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Abstract—Generalized Goppa codes are defined by a code
locator set L of polynomials and a Goppa polynomial G(x). When
the degree of all code locator polynomials in L is one, generalized
Goppa codes are classical Goppa codes. In this work, binary
generalized Goppa codes are investigated. First, a parity-check
matrix for these codes with code locators of any degree is derived.
A careful selection of the code locators leads to a lower bound
on the minimum Hamming distance of generalized Goppa codes
which improves upon previously known bounds. A quadratic-
time decoding algorithm is presented which can decode errors
up to half of the minimum distance. Interleaved generalized Goppa
codes are introduced and a joint decoding algorithm is presented
which can decode errors beyond half the minimum distance with
high probability. Finally, some code parameters and how they
apply to the Classic McEliece post-quantum cryptosystem are

shown.

I. INTRODUCTION

Goppa codes [1] are currently receiving renewed attention

due to their applicability in the McEliece public-key cryp-

tosystem [2], which has remained unbroken for more than 40

years. Generalized Goppa codes (GGCs) are an extension of

Goppa codes to a new class of codes which are defined by

a set of code locator polynomials and a Goppa polynomial

[3], [4]. A special class of binary GGCs which is perfect

in the weighted Hamming metric was introduced in [5] and

cyclic GGCs were investigated in [6], [7]. Recent works [8],

[9] present a construction of binary GGCs with irreducible

code locator polynomials of first and second degree.

The McEliece cryptosystem is believed to be secure against

attacks of a capable quantum computer and the Niederre-

iter’s [10] dual version of the McEliece cryptosystem is a

finalist in the ongoing post-quantum NIST competition [11]

under the name Classic McEliece [12]. Wild Goppa codes [13]

are shown to have a larger minimum distance than classical

Goppa codes and are deployed in Wild McEliece [14], which

is also part of Classic McEliece. In [9], Classic McEliece

using binary GGCs with code locator polynomials of first

and second degree is proposed. Compared to classical Goppa

codes, the length of GGCs can be increased by using higher-

degree code locators for a fixed field size or, vice versa, for

a fixed length, GGCs require a smaller field size. In practice,

performing computations over smaller field sizes reduces the
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complexity of calculations and might therefore lead to more

efficient encryption and decryption procedures. GGCs may

also be used as locally correctable codes in coded distributed

storage systems due to their local error-correction capability

on locations of different degrees. In [15] their ability to decode

localized errors and to correct more errors than classical Goppa

codes (with certain failure probability) was investigated.

In this work, we investigate binary GGCs. Our main contri-

butions are: in Section III, we derive a parity-check matrix for

GGCs with code locators of any degree, where an instance

for GGCs with degree-2 code locators is presented in [8],

[9] without proof; we provide a formal proof for the lower

bound on the minimum Hamming distance of GGCs, which

was stated in [8], [9] without proof and we show that the

lower bound for GGCs with even-degree code locators is

improved compared to the general lower bound. In Section IV

we provide an explicit decoding algorithm for GGCs and

we prove the unique decoding radius for GGCs. To deal

with burst errors, we introduce interleaved generalized Goppa

codes in Section V. We provide an explicit decoding algorithm

and derive the new maximum decoding radius for GGCs.

Moreover, we list some code parameters of GGCs and discuss

their applicability to the McEliece cryptosystem in Section VI.

II. PRELIMINARIES

We denote by [a, b] the set of integers {i|a ≤ i ≤ b} and

if a = 1, we omit it from our notation and write [b]. A finite

field of size q is denoted by Fq. Row vectors are denoted

by bold lower-case letters (e.g., c) and column vectors by

c
⊤. Denote supp(c) := {i|ci 6= 0}. Denote matrices by bold

capital letters (e.g., C) and its i-th row by c
(i). We consider

the Hamming metric for weight and distance. Sets are denoted

by calligraphic letters (e.g., L) and its size is denoted by |L|.

Let Fq[x] denote a polynomial ring with coefficients in Fq.

