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Abstract—A lower bound on the maximum likelihood (ML)
decoding error exponent of linear block code ensembles, on
the erasure channel, is developed. The lower bound turns
to be positive, over an ensemble specific interval of erasure
probabilities, when the ensemble weight spectral shape function
tends to a negative value as the fractional codeword weight tends
to zero. For these ensembles we can therefore lower bound the
block-wise ML decoding threshold. Two examples are presented,
namely, linear random parity-check codes and fixed-rate Raptor
codes with linear random precoders. While for the former a full
analytical solution is possible, for the latter we can lower bound
the ML decoding threshold on the erasure channel by simply
solving a 2 × 2 system of nonlinear equations.

I. INTRODUCTION

In this paper1, a lower bound on the ML decoding error

exponent of linear code ensembles when used over erasure

channels (ECs) is derived. The calculation of the bound

requires the knowledge of the ensemble weight spectral shape

only (under a relatively mild condition, as it will be discussed

later). A general lower bound on the error exponent, for any

discrete memory-less channel (DMC), was introduced [1].

Its calculation involves the evaluation of the maximum ratio

between the ensemble average weight enumerator (AWE) and

the AWE of the random linear code ensemble. The technique

of [1] was used in [2] to derive a lower bound on the ML

decoding error exponent of (expurgated) low-density parity-

check (LDPC) code ensembles [3].

The bound on the error exponent introduced in this paper

is derived from the tight union bound on the error probability

under ML decoding over the EC for linear block code en-

sembles of [4], [5]. A similar approach was followed in [6]

to obtain a lower bound on the error exponent for expurgated

LDPC code ensembles. Our work extends the result of [6]

to any linear code ensemble for which the weight spectral

shape is known, with the only requirement that the logarithm

of the AWE of the code ensemble (normalized to the block

length) converges in the block length uniformly to the weight

spectral shape. The lower bound turns out to be positive, over

an ensemble specific interval of erasure probabilities, when the

ensemble weight spectral shape function tends to a negative

value as the fractional codeword weight tends to zero. For

1A shorter version of this paper, omitting some proofs, has been submitted
to the 2019 IEEE International Symposium on Information Theory (ISIT).

the linear random code ensemble, we show that the bound on

the error exponent recovers Gallager’s random coding error

exponent [7]. The knowledge of the lower bound on the error

exponent allows obtaining a lower bound on the ensemble’s

ML erasure decoding threshold. As an example of application,

we derive a lower bound on ML erasure decoding threshold for

the ensemble of fixed-rate Raptor codes [8] introduced in [9].

Remarkably, the result is obtained by simply solving a 2 × 2
system of nonlinear equations. For the analyzed ensembles,

the bound on the error exponent derived in this paper shows

to be considerably tighter than the general bound of [1] when

the latter is specialized to the binary erasure channel (BEC).

II. PRELIMINARIES

We consider transmission of linear block codes constructed

over Fq, the finite field of order q, on a memoryless q-ary era-

sure channel (q-EC) on which each codeword symbol is cor-

rectly received with probability 1−ǫ and erased with probabil-

ity ǫ. A code ensemble is defined as a set of codes along with a

probability distribution on such codes. We denote by C(n, r, q)
a generic ensemble of linear block codes over Fq of length n
and design rate r, and by C ∈ C(n, r, q) a random code in the

ensemble. The block-wise ML decoding error probability of C

over the q-EC is indicated as PB(C, ǫ) and its expectation over

the ensemble as EC(n,r,q)[PB(C, ǫ)]. We define the ML de-

coding threshold for the ensemble C(n, r, q) over the q-EC as

ǫ∗
ML

= sup{ǫ ∈ (0, 1) : EC(n,r,q)[PB(C, ǫ)] → 0 as n → ∞}.

Our starting point is an upper bound on EC(n,r,q)[PB(C, ǫ)]
developed in [4] for binary codes and extended in [5] to non-

binary ones. We have

EC(n,r,q) [PB(C, ǫ)] ≤

n
∑

e=(1−r)n+1

(

n

e

)

ǫe(1− ǫ)n−e

+

(1−r)n
∑

e=1

(

n

e

)

ǫe(1− ǫ)n−emin

{

1,
1

q − 1

e
∑

w=1

(

e

w

)

Aw
(

n
w

)

}

(1)

where A(x) =
∑n

i=0 Aix
i is the AWE of C. Given the

AWE A(x) the growth rate of the weight distribution, or

weight spectral shape, of C(n, r, q) is defined as2 G(ω) =
limn→∞

1
n logA⌊ωn⌋.

