if and only if
Pr[Decy

′
(i, sk) = xi] < p, and Bp(y

′) = 0 otherwise, where
the probability is taken over Dec’s coins. Let α = Pr[Bp(y

′)],
where the probability is taken over the random coins used to
generate y′ from Y ′. Then we have that

Pr[Decy
′
(i, sk) = xi] ≥ p(1− α).

This implies that α > 1 − (pf/p) − (ϑ1(n)/p). Now con-
sider two events FHAM = Fool(y′, ρ, p, sk, x, y) and FED =
Fool(Y ′, ρf , pf , sk, x, Y). Then

Pr[FHAM = 1] ≥ Pr[FED = 1] · Pr[FHAM = 1|FED = 1].

By assumption we have that Pr[FED = 1] > εf . Further, by
Definition 3, FHAM = 1 if and only if HAM(y, y′) ≤ ρ and
there exists i ∈ [k] such that Pr[Decy

′
(i, sk) = xi] < p. Since

FED = 1, we have that ED(Y, Y ′) ≤ ρf , and thus by Lemma 1
we have that HAM(y, y′) ≤ ρ with probability at least 1 −
ϑ2(n). Thus

Pr[FHAM = 1|FED = 1] ≥ 1− ϑ2(n)− (1− α)

and α > 1− (pf/p)− (ϑ1(n)/p). Therefore we have that

Pr[FHAM = 1] > εf · (1− (pf/p)− (ϑ1(n)/p)− ϑ2(n)),

which is a contradiction since the right hand side of the above
equation is equal to ε.

IV. LOCALLY DECODABLE CODES FOR
RESOURCE-BOUNDED INSERTION-DELETION CHANNELS

To construct LDCs for resource-bounded InsDel channels,
we first need to introduce the notion of closure between
algorithms classes. Let C be a class of parallel algorithms
running in at most sequential time T and maximum space
usage S. For any A ∈ C, let B = Reduce(A) be a reduction
from algorithm A to B. We say the class of algorithms C′ is
the closure of C with respect to Reduce if C′ is the minimum
class of algorithms such that Reduce(A) ∈ C′ for all A ∈ C.

In our context, for parameter N we define ReduceN as a
sequential time N ·polylog(N) reduction that can be executed
in parallel for sequential time polylog(N). Parallel execution
incurs an additional N · polylog(N) space overhead, and
sequential execution incurs an additional polylog(N) space
overhead. Thus, if C is the class of all parallel PPT algorithms
running in sequential time T , then C(N) is some class of
parallel PPT algorithms running in time T + polylog(N).

Theorem 2: Let C be the class of parallel PPT algo-
rithms running in sequential time T and space S, and let
C[K, k, q1, q2] = (Enc,Dec) be a (ℓ, ρ, p, ε,HAM,C(n))-LDC
for constants ρ, p > 0 and n = O(K · log(q2)). There exists a
binary code Cf [n, k, q1, 2] that is a (ℓf , ρf , pf , εf ,ED,C)-LDC
against class C, where ℓf = ℓ ·O(log4(n)), ρf = Θ(ρ), pf < p,
and εf = ε/(1 − (pf/p) − (ϑ1(n)/p) − ϑ2(n)). Here, ϑ1, ϑ2

are fixed negligible functions.
Proof: The proof follows nearly identically to the proof

of Theorem 1; namely, we obtain Cf in an identical manner
by using the compiler of Lemma 1 with the code C defined
above. The main challenge again is the security proof: given
adversary Af ∈ C such that Pr[Fool(A(Y), ρf , pf , x, Y) =
1] > εf for Y ← Encf(x), we construct an adversary
A ∈ C(n) such that Pr[Fool(A(y), ρ, p, x, y) = 1] > ε
for y ← Enc(x). Adversary A is constructed identically
as in the proof of Theorem 1, except now the constructed
adversary only yields a contradiction if we can show that
A ∈ C(n). By Lemma 1, we have that Compile is a

5

polylog(K) = polylog(n) parallel time algorithm, and y′ =
RecoverBitY

′
(1) ◦ · · · ◦ RecoverBitY ′

(K log q2) is com-
putable in polylog(n) parallel time. Finally, Compile and
RecoverBit are run independent of the adversary Af , we
have that the total parallel time of A is T +polylog(n), which
implies A ∈ C(n), yielding our contradiction.