For a polynomial f(x), its degree is denoted by deg f(x) and

its formal derivative is denoted by f ′(x). The greatest common

divisor of two polynomials is denoted by gcd(f(x), g(x)).

Lemma 1 (Roots of Irreducible Polynomials [16, p. 52]). Let

q be a prime power. Any irreducible polynomial f(x) ∈ Fq[x]
of degree k can be represented as

f(x) = (x − β)(x − βq ) · · · (x− βqk−1

),

where β ∈ Fqk and Fqk is called the splitting field of f(x).
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Lemma 2 (Number of Irreducible Polynomials [17, p. 225]).

The number Iq(t) of irreducible polynomials of degree t over

Fq can be calculated by

Iq(t) =
1

t

∑

k|t

µ(k) · q
t
k

where µ(t) is the Möbius function (cf. [17, p. 224])

µ(t) =





1 if t = 1

(−1)s if t is a product of s distinct prime

0 otherwise.

III. BINARY GENERALIZED GOPPA CODES

We introduce a parity-check matrix of generalized Goppa

codes (GGCs) with code locators of any degree and provide a

proof of the lower bound on the minimum Hamming distance

of GGCs which is stated in [8], [9] without proof. We show

that with even-degree code locators, the lower bound can be

slightly improved.

Definition 1. Let m,n, r, q be positive integers such that

rm 6 n and q = 2m. Given a polynomial G(x) ∈ Fq[x]
of degree r and a set of irreducible polynomials

L = {f1(x), f2(x), . . . , fn(x)} (1)

with gcd(fi(x), fj(x)) = 1, ∀i 6= j, and gcd(fi(x), G(x)) =
1, ∀i ∈ [n]. Then, the binary generalized Goppa code is defined

by

Γ(L, G) :=

{
c ∈ F

n
2 |

n∑

i=1

ci
f ′
i(x)

fi(x)
= 0 mod G(x)

}
, (2)

where f ′
i(x) is the formal derivative of fi(x). We call G(x)

the Goppa polynomial and L the set of code locators1.

In the following theorem, we derive a parity-check matrix

for generalized Goppa codes with code locators of arbitrary

degree.

Theorem 1 (Parity-Check Matrix). Given a binary generalized

Goppa code Γ(L, G) as in Definition 1, where the code

locators in L are Fq-irreducible polynomials

fi(x) =

li−1∏

j=0

(
x− γqj

i

)
, ∀i ∈ [n]

of degree li, where γqj

i ∈ Fqli are the roots of fi(x). Let

r = degG(x) and n = |L|. A parity-check matrix H of

Γ(L, G) such that Hc
⊤ = 0, ∀c ∈ Γ(L, G) is

H = [h⊤
1 h

⊤
2 · · · h

⊤
n ] ∈ F

r×n
q (3)

with hi = (hi,1 hi,2 · · · hi,r), where

hi,j =

li−1∑

ι=0

γ
(j−1)qι

i

G
(
γqι

i

) , ∀i ∈ [n], j ∈ [r].

Proof: From Definition 1, requiring gcd(fi(x), G(x)) =
1 implies that the roots of fi(x) are not roots of G(x), i.e.,

1In the original definition [4], the code locators are defined by f ′

i(x)/fi(x).
For ease of notation, we define the code locators by fi(x) here.

G(γqj

i ) 6= 0, ∀j = 0, . . . , li − 1, i ∈ [n]. The inverse of a

polynomial fi(x) can be found by the extended Euclidean

(EEA) Algorithm [17, Sec. 6.4]. Denote the Goppa polynomial

by

G(x) = G0 +G1x+ · · ·+Grx
r

with Gr 6= 0. Using the EEA, we obtain

f ′
i(x)

fi(x)
mod G(x) =




li−1∏

j=0

G
(
γqj

i

)



−1

·

r−1∑

t=0

xt




r∑

k=t+1

Gk




li−1∑

j=0

γ
(k−1−t)qj

i

li−1∏

ξ=0,
ξ 6=j

G
(
γqξ

i

)






(4)

Plugging (4) into (2) and equating the coefficients of xt, ∀t ∈
[0, r − 1] to zero, it can be verified that c ∈ Γ(L, G) if and

only if GH · c⊤ = 0, where

G =




Gr 0 . . . 0
Gr−1 Gr . . . 0
...