2In this paper all logarithms are to the base 2.
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We denote the Kullback-Leibler (KL) divergence between

two Bernoulli distributions with parameters u and v, both in

(0, 1), by D(u, v) = u log u
v + (1− u) log 1−u

1−v . Moreover, we

denote by Hb(u) = −u logu− (1−u) log(1−u), 0 ≤ u ≤ 1,

the binary entropy function. Throughout the paper we make

use of the lower and upper bounds

1

n+ 1
2nHb(k/n) ≤

(

n

k

)

≤ 2nHb(k/n) (2)

on the binomial coefficient, valid for all nonnegative integers

k ≤ n. For any two pairs (x1, y1) and (x2, y2) of reals, we

write (x1, y1) � (x2, y2) when x1 ≥ x2 and y1 ≥ y2.

Recall that a sequence fn of real-valued functions on A ⊆ R

converges uniformly to the function f : A 7→ R on A0 ⊆ A
if for any ε > 0 there exists n0(ε) such that, for all n ≥
n0(ε), |fn(x) − f(x)| < ε ∀x ∈ A0. We write fn

u→ f to

indicate that fn converges to f uniformly. A necessary and

sufficient condition for uniform convergence is established by

the following lemma [10, Th. 7.10].

Lemma 1. Let limn→∞ fn(x) = f(x) ∀x ∈ A0. Then fn
u→ f

on A0 if and only if supx∈A0
|fn(x)− f(x)| → 0 as n → ∞.

The following result will also be useful.

Lemma 2. Let f, g : A ⊆ R 7→ R be bounded functions. Then
∣

∣

∣
inf
x∈A

f(x) − inf
x∈A

g(x)
∣

∣

∣
≤ sup

x∈A
|f(x)− g(x)| .

III. MAIN RESULTS

This section presents the main results of this paper. A

lower bound on the asymptotic error exponent on linear block

code ensembles over the erasure channel is first developed

in Theorem 1. Then, Theorem 2 shows how this bound

allows lower bounding ǫ∗
ML

for ensembles for which G(ω)
is continuous in (0, 1] and negative for small enough ω.

Theorem 1. Consider a linear block code ensemble C(n, r, q)
and let its weight spectral shape G(ω) be well-defined in [0, 1].
If 1

n logA⌊ωn⌋
u→ G(ω) then

lim
n→∞

−
1

n
logEC(n,r,q) [PB(C, ǫ)] ≥ EG(ǫ)

where

EG(ǫ) = inf
δ∈(0,1]

fǫ(δ) . (3)

The function fǫ(δ) is defined as

fǫ(δ) = D(δ, ǫ) + g+(δ)

where

g+(δ) = max{0, g(δ)} (4)

and

g(δ) = inf
ω∈(0,δ]

[

− δHb

(ω

δ

)

+Hb(ω)−G(ω)
]

. (5)

Proof: The proof is organized into two parts. We first

upper bound the right-hand side of (1) to obtain a lower bound

on − 1
n logEC(n,r,q) [PB(C, ǫ)]. Then we take the limit of the

lower bound as n → ∞.

1) Lower bounding − 1
n logEC(n,r,q) [PB(C, ǫ)]: The upper

bound (1) can be written in the equivalent, more compact form

EC(n,r,q) [PB(C, ǫ)]

≤

n
∑

e=1

(

n

e

)

ǫe(1 − ǫ)n−emin

{

1,
1

q − 1

e
∑

w=1

(

e

w

)

Aw
(

n
w

)

}

.