Remark 1: We focus on a simple reduction, but Reduce

can be defined in various different ways, so long as for any
Af ∈ C, it holds that constructed adversary A ∈ C.

V. EXPLICIT CONSTRUCTIONS

As an application of our main results, we give two explicit
constructions.

A. Private InsDel Locally Decodable Code Construc

First, we use Theorem 1 with the one-time private Hamming
LDC of Ostrovsky, Pandey, and Sahai [OPS07]. For security
parameter λ and fixed negligible functions ϑ1, ϑ2, their code
has constant-rate, locality ω(log(λ)), constant error-rate, suc-
cess probability 1− ϑ1(λ), and security ε = ϑ2(λ).

Corollary 1: Let ℓf := ℓf(λ, n) = ω(log(λ) · O(log4(n)).
There exists a binary code Cf [n, k, q1, 2, λ] that is a
(ℓf , ρf , pf , εf)-one time private InsDel LDC with constant in-
formation rate k/n = Θ(1), where , ρf = Θ(1), pf = Θ(1),
and εf ≤ ς(λ, n). Here, ς is a fixed negligible function.

Both the OPS one-time private Hamming LDC and our
constructed one-time private InsDel LDC are secure against
information theoretic adversaries, so long as the secret key is
picked uniformly at random. However, it is possible to also
pick the secret key in a psuedo-random manner and obtain
security against any class of PPT adversaries, assuming the
existence of one-way functions.

Ovstrovsky, Pandey, and Sahai also give a construction of
a private locally decodable code that is secure even when
the adversary is given access to polynomially-many (in the
security parameter) codewords (i.e., it is not one-time). The
construction relies on a family of psuedo-random functions
and is therefore secure against any class of PPT adversaries,
assuming the existence of one-way functions. We emphasize
that applying our compiler on this “multi-time” private Ham-
ming code yields a secure “multi-time” private InsDel code.

Definition 5: Let λ be the security parameter. A code
C[K, k, q1, q2, λ] consisting of a tuple of PPT algorithms
(Gen,Enc,Dec) is a (ℓ, ρ, p, dist)-private locally decodable
code if:

• Gen(1λ) is the key generation algorithm that takes 1λ as
input and outputs a secret key sk ∈ {0, 1}∗, for security
parameter λ;

• Enc : Σk
1 ×{0, 1}

∗ → ΣK
2 is the encoding algorithm that

takes as input a message x ∈ Σk
1 and a secret key sk and

outputs a codeword y ∈ ΣK
2 ; and

• Decy
′
: {0, 1}log k × {0, 1}∗ → Σ1 is the decoding algo-

rithm that takes as input index i ∈ [k] and secret key
sk, and is additionally given query access to a corrupted
codeword y′ ∈ ΣK′

2 and outputs b ∈ Σ1 after making at
most ℓ queries to y′.

• Let Fool be a predicate such that Fool(y′, ρ, p, sk, x, y) =
1 if and only if 1) dist(y, y′) ≤ ρ; and 2) ∃i ∈ [k]

such that Pr[Decy
′
(i, sk) = xi] < p, where the

probability is taken over the random coins of Dec;
and Fool(y′, ρ, p, sk, x, y) = 0 otherwise. Consider the
priv-LDC-Game defined in Fig. 1. We require that for all
PPT adversaries A there exists a negligible function ε(·)
such that

Pr[priv-LDC-Game(A, C, 1λ,Fool) = 1] ≤ ε(λ).

priv-LDC-Game(A, C, 1λ,Fool) :
Input: A PPT adversary A, a locally decodable code
C[K, k, q1, q2, λ] with PPT algorithms (Gen,Enc,Dec), se-
curity parameter 1λ, and predicate Fool.

1) Obtain sk← Gen(1λ) and share sk with Enc and Dec.
Note A is not given sk.

2) For i ∈ [h], where h = poly(k) is an integer:
a) xi ← A(1λ, (x1, y1), . . . (xi−1, yi−1)).
b) yi ← Enc(xi; sk);
c) y′i ← A(1λ, (x1, y1), . . . (xi, yi)).