...
. . .

...
G1 G2 . . . Gr


 .

Therefore, H̃ = GH is a parity-check matrix of Γ(L, G).

Since G is invertible, H̃ · c⊤ = 0 ⇐⇒ H · c⊤ = 0, which

proves the statement.

A binary parity-check matrix H
bin ∈ F

rm×n
2 of Γ(L, G)

can be obtained by replacing every entry in H from (3) with

a length-m column vector representation over F2 according to

some fixed basis of Fq over F2.

Theorem 2 (Dimension, Minimum Distance). Given a binary

generalized Goppa code Γ(L, G) as in Definition 1, the

dimension is

k(Γ) = n− rank(Hbin) > n− rm, (5)

where H
bin ∈ F

rm×n
2 is the F2-representation of H ∈ F

r×n
2m

from Theorem 1. The minimum Hamming distance is

d(Γ) > dg :=
r + 1

l
,

where l = maxf(x)∈L deg f(x).

Proof: It can be readily seen that Hc
⊤ = 0 ⇐⇒

H
bin

c
⊤ = 0, ∀c ∈ Γ(L, G). The dimension follows from

the size of the parity-check matrix. To prove the minimum

Hamming distance, consider a codeword c ∈ Γ. Define

Fc(x) :=
∏

i∈ supp(c)

fi(x),

where its formal derivative is denoted as

F ′
c
(x) :=

∑

i∈ supp(c)

f ′
i(x)

∏

j ∈ supp(c)
j 6=i

fj(x).

Furthermore, let

Rc(x) :=
∑

i∈ supp(c)

f ′
i(x)

fi(x)
=

F ′
c
(x)

Fc(x)
, (6)



where f ′
i(x) is the formal derivative of fi(x). Since all

fi(x) have distinct roots, gcd(F ′
c
(x), Fc(x)) = 1 and since

gcd(fi(x), G(x)) = 1, ∀i ∈ [n], gcd(Fc(x), G(x)) = 1. Then

from (6),

Rc(x) = 0 mod G(x) ⇐⇒ G(x)|F ′
c
(x).

Note that F ′
c
(x) is the formal derivative of Fc(x). Since we are

working over a field of characteristic 2, F ′
c
(x) only has even

powers and is a perfect square. Let Ḡ(x) be the lowest-degree

perfect square which is divisible by G(x), then

G(x)|F ′
c
(x) ⇐⇒ Ḡ(x)|F ′

c
(x).

Thus,

c ∈ Γ ⇐⇒ Rc(x) = 0 mod G(x)

⇐⇒ Ḡ(x)|F ′
c
(x). (7)

Denote li = deg fi(x), then degFc(x) =
∑

i∈supp(c) li and

degF ′
c
(x) 6 degFc(x)− 1 =

∑

i∈ supp(c)

li − 1. (8)

Consider a vector vm whose support supp(vm) concentrates

on the locators of the highest degree l = maxi li, then

degF ′
vm

(x) 6 wt(vm) · l − 1. (9)

Note that vm is not necessarily a codeword. Let degF ′
vm

(x)
!
>

deg Ḡ(x). We have wt(vm) > (deg Ḡ(x) + 1)/l. To have (7)

fulfilled, we require

degF ′
c
(x) > deg Ḡ(x) ∀ c ∈ Γ. (10)

Note that for any c with wt(c) < wt(vm), degF ′
c
(x) <

degF ′
vm

(x), i.e., we cannot find a codeword c with wt(c) <
wt(vm) such that degF ′

c
(x) > degF ′

vm
(x). Therefore, to

fulfill (10),

d(Γ) = min
c∈Γ

wt(c) > wt(vm)

>
deg Ḡ(x) + 1

l
>

degG(x) + 1

l
= dg.