Letting w = ωn and e = δn, we have3

EC(n,r,q) [PB(C, ǫ)]

a
≤ n max

e∈{1,...,n}

[(

n

e

)

ǫe(1− ǫ)n−e

×min

{

1,
1

q − 1

e
∑

w=1

(

e

w

)

Aw
(

n
w

)

}]

b
≤ n max

e∈{1,...,n}

[(

n

e

)

ǫe(1− ǫ)n−e

×min

{

1,
e

q − 1
max

w∈{1,...,e}

((

e

w

)

Aw
(

n
w

)

)}]

= n max
δ∈{ 1

n
,...,1}

[(

n

δn

)

ǫδn(1− ǫ)n(1−δ)

×min

{

1,
δn

q − 1
max

ω∈{ 1
n
,...,δ}

((

δn

ωn

)

Aωn
(

n
ωn

)

)}]

c
≤ n max

δ∈{ 1
n
,...,1}

[

2n(Hb(δ)+δ log ǫ+(1−δ) log(1−ǫ))

×min

{

1,
δn(n+ 1)

q − 1
max

ω∈{ 1
n
,...,δ}

2n(δHb(
ω

δ
)−Hb(ω)+ log Aωn

n
)

}]

d
= n max

δ∈{ 1
n
,...,1}

[

2−nD(δ,ǫ)

×min

{

1,
δn(n+ 1)

q − 1
max

ω∈{ 1
n
,...,δ}

2n(δHb(
ω

δ
)−Hb(ω)+ log Aωn

n
)

}]

e
≤ n sup

δ∈Q∩(0,1]

[

2−nD(δ,ǫ)

×min

{

1,
δn(n+ 1)

q − 1
sup

ω∈Q∩(0,δ]

2n(δHb(
ω

δ
)−Hb(ω)+ log Aωn

n
)

}]

f
= n sup

δ∈(0,1]

[

2−nD(δ,ǫ)

×min

{

1,
δn(n+ 1)

q − 1
sup

ω∈(0,δ]

2n(δHb(
ω

δ
)−Hb(ω)+ log Aωn

n
)

}]

(6)

In the above development: ‘a’ and ‘b’ are due to
∑h

l=1 f(l) ≤
hmaxl∈N∗

h
f(l). Moreover: ‘c’ is due to application of the

upper and lower bounds in (2); ‘d’ to expanding Hb(δ) and

recalling the definition of KL divergence; ‘e’ to the fact that

the supremum over Q∩(0, 1] upper bounds the maximum over

{ 1
n , . . . , 1} and, similarly, the supremum over Q∩ (0, δ] upper

bounds the maximum over { 1
n , . . . , δ}; ‘f’ to the density of

Q. In the final expression, both δ and ω are considered as real

variables. The bound (6) is valid for any length n, rate r, and

field order q.

3For notational simplicity hereafter we write Aωn in lieu of A⌊ωn⌋.



Next we exploit (6) to bound − 1
n logEC(n,r,q) [PB(C, ǫ)]

from below. Owing to logarithm monotonicity we obtain

−
1

n
logEC(n,r,q) [PB(C, ǫ)] ≥ inf

δ∈(0,1]
fn(δ). (7)

where

fǫ,n(δ) = −
1

n
log n+D(δ, ǫ) + max

{

0, inf
ω∈(0,δ]

(

log q−1
δn(n+1)

n

− δHb

(ω

δ

)

+Hb(ω)−
logAωn

n

)}

.

2) Taking the limit: Next, we take the limit as n → ∞ in

both sides of (7). To keep the notation compact we define

hδ,n(ω) =
1

n
log

q − 1

δn(n+ 1)
− δHb

(ω

δ

)

+Hb(ω)−
logAωn

n

gn(δ) = inf
ω∈(0,δ]

hδ,n(ω) and g+n (δ) = max{0, gn(δ)} .

We also define

hδ(ω) = −δHb

(ω

δ

)

+Hb(ω)−G(ω) (8)

so that g(δ) defined in (5) fulfills g(δ) = infω∈(0,δ] hδ(ǫ).
We start by showing that fǫ,n

u→ fǫ on any interval [a, 1]
such that 0 < a < 1. We first show that gn(δ)

u→ g(δ) on

[a, 1]. To this purpose we write

sup
δ∈[a,1]

|gn(δ)− g(δ)|

= sup
δ∈[a,1]

∣

∣

∣
inf

ω∈(0,δ]
hδ,n(ω)− inf

ω∈(0,δ]
hδ(ω)