The output of priv-LDC-Game is 1 if there exists i ∈ [h]
such that Fool(y′i, ρ, p, sk, xi, yi) = 1; else priv-LDC-Game
outputs 0.

Fig. 1. Definition of priv-LDC-Game.

Remark 2: Definition 5 differs slightly the original definition
proposed in Ovstrovsky, Pandey, and Sahai [OPS07] in that
we allow the attacker to output a corrupted codeword y′i
in every round i ≤ h, while in [OPS07] the attacker only
attempts to corrupt the codeword in the last round. However,
the two definitions are equivalent, up to a 1/ poly(λ) loss in
the security. In particular, an attacker that breaks Definition 5
can efficiently be transformed into an attacker that breaks the
definition from [OPS07] i.e., we simply guess the index i′ ≤ h
of the first round in which the attacker is successful.

For security parameter λ, the “multi-time” private Hamming
code of [OPS07] has constant rate, locality ω(log2(λ)), con-
stant error-rate, and success probability 1− negl(λ), for some
negligible function.

Corollary 2: Assume that one-way functions exist and let
ℓf := ℓf(λ, n) = ω(log2(λ) ·O(log4(n)). There exists a binary
code Cf [n, k, q1, 2, λ] that is a (ℓf , ρf , pf)-private InsDel LDC
(as per Definition 5) with constant information rate k/n =
Θ(1), where ρf = Θ(1), and pf = Θ(1).

Remark 3: The reduction for Corollary 2 is nearly identical
to that of Theorem 1, except we must now account for poly(k)
rounds where the adversary attempts to fool the decoder. An
identical argument uses Lemma 1 to that the probability of
succeeding in each individual round of priv-LDC-Game is
negligible. Since there are only polynomially many rounds the
the probability that the attacker succeeds in any of the rounds
is still negligible.

6

B. Resoure-Bounded InsDel Locally Decodable Code Con-
struction

Next we use Theorem 2 with the resource-bounded Ham-
ming LDC of Blocki, Kulkarni, and Zhou [BKZ20] which
works for any class C that admits a safe function. A function
f : {0, 1}n → {0, 1}∗ is δ-safe for a class C of algorithms
if for all A ∈ C we have Pr[A(x) = f(x)] ≤ δ, where
the probability is taken over the random coins of A and the
selection of an input x ∈ {0, 1}n. The code construction of
[BKZ20] is in the (parallel) random oracle model, where the
encoder and decoder additionally have access to some random
oracle H. For security parameter λ and fixed negligible func-
tions ϑ1, ϑ2, their code has constant-rate, locality polylog(λ),
constant error-rate, success probability 1−ϑ1(λ), and security
ε ≤ ϑ2(λ) + q · δ, where q is an upper bound on the number
of oracle queries made by any algorithm in C.

In the (parallel) random oracle model one can provably
establish the existence of safe functions for many natural
classes of channels; e.g., space bounded or sequential time
bounded. As an example, if H : {0, 1}∗ → {0, 1}λ is a random
oracle then the function HT+1(·) is δ = q · T · 2−λ-safe
against the class of algorithms making at most q total queries
to H over at most T rounds. Similar results holds for the
classes of space-bounded or space-time bounded channels. The
class of sequentially bounded channels is motivated by the
observation that the depth of computation that the channel
performs is restricted in most natural settings; e.g., traveling
at the speed of light, it would take between 3 and 22 minutes
for a transmission from Mars to reach Earth (the exact time
would depend on the current orbital location of the planets).

Corollary 3: Let λ be a security parameter, let C be a class
of algorithms in the parallel random oracle model admitting
a δ-safe function, and let k = poly(λ). For random oracle H
there exists a binary code CH

f [n, k, 2] that is a (ℓf , ρf , pf , εf ,C)-
InsDel LDC against class C, where ℓf = polylog(λ) · log4(n′),
ρf = Θ(1), pf = Θ(1), and εf ≤ ς(λ, n′)− q · δ. Here, q is an
upper bound on the total queries any algorithm in C makes to
H, ς is a fixed negligible function, and n′ is the length of a
word received by the decoder.