Classical Goppa codes with a Goppa polynomial which has

only distinct roots are known as separable Goppa codes [18,

Ch. 12]. In this paper we inherit this name and call the GGCs

with a Goppa polynomial which has only distinct roots as

separable generalized Goppa codes.

Corollary 1. Given a Goppa polynomial G(x) whose roots

are all distinct, the binary separable generalized Goppa code

Γ(L, G) is the same code as Γ(L, G2) and the minimum

distance is

d(Γ) > dsep :=
2r + 1

l
. (11)

Proof: Since all roots of G(x) are distinct, Ḡ(x) = G(x)2

in the proof of Theorem 2. The statement follows herein.

The following corollary shows that with even-degree code

locators, the lower bound on the minimum distance is in-

creased by a difference of 1/l compared to (11).

Corollary 2. Given a code locator set L of even-degree

polynomials, the minimum distance of a binary separable

generalized Goppa code Γ(L, G) is

d(Γ) > deven :=
2r + 2

l
.

Proof: Since deg fi(x) is even for all fi(x) ∈ L,

degFc(x) is even. Then degF ′
c
(x) 6

∑
i∈supp(c) li− 2 in (8)

and degF ′
vm

(x) ≤ wt(vm) · l− 2 in (9) since we work over a

field of characteristic 2. Together with the separable property

from Corollary 1, the statement follows from the rest of the

proof of Theorem 2.

Compared to classical Goppa codes, the code length n of the

generalized Goppa codes is not limited by the field size q =
2m, but by the number of irreducible polynomials in F2m [x].
The result in the following theorem was stated in [8]. As a

completion to Theorem 1 and Theorem 2 for the properties of

binary generalized Goppa codes, we include it here.

Theorem 3 (Code Length [8]). Let q = 2m for some

integer m. Given a generalized Goppa code Γ(L, G). Denote

l = maxf(x)∈L deg f(x). The length of Γ(L, G) is limited by

n(Γ) 6
l∑

t=1

Iq(t), (12)

where Iq(t) is the number of irreducible polynomials of

degree t in the polynomial ring Fq[x] (see Lemma 2).

IV. DECODING OF GENERALIZED GOPPA CODES

In this section, we present an explicit decoding algorithm

for GGCs, where the decoding principle has been mentioned

in [8]. This syndrome-based decoding algorithm is also a basis

of the joint decoder for interleaved GGCs, which we present

in Section V. Moreover, we show that the unique decoding

radius for GGCs is
⌊
d
2

⌋
, which is different from the usual

form
⌊
d−1
2

⌋
for other codes by such decoding algorithm.

Definition 2. Consider a binary generalized Goppa code

Γ(L, G) and an error vector e ∈ F
n
2 where n = |L|. Let

E = supp(e). Define the syndrome polynomial

s(x) :=
∑

i∈E

ei
f ′
i(x)

fi(x)
mod G(x), (13)

the error locator polynomial (ELP)

Λ(x) :=
∏

i∈E

fi(x), (14)

and the error evaluator polynomial (EEP)

Ω(x) :=
∑

i∈E

eif
′
i(x)

∏

j∈E\{i}

fj(x). (15)

Assume transmitting a codeword c ∈ Γ(L, G) and receiving

a vector r = c + e ∈ F
n
2 . The syndrome polynomial can be

calculated from the received word r by

s(x) =

n∑

i=1

ri
f ′
i(x)

fi(x)
mod G(x). (16)

Denote s(x) =
∑r

i=1 six
r−i where s = (s1, . . . , sr) = rH̃

⊤
.

We present a syndrome-based decoder for Γ(L, G) in Al-

gorithm 1. The main step of decoding is to determine Λ(x)



and Ω(x) given s(x). In the following lemma we set up a key

equation for decoding generalized Goppa codes.

Lemma 3 (Key Equation). Consider a binary generalized

Goppa code Γ(L, G). Assume an error e of weight t occurs.