∣

∣

∣

a
≤ sup

δ∈[a,1]

sup
ω∈(0,δ]

|hδ,n(ω)− hδ(ω)|

= sup
δ∈[a,1]

sup
ω∈(0,δ]

∣

∣

∣
−

1

n
log

δn(n+ 1)

q − 1
+

logAωn

n
−G(ω)

∣

∣

∣

b
≤ sup

δ∈[a,1]

∣

∣

∣

1

n
log

δn(n+ 1)

q − 1

∣

∣

∣
+ sup

ω∈(0,δ]

∣

∣

∣

logAωn

n
−G(ω)

∣

∣

∣

where ‘a’ is due to Lemma 2 and ‘b’ to triangle inequality. In

the last expression, the first addend converges to zero as n →
∞ since q is constant and δ ∈ [a, 1] with a > 0. Moreover,

the second addend converges to zero due to the hypothesis that

(1/n) logAωn
u→ G(ω) and by Lemma 1. Again by Lemma 1

we conclude that gn(δ)
u→ g(δ).

Uniform convergence of gn(δ) to g(δ) turns into uniform

convergence of g+n (δ) to g+(δ). In fact, we have |g+n (δ) −
g+(δ)| ≤ |gn(δ)− g(δ)| for all δ and n, which implies

0 ≤ sup
δ∈[a,1]

|g+n (δ)− g+(δ)| ≤ sup
δ∈[a,1]

|gn(δ)− g(δ)|.

By squeeze theorem we have supδ∈[a,1] |g
+
n (δ)− g+(δ)| → 0

as n → ∞, and therefore g+n
u→ g+ by Lemma 1.

We are now in a position to prove uniform convergence of

fǫ,n to fǫ. In fact, we have

sup
δ∈[a,1]

|fǫ,n(δ)− fǫ(δ)| = sup
δ∈[a,1]

∣

∣

∣

∣

−
logn

n
+ g+n (δ)− g+(δ)

∣

∣

∣

∣

≤

∣

∣

∣

∣

logn

n

∣

∣

∣

∣

+ sup
δ∈[a,1]

|g+n (δ)− g+(δ)|

where we applied triangle inequality. Convergence to zero of

the last expression is guaranteed by g+n
u→ g+.

Uniform convergence of fǫ,n(δ) to fǫ(δ) leads us to the

statement, as follows. Recall that, if fn
u→ f on A0 then

limn infx∈A0
fn(x) = infx∈A0

limn fn(x) = infx∈A0
f(x),

i.e., we can exchange limit and infimum. Hence we can write

lim
n→∞

−
1

n
logEC(n,r,q) [PB(C, ǫ)]

≥ lim
n→∞

inf
δ∈[a,1]

fǫ,n(δ) = inf
δ∈[a,1]

lim
n→∞

fǫ,n(δ)

= inf
δ∈[a,1]

fǫ(δ) ≥ inf
δ∈(0,1]

fǫ(δ) .

In the previous equation array, the first inequality is justified

by the fact that if αn → α, βn → β, and αn ≥ βn for all

n (possibly, larger than some n0), then α ≥ β. Moreover, the

two equalities are justified by fǫ,n(δ)
u→ fǫ(δ).

Remark 1. The function EG(ǫ) given by (3) is nonnegative

for all 0 < ǫ < 1, since it is defined as the infimum of the sum

of two nonnegative quantities. Moreover, since EG(ǫ) bounds

the error exponent of the given ensemble from below, it must

fulfill EG(ǫ) = 0 for all 1− r ≤ ǫ ≤ 1.

Remark 2. The lower bound EG(ǫ) turns out to be useless

for all ensembles for which G(ω) → 0 as ω → 0+, as for

any such ensemble we have EG(ǫ) = 0 for all 0 < ǫ < 1.

To see this, simply observe that under this setting we have

infω∈(0,δ] hδ(ω) ≤ limω→0+ hδ(ω) = 0 for all 0 < δ ≤ 1,

and therefore g+(δ) = 0 for all 0 < δ ≤ 1. Then, EG(ǫ) =
infδ∈(0,1]D(δ, ǫ) = 0 for all 0 < ǫ < 1 (simply take δ = ǫ).

The following lemma characterizes the function g+(δ)
defined in (4).