Remark 4: While the construction of [BKZ20] relies on
the random oracle model we stress that this dependence is
not inherent to our results. Given any standard model con-
struction of a Hamming LDC for resource bounded channels
we could similarly obtain a standard model InsDel LDC for
resource bounded channels by applying Theorem 2. Thus, it
is plausible that one could replace the random oracle model
assumption with, for example, the assumption that time-lock
puzzles [RSW96, BN00, GMPY11, MMV11, BGJ+16] exist.

In particular, Blocki, Kulkarni, and Zhou [BKZ20] provide
serveral examples of safe functions in various models to
construct resource-bounded Hamming LDCs. These include
safe functions secure in the parallel random oracle model, safe
functions which are secure against sequential time-bounded
adversaries, and safe functions based on graphs with suffi-
ciently large pebbling costs.

REFERENCES

[BBG+20] Alexander R. Block, Jeremiah Blocki, Elena Grigorescu,
Shubhang Kulkarni, and Minshen Zhu. Locally decod-
able/correctable codes for insertions and deletions. In Nitin
Saxena and Sunil Simon, editors, 40th IARCS Annual Confer-
ence on Foundations of Software Technology and Theoretical
Computer Science, volume 182 of LIPIcs, pages 16:1–16:17.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.FSTTCS.2020.16.

[BGGZ19] J. Blocki, V. Gandikota, E. Grigorescu, and S. Zhou. Relaxed
locally correctable codes in computationally bounded chan-
nels*. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 2414–2418, 2019. doi:10.1109/
ISIT.2019.8849322.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth,
Vinod Vaikuntanathan, and Brent Waters. Time-lock puzzles
from randomized encodings. In Madhu Sudan, editor, ITCS
2016, pages 345–356. ACM, January 2016. doi:10.1145/
2840728.2840745.

[BGZ18] J. Brakensiek, V. Guruswami, and S. Zbarsky. Efficient low-
redundancy codes for correcting multiple deletions. IEEE
Transactions on Information Theory, 64(5):3403–3410, 2018.
doi:10.1109/TIT.2017.2746566.

[BKZ20] Jeremiah Blocki, Shubhang Kulkarni, and Samson Zhou. On
locally decodable codes in resource bounded channels. In
Yael Tauman Kalai, Adam D. Smith, and Daniel Wichs, editors,
ITC 2020, pages 16:1–16:23. Schloss Dagstuhl, June 2020.
doi:10.4230/LIPIcs.ITC.2020.16.

[BN00] Dan Boneh and Moni Naor. Timed commitments. In Mihir
Bellare, editor, CRYPTO 2000, volume 1880 of LNCS, pages
236–254. Springer, Heidelberg, August 2000. doi:10.1007/
3-540-44598-6_15.

[CGHL20] Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and
Xin Li. Efficient linear and affine codes for correcting inser-
tions/deletions, 2020. arXiv:2007.09075.

[CHL+19] Kuan Cheng, Bernhard Haeupler, Xin Li, Amirbehshad
Shahrasbi, and Ke Wu. Synchronization strings: Highly efficient
deterministic constructions over small alphabets. In Timothy M.
Chan, editor, 30th SODA, pages 2185–2204. ACM-SIAM, Jan-
uary 2019. doi:10.1137/1.9781611975482.132.

[CJLW18] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Determin-
istic document exchange protocols, and almost optimal binary
codes for edit errors. In Mikkel Thorup, editor, 59th FOCS,
pages 200–211. IEEE Computer Society Press, October 2018.
doi:10.1109/FOCS.2018.00028.

[CJLW19] Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block
edit errors with transpositions: Deterministic document ex-
change protocols and almost optimal binary codes. In Christel
Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, ICALP 2019, volume 132 of LIPIcs, pages
37:1–37:15. Schloss Dagstuhl, July 2019. doi:10.4230/
LIPIcs.ICALP.2019.37.

[CL20] Kuan Cheng and Xin Li. Efficient document exchange and error
correcting codes with asymmetric information, 2020. arXiv:
2007.00870.