Then, the following equations hold, which are called the key

equation for decoding Γ(L, G):

Ω(x) = Λ(x)s(x) mod G(x) (17)

gcd(Λ(x),Ω(x)) = 1 (18)

deg Ω(x) < deg Λ(x) 6 t · l (19)

where l = maxf(x)∈L deg f(x).

Proof: Denote E = supp(e) and t = |E|. Eq. (17) follows

from (13), (14), and (15) since

s(x) =

∑
i∈E

eif
′
i(x)

∏
j∈E\{i}

fj(x)

∏
i∈E

fi(x)
=

Ω(x)

Λ(x)
mod G(x).

Eq. (18) holds since all fi(x) have distinct roots. From the

definitions of ELP in (14), degΛ(x) =
∑

i∈E deg fi(x) 6 t ·
maxi∈E deg fi(x) 6 t · l. From (15), degΩ(x) = deg Λ′(x) <
deg Λ(x). The degree constraints in (19) follow herein.

Theorem 4 (Unique Decoding Radius). Given a binary sep-

arable generalized Goppa code Γ(L, G) with d(Γ) > dsep,

Algorithm 1 can uniquely decode any error e of weight

t 6 tsep :=
⌊r
l

⌋
=

⌊
dsep
2

⌋
,

where r = degG(x) and l = maxf(x)∈L deg f(x).

Proof: It follows from [17, Proposition 6.3, 6.4]

that Line 2 of Algorithm 1 will find a unique solution of the

pair (λ(x), ω(x)) such that Λ(x) = c · λ(x),Ω(x) = c · ω(x)
for some constant c, if degω(x) < deg λ(x) 6 deg(G(x))/2.

At Line 3 of Algorithm 1 we search for the roots of λ(x).
They are also roots of Λ(x) if degΛ(x) = degλ(x) 6

deg(G(x))/2. Namely, the error locations can be uniquely

determined if deg Λ(x) 6 deg(G(x))/2.

Since the separable generalized Goppa code Γ(L, G) is the

same code as Γ(L, G2) according to Corollary 1, we can

apply Algorithm 1 on Γ(L, G2) to decode Γ(L, G). Then,

the degree constraint for uniquely decoding Λ(x) becomes

deg(G(x)2)/2. Thus,

degΛ(x) 6 t · l
!
6

deg(G(x)2)

2
= r.

It holds that r/l < r/l + 1/(2l) = dsep/2. In particular,

⌊r/l⌋ < ⌊r/l + 1/(2l)⌋ only if 2l|(2r+1), which is impossible

for positive integers r and l. Therefore the equality holds.

V. JOINT DECODING OF INTERLEAVED GENERALIZED

GOPPA CODES

Interleaved codes are known to be able to decode beyond the

unique decoding radius [20]–[24], especially in appearance of

burst errors. Burst errors can be modelled as an error matrix E

that only has a few non-zero columns. We denote by supp(E)
the indices of the non-zero columns of E. We present the

Algorithm 1: Syndrome-based Decoding Algorithm

Input: Code Γ(L, G), received word r ∈ F
n
2

1 Calculate s(x) by (16)

2 ω(x), , λ(x) ← EEA(G(x), s(x)) with the stopping

condition that degω(x) < degλ(x) 6 degG(x)/2
// See [17, Sec. 6.4] for EEA

3 E ← {i : λ(γi) = 0} ∗ // γi is a root of fi(x)
4 e← 0; ei ← 1, ∀i ∈ E

Output: ĉ← r − e

∗Verifying λ(γi) = 0 can be done by applying Chien Search [19] in each

splitting field F
qli

if there is an fi(x) ∈ L of degree li and we only need

to do this evaluation at one of the roots of fi(x).

explicit decoder and derive the new maximum decoding radius

for GGCs, which is different from the general form of that for

interleaved Reed-Solomon codes [23] or interleaved classical

Goppa codes [24].

Definition 3 (Interleaved Generalized Goppa Codes). Let w
be the interleaving order. Given a generalized Goppa code

Γ(L, G), a w-interleaved generalized Goppa code is denoted

by w-IΓ(L, G) and defined by

w-IΓ(L, G) :=







c
(1)

...

c
(w)


 , ∀c(i) ∈ Γ(L, G), i ∈ [w]





.