Lemma 3. The function g+(δ) has the following properties:

1) g+(δ) = 0 for all 1− r ≤ δ ≤ 1;

2) If G(ω) is continuous in (0, 1) then g+(δ) is non-

increasing and continuous;

3) If G(ω) is continuous in (0, 1) and limω→0+ G(ω) =
γ < 0 then:

a) limδ→0+ g+(δ) = |γ|;
b) δ∗ = sup{δ ∈ (0, 1 − r] : g+(δ) > 0} is strictly

positive;

c) g+(δ) > 0 ∀δ ∈ (0, δ∗); g+(δ) = 0 ∀δ ∈ [δ∗, 1].

Proof: 1) Take any 1 − r ≤ δ1 ≤ 1 and let ǫ = δ1.

We must have EG(δ1) = infδ∈(0,1][D(δ, δ1) + g+(δ)] = 0
(Remark 1). This yields δ = δ1, hence g+(δ1) = EG(δ1) = 0.

2) The function h(ω, δ) = hδ(ω) is continuous and derivable

with respect to (w.r.t.) δ. Since ∂h(ω, δ)/∂δ = log((δ −
ω)/δ) < 0, we have

hδ1(ω) > hδ2(ω) ∀ 0 < ω ≤ δ1 < δ2. (9)

Moreover, continuity of G(ω) turns into continuity of hδ(ω)
also w.r.t. ω. We define hδ(0) = limω→0+ hδ(ω), so that hδ(ω)
is continuous (w.r.t. ω) on the compact [0, δ]. We let ω̂δ =
argminω∈[0,δ] hδ(ω). Taking z < y and using (9), we can write

g(y) = hy(ω̂y) < hy(ω̂z) < hz(ω̂z) = g(z) which shows that



g(δ) is monotonically decreasing and, as a consequence, that

g+(δ) is non-increasing.

Next, we prove continuity of g(δ) as it implies continuity

of g+(δ). We need to show that for any θ > 0 there exists

α(θ) s.t. |z−y| < α(θ) implies |g(z)−g(y)| < θ. It is easy to

prove that for any θ > 0 there exists α1(θ) s.t. |z−y| < α1(θ)
implies |hz(ω)−hy(ω)| < θ/2 for all ω ∈ (0,min{y, z}).4 We

refer to this property as “Property 1”. Moreover, continuity of

hδ(ω) w.r.t. ω, ensures that for any θ > 0 there exists α2(θ)
s.t. |ξ − ω| < α2(θ) implies |hδ(ξ)− hδ(ω)| < θ/2. We refer

to this property as “Property 2”.

Hereafter we address the case z < y, the argument for z > y
being very similar. Let y− z < min{α1(θ), α2(θ)} and recall

the above definition of ω̂y and ω̂y . We need to distinguish two

cases.

Case 1: ω̂y < z. Property 1 implies |hz(ω̂y) − hy(ω̂y)| <
θ/2. By (9) we have hz(ω̂y) > hy(ω̂y) and therefore

|hz(ω̂y)− hy(ω̂y)| = hz(ω̂y)− hy(ω̂y)

= hz(ω̂y)− hz(ω̂z) + hz(ω̂z)− hy(ω̂y)
a
= |hz(ω̂y)− hz(ω̂z)|+ |hz(ω̂z)− hy(ω̂y)|

where ‘a’ is due to the definitions of ω̂z and ω̂y and to z <
y. Thus, |g(z) − g(y)| = |hz(ω̂z) − hy(ω̂y)| ≤ |hz(ω̂y) −
hy(ω̂y)| < θ/2 < θ.

Case 2: ω̂y ≥ z. Property 1 and property 2 imply |hz(z)−
hy(z)| < θ/2 and |hy(z) − hy(ω̂y)| < θ/2, respectively,

yielding (by triangle inequality) |hz(z)− hy(ω̂y)| ≤ |hz(z)−
hy(z)|+ |hy(z)− hy(ω̂y)| < θ. However, we also have

|hz(z)− hy(ω̂y)|
a
= hz(z)− hy(ω̂y)

= hz(z)− hz(ω̂z) + hz(ω̂z)− hy(ω̂y)
b
= |hz(z)− hz(ω̂z)|+ |hz(ω̂z)− hy(ω̂y)|

where both ‘a’ and ‘b’ are due to hz(z) ≥ hz(ω̂z) ≥ hy(ω̂y).
Hence, |g(z) − g(y)| = |hz(ω̂z) − hy(ω̂y)| ≤ |hz(z) −
hy(ω̂y)| < θ.