[CLZ20] Kuan Cheng, Xin Li, and Yu Zheng. Locally decodable codes
with randomized encoding. Cryptology ePrint Archive, Report
2020/031, 2020. https://eprint.iacr.org/2020/031.

[DGY10] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching
vector codes. In 51st FOCS, pages 705–714. IEEE Computer
Society Press, October 2010. doi:10.1109/FOCS.2010.
73.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subex-
ponential length. In Michael Mitzenmacher, editor, 41st ACM
STOC, pages 39–44. ACM Press, May / June 2009. doi:
10.1145/1536414.1536422.

[GHS20] Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad
Shahrasbi. Optimally resilient codes for list-decoding from
insertions and deletions. In Konstantin Makarychev, Yury
Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, 52nd ACM STOC, pages 524–537. ACM
Press, June 2020. doi:10.1145/3357713.3384262.

7

https://doi.org/10.4230/LIPIcs.FSTTCS.2020.16
https://doi.org/10.1109/ISIT.2019.8849322
https://doi.org/10.1109/ISIT.2019.8849322
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1145/2840728.2840745
https://doi.org/10.1109/TIT.2017.2746566
https://doi.org/10.4230/LIPIcs.ITC.2020.16
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15
http://arxiv.org/abs/2007.09075
https://doi.org/10.1137/1.9781611975482.132
https://doi.org/10.1109/FOCS.2018.00028
https://doi.org/10.4230/LIPIcs.ICALP.2019.37
https://doi.org/10.4230/LIPIcs.ICALP.2019.37
http://arxiv.org/abs/2007.00870
http://arxiv.org/abs/2007.00870
https://eprint.iacr.org/2020/031
https://doi.org/10.1109/FOCS.2010.73
https://doi.org/10.1109/FOCS.2010.73
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1145/1536414.1536422
https://doi.org/10.1145/3357713.3384262

[GL18] Venkatesan Guruswami and Ray Li. Coding against deletions
in oblivious and online models. In Artur Czumaj, editor, 29th
SODA, pages 625–643. ACM-SIAM, January 2018. doi:10.
1137/1.9781611975031.41.

[GL19] V. Guruswami and R. Li. Polynomial time decodable codes for
the binary deletion channel. IEEE Transactions on Informa-
tion Theory, 65(4):2171–2178, 2019. doi:10.1109/TIT.
2018.2876861.

[GMPY11] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and
Ke Yang. Resource fairness and composability of cryptographic
protocols. Journal of Cryptology, 24(4):615–658, October 2011.
doi:10.1007/s00145-010-9080-z.

[GS16] Venkatesan Guruswami and Adam Smith. Optimal rate code
constructions for computationally simple channels. J. ACM,
63(4), September 2016. doi:10.1145/2936015.

[GW17] V. Guruswami and C. Wang. Deletion codes in the high-noise
and high-rate regimes. IEEE Transactions on Information The-
ory, 63(4):1961–1970, 2017. doi:10.1109/TIT.2017.
2659765.

[Hae19] Bernhard Haeupler. Optimal document exchange and new
codes for insertions and deletions. In David Zuckerman, editor,
60th FOCS, pages 334–347. IEEE Computer Society Press,
November 2019. doi:10.1109/FOCS.2019.00029.

[HRS19] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad
Shahrasbi. Near-linear time insertion-deletion codes and (1+ϵ)-
approximating edit distance via indexing. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 697–
708. ACM Press, June 2019. doi:10.1145/3313276.
3316371.

[HS17] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchroniza-
tion strings: codes for insertions and deletions approaching the
singleton bound. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, 49th ACM STOC, pages 33–46. ACM
Press, June 2017. doi:10.1145/3055399.3055498.

[HS18] Bernhard Haeupler and Amirbehshad Shahrasbi. Synchro-
nization strings: explicit constructions, local decoding, and
applications. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, 50th ACM STOC, pages 841–854. ACM
Press, June 2018. doi:10.1145/3188745.3188940.

[HSS18] Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan.
Synchronization strings: List decoding for insertions and dele-
tions. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel
Marx, and Donald Sannella, editors, ICALP 2018, volume 107
of LIPIcs, pages 76:1–76:14. Schloss Dagstuhl, July 2018.
doi:10.4230/LIPIcs.ICALP.2018.76.