Consider transmitting a codeword C ∈ w-IΓ(L, G) with

n = |L|. An error E ∈ F
w×n
2 with E = supp(E) occurs

and we receive R = C + E. We follow the definitions

from Definition 2 for the ELP Λ(x), the syndromes s(i)(x)
and the EEPs Ω(i)(x) for E with E = supp(E).

Lemma 4 (Key Equations for Joint Decoding). The key

equations for decoding w-IΓ(L, G) in occurrence of an error

E with t non-zero columns are:

Ω(i)(x) = Λ(x)s(i)(x) mod G(x)

deg Ω(i)(x) < deg Λ(x) 6 t · l

for all i ∈ [w], where l = maxf(x)∈L deg f(x).

Instead of solving the key equations in Lemma 4 for the

Λ(x) and Ω(i)(x) which have specific algebraic structures,

we solve the following general version of this problem:

Given G(x), s(1)(x), . . . , s(w)(x) ∈ Fq[x], find a lowest-

degree polynomial λ(x) such that there exist polynomials

ω(1)(x), . . . , ω(w)(x) ∈ Fq[x], not all zero, satisfying

ω(i)(x) = λ(x)s(i)(x) mod G(x)

degω(i)(x) < deg λ(x) 6 t · l
(20)

for all i ∈ [w]. This problem can be solved by the MgLFSR

Algorithm [25], by the Feng-Tzeng Euclidean algorithm [26],

or by solving a linear system of equations (LSE) for the

unknown coefficients of λ(x) [27, Sec. 4.3.2]. We summarize

the decoding procedure in Algorithm 2.

Theorem 5 (Maximum Decoding Radius). Given a binary

interleaved separable generalized Goppa code w-IΓ(L, G)



with d(Γ) > dsep, with high probability, Algorithm 2 can

decode an error E with t non-zero columns if

t 6 tmax :=

⌊
w

w + 1
·
2r

l

⌋
6

⌊
w

w + 1
· dsep

⌋

where r = degG(x) and l = maxf(x)∈L deg f(x).

Proof: Note that the separable w-IΓ(L, G) is the same

code as w-IΓ(L, G2), therefore we can decode w-IΓ(L, G)
by applying Algorithm 2 on w-IΓ(L, G2). By setting up the

LSE for (20) according to [27, Sec. 4.3.2], we can get

deg(G(x)2)− degω(i) − 1 = deg(G(x)2)− degλ(x) (21)

equations for degλ(x) unknowns (i.e., coefficients of λ(x))
from each congruence. The unknowns are the same for ev-

ery congruence. In total we have at most w(deg(G(x)2) −
deg λ(x)) equations for degλ(x) unknowns. To have a unique

solution, the number of unknowns should not be more than the

number of equations, i.e.,

deg λ(x) 6 w(deg(G(x)2)− degλ(x)),

deg λ(x) 6
w

w + 1
deg(G(x)2). (22)

Suppose Λ(x) = c·λ(x), Ω(i)(x) = c·ω(i)(x), ∀i ∈ [w]. Then,

we can get a unique solution for Λ(x),Ω(i)(x) by Algorithm 2

if the solution for λ(x) is unique, i.e., if (22) is fulfilled. The

second inequality in the statement holds by plugging in dsep
from (11).

Corollary 3. Given a binary interleaved separable general-

ized Goppa code w-IΓ(L, G) with all code locators of even-

degree, with high probability, Algorithm 2 can decode an error

E with t non-zero columns if

t 6 t(even)max :=

⌊
w

w + 1
·
2r + 1

l

⌋
6

⌊
w

w + 1
· deven

⌋
,

where r = degG(x) and l = maxf(x)∈L deg f(x).

Proof: For only even-degree code locators, degΩ(i)(x) 6
deg Λ(x) − 2 since we work in a field of characteristic 2.

Therefore, when setting up the LSE, instead of (21), we will

have degG(x)−deg λ(x)+1 equations from each congruence.

The rest of the proof remains the same as for Theorem 5.

The maximum decoding radius t
(even)
max for interleaved sepa-

rable GGCs with even-degree code locators can be increased

by 1 upon tmax in Theorem 5 if and only if we choose the

interleaving order w such that (w + 1)|(2r + 1) and l|w.

Remark 1. Algorithm 2 may output decoding failure

if the number of errors t > tsep in Theorem 4. The failure

results from the linear dependency of equations in the LSE. An

upper bound on the failure probability of decoding interleaved

alternant codes has been recently derived in [29], which holds

for decoding interleaved GGCs with code locators of degree

one.

VI. CODE PARAMETERS

In Table I, we show some examples of code parameters

(k >, m, l, r, dsep) of binary separable Goppa codes and bi-

Algorithm 2: Decoding Algorithm for IΓ(L, G)

Input: w-IΓ(L, G), received word R ∈ F
w×n
2

1 Calculate w syndromes s(i)(x), ∀i ∈ [w] by (16)

2 Solve (20) for λ(x) by solving LSE [27],

MgLFSR [25] or Feng-Tzeng EEA [26]

3 If λ(x) is not unique Return decoding failure

4 E ← {i : λ(γi) = 0} ∗ // γi is a root of fi(x)
5 Calculate ω(i)(x) = λ(x)s(i)(x) mod G(x), ∀i ∈ [w]

6 E ← 0; denote by e
(i)
j the (i, j)-entry of E

7 foreach i ∈ [w], j ∈ E do e
(i)
j = ω(i)(γj)/λ

′(γj)
∗∗

// γj is a root of fj(x)

Output: Ĉ = R−E or decoding failure
∗Apply Chien Search [19] for fast implementation. See also in Algorithm 1.

∗∗This follows from Forney’s Algorithm [28].

nary separable generalized Goppa codes Γ(L, G(x)), denoted

by GC and GGC-l respectively, for several values of length n.

For GGCs and a fixed code length n, the degree m of

the extension field can be reduced according to (12) by

increasing the maximum degree l of the code locators in L.

By additionally fixing the degree r of the Goppa polynomial,

the lower bound on the minimum distance dsep is reduced by

the factor of l, according to Corollary 1. Keeping instead dsep
fixed, the degree r must be increased to r = ⌈(l · dsep − 1)/2⌉.
The lower bound on the dimension k is calculated by n−mr
and is therefore smaller for a higher degree of r. The specialty

of GGCs is that the code length n can be greater than the size

of the extension field.
Table I

CODE PARAMETERS FOR BINARY SEPARABLE GGCS.

Code n k > m l r dsep |pk| [bytes]

GC 3488 2720 12 1 64 129 261 120

GGC-2 3488 3040 7 2 64 64 170 240

GGC-2 3488 2585 7 2 129 129 291 782

GC 6960 5413 13 1 119 239 1 047 319
GGC-2 6960 6127 7 2 119 119 637 974

GGC-3 6960 5170 5 3 358 239 1 156 788

GC 8192 6528 13 1 128 257 1 357 824

GGC-2 8192 7296 7 2 128 128 817 152

GGC-8 8192 6528 2 8 832 208 1 357 824

Table I also shows the corresponding public key size of

Classic McEliece [12], which is the Niederreiter’s dual version

of the original McEliece cryptosystem and currently a finalist

of the NIST competition for post-quantum key encapsulation

mechanisms [11]. The cryptosystem is efficient in encoding

and decoding, but it has a large public key size, which is a

drawback in computation time and storage space. The public

key T is determined by the systematic form of Hbin =
(In−k | T) and has size |pk| = (nmr −m2r2)/8 bytes.

The complexity of all computations including the construc-

tion of a parity-check matrix (public key) can be improved by

reducing the field size with GGCs. The cost is a larger public

key size or a smaller security level, based on the Information

Set Decoding (ISD) attack by Lee and Brickell [30], whose

work factor depends on n, k, d.
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