[KLM04] Marcos Kiwi, Martin Loebl, and Jiřı́ Matoušek. Expected
length of the longest common subsequence for large alphabets.
In Martı́n Farach-Colton, editor, LATIN 2004: Theoretical In-
formatics, pages 302–311, Berlin, Heidelberg, 2004. Springer
Berlin Heidelberg.

[KMRZS17] Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi
Saraf. High-rate locally correctable and locally testable codes
with sub-polynomial query complexity. J. ACM, 64(2), May
2017. doi:10.1145/3051093.

[KS16] Swastik Kopparty and Shubhangi Saraf. Guest column: Lo-
cal testing and decoding of high-rate error-correcting codes.
SIGACT News, 47(3):46–66, August 2016. doi:10.1145/
2993749.2993761.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local
decoding procedures for error-correcting codes. In 32nd ACM
STOC, pages 80–86. ACM Press, May 2000. doi:10.1145/
335305.335315.

[KW03] Iordanis Kerenidis and Ronald de Wolf. Exponential lower
bound for 2-query locally decodable codes via a quantum
argument. In 35th ACM STOC, pages 106–115. ACM Press,
June 2003. doi:10.1145/780542.780560.

[Lev66] Vladimir Iosifovich Levenshtein. Binary codes capable of
correcting deletions, insertions and reversals. Soviet Physics
Doklady, 10(8):707–710, 1966. Doklady Akademii Nauk SSSR,
V163 No4 845-848 1965.

[Lip94] Richard J. Lipton. A new approach to information theory. In
Patrice Enjalbert, Ernst W. Mayr, and Klaus W. Wagner, editors,
STACS 94, pages 699–708, Berlin, Heidelberg, 1994. Springer
Berlin Heidelberg.

[LTX20] Shu Liu, Ivan Tjuawinata, and Chaoping Xing. On list decoding
of insertion and deletion errors, 2020. arXiv:1906.09705.

[MBT10] H. Mercier, V. K. Bhargava, and V. Tarokh. A survey of
error-correcting codes for channels with symbol synchronization
errors. IEEE Communications Surveys Tutorials, 12(1):87–96,
2010. doi:10.1109/SURV.2010.020110.00079.

[Mit08] Michael Mitzenmacher. A survey of results for deletion
channels and related synchronization channels. In Joachim
Gudmundsson, editor, Algorithm Theory – SWAT 2008, pages
1–3, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[MMV11] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-
lock puzzles in the random oracle model. In Phillip Rog-
away, editor, CRYPTO 2011, volume 6841 of LNCS, pages
39–50. Springer, Heidelberg, August 2011. doi:10.1007/
978-3-642-22792-9_3.

[MPSW05] Silvio Micali, Chris Peikert, Madhu Sudan, and David A.
Wilson. Optimal error correction against computationally
bounded noise. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 1–16. Springer, Heidelberg, February 2005.
doi:10.1007/978-3-540-30576-7_1.

[OPC15] Rafail Ostrovsky and Anat Paskin-Cherniavsky. Locally decod-
able codes for edit distance. In Anja Lehmann and Stefan Wolf,
editors, Information Theoretic Security, pages 236–249, Cham,
2015. Springer International Publishing.

[OPS07] Rafail Ostrovsky, Omkant Pandey, and Amit Sahai. Private
locally decodable codes. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP 2007,
volume 4596 of LNCS, pages 387–398. Springer, Heidelberg,
July 2007. doi:10.1007/978-3-540-73420-8_35.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock
puzzles and timed-release crypto. 1996.

[SB19] Jin Sima and Jehoshua Bruck. Optimal k-deletion correcting
codes. In 2019 IEEE International Symposium on Information
Theory (ISIT), pages 847–851, 2019. doi:10.1109/ISIT.
2019.8849750.

[SGB20a] Jin Sima, Ryan Gabrys, and Jehoshua Bruck. Optimal codes
for the q-ary deletion channel. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 740–745, 2020.
doi:10.1109/ISIT44484.2020.9174241.

[SGB20b] Jin Sima, Ryan Gabrys, and Jehoshua Bruck. Optimal sys-
tematic t-deletion correcting codes. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 769–774, 2020.
doi:10.1109/ISIT44484.2020.9173986.

[Slo02] N.J.A. Sloane. On single-deletion-correcting codes. arXiv:
Combinatorics, 2002.

[SS16] Ronen Shaltiel and Jad Silbak. Explicit List-Decodable
Codes with Optimal Rate for Computationally Bounded
Channels. In Approximation, Randomization, and Com-
binatorial Optimization. Algorithms and Techniques (AP-
PROX/RANDOM 2016), pages 45:1–45:38, 2016. URL: http:
//drops.dagstuhl.de/opus/volltexte/2016/6668, doi:10.4230/
LIPIcs.APPROX-RANDOM.2016.45.

[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom
generators without the xor lemma. In Proceedings. Four-
teenth Annual IEEE Conference on Computational Complex-
ity (Formerly: Structure in Complexity Theory Conference)
(Cat.No.99CB36317), pages 4–, 1999. doi:10.1109/CCC.
1999.766253.

[SZ99] Leonard J. Schulman and David Zuckerman. Asymptotically
good codes correcting insertions, deletions, and transpositions.
IEEE Trans. Inf. Theory, 45(7):2552–2557, 1999. doi:10.
1109/18.796406.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of
subexponential length. J. ACM, 55(1), February 2008. doi:
10.1145/1326554.1326555.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and
Trends® in Theoretical Computer Science, 6(3):139–255, 2012.
URL: http://dx.doi.org/10.1561/0400000030, doi:10.1561/
0400000030.

8

https://doi.org/10.1137/1.9781611975031.41
https://doi.org/10.1137/1.9781611975031.41
https://doi.org/10.1109/TIT.2018.2876861
https://doi.org/10.1109/TIT.2018.2876861
https://doi.org/10.1007/s00145-010-9080-z
https://doi.org/10.1145/2936015
https://doi.org/10.1109/TIT.2017.2659765
https://doi.org/10.1109/TIT.2017.2659765
https://doi.org/10.1109/FOCS.2019.00029
https://doi.org/10.1145/3313276.3316371
https://doi.org/10.1145/3313276.3316371
https://doi.org/10.1145/3055399.3055498
https://doi.org/10.1145/3188745.3188940
https://doi.org/10.4230/LIPIcs.ICALP.2018.76
https://doi.org/10.1145/3051093
https://doi.org/10.1145/2993749.2993761
https://doi.org/10.1145/2993749.2993761
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/335305.335315
https://doi.org/10.1145/780542.780560
http://arxiv.org/abs/1906.09705
https://doi.org/10.1109/SURV.2010.020110.00079
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-642-22792-9_3
https://doi.org/10.1007/978-3-540-30576-7_1
https://doi.org/10.1007/978-3-540-73420-8_35
https://doi.org/10.1109/ISIT.2019.8849750
https://doi.org/10.1109/ISIT.2019.8849750
https://doi.org/10.1109/ISIT44484.2020.9174241
https://doi.org/10.1109/ISIT44484.2020.9173986
http://drops.dagstuhl.de/opus/volltexte/2016/6668
http://drops.dagstuhl.de/opus/volltexte/2016/6668
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.45
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.45
https://doi.org/10.1109/CCC.1999.766253
https://doi.org/10.1109/CCC.1999.766253
https://doi.org/10.1109/18.796406
https://doi.org/10.1109/18.796406
https://doi.org/10.1145/1326554.1326555
https://doi.org/10.1145/1326554.1326555
http://dx.doi.org/10.1561/0400000030
https://doi.org/10.1561/0400000030
https://doi.org/10.1561/0400000030

	I Introduction
	I-A Our Results
	I-B Technical Overview
	I-C Related Work

	II Preliminaries
	II-A Codes for Resource-Bounded Channels
	II-B Hamming-to-InsDel Compiler

	III One-Time Private Locally Decodable Codes for Insertion-Deletion Channels
	IV Locally Decodable Codes for Resource-Bounded Insertion-Deletion Channels
	V Explicit Constructions
	V-A Private InsDel Locally Decodable Code Construc
	V-B Resoure-Bounded InsDel Locally Decodable Code Construction

	References