3a) Let us look at the behavior of g+(δ) as δ → 0+. Since

0 < ω ≤ δ, we must also have ω → 0+, which yields

limδ→0+ g+(δ) = max{0, lim(δ,ω)→(0+,0+),0<ω≤δ h(ω, δ)} =
|γ|.

3b) The function g+(δ) tends to a positive number as δ →
0+ and is zero for any δ between 1 − r and 1. Since the

function is continuous, δ∗ = sup{δ ∈ (0, 1− r] : g+(δ) > 0}
must be strictly positive.

3c) Since g+(δ) is also non-increasing, it must be positive

on the whole interval (0, δ∗) and must be null elsewhere (i.e.,

on [δ∗, 1]).
The next theorem shows that, under conditions on G(ω),

there exists an interval of values of ǫ over which EG(ǫ) is

positive. For the corresponding ensembles, EG(ǫ) is therefore

useful to lower bound ǫ∗
ML

.

4The proof is based on the observation that |hz(ω) − hy(ω)| increases
monotonically with ω, yielding |hz(ω) − hy(ω)| ≤ |hz(M) − hy(M)| =
MHb(1− |z − y|/M), where M = max{z, y}. Continuity of Hb(·) leads
to the conclusion.

Theorem 2. Let δ∗ = sup{δ ∈ (0, 1−r] : g+(δ) > 0} ≤ 1−r.

If G(ω) is continuous in (0, 1) and limω→0+ G(ω) < 0, then

EG(ǫ) > 0 ∀ǫ ∈ (0, δ∗) and EG(ǫ) = 0 ∀ǫ ∈ [δ∗, 1], and

therefore ǫ∗
ML

≥ δ∗.

Proof: Take any ǫ s.t. δ∗ ≤ ǫ ≤ 1. We have 0 ≤ EG(ǫ) =
infδ(D(δ, ǫ) + g+(δ)) ≤ D(ǫ, ǫ) + g+(ǫ) = 0, and therefore

EG(ǫ) = 0. Take now any ǫ s.t. 0 < ǫ < δ∗. Since D(δ, ǫ)
and g+(δ) are both nonnegative functions, to have EG(ǫ) =
infδ(D(δ, ǫ) + g+(δ)) = 0 we need to find δ s.t. both D(δ, ǫ)
and g+(δ) are null. To have D(δ, ǫ) = 0 we need to choose

δ = ǫ; however, since 0 < ǫ < 1 − r we have g+(ǫ) > 0 and

therefore EG(ǫ) > 0.

In the next section we present results for two ensembles

fulfilling the hypotheses of Theorem 2, namely, the ensemble

of linear random parity-check codes over Fq and the ensemble

of fixed-rate binary Raptor codes with linear random precoders

[9]. For the first ensemble the function EG(ǫ) can be obtained

analytically and coincides with Gallager’s random coding

bound over the q-EC. For the second one, EG(ǫ) shall be

computed numerically. However, if only the lower bound on

ǫ∗
ML

is of interest, it may be computed by simply solving a

2× 2 system of equations.

IV. RESULTS FOR SPECIFIC ENSEMBLES

A. Linear Random Parity-Check Codes

Consider the ensemble of linear random parity-check codes

over Fq induced by an (1− r)n×n random parity-check ma-

trix whose entries are independent and identically distributed

(i.i.d.) random variables uniformly distributed in Fq. For this

ensemble we have the following result.

Theorem 3. For the ensemble of linear random parity-check

codes we have δ∗ = 1−r and therefore ǫ∗
ML

= 1−r. Moreover

EG(ǫ) =







− log
(

1−ǫ
q + ǫ

)

− r log q 0 < ǫ < ǫc
D(1− r, ǫ) ǫc ≤ ǫ < 1− r
0 ǫ ≥ 1− r

(10)

where ǫc = (1− r)/(1 + (q − 1)r).

Proof: The expected weight enumerator of the linear ran-

dom parity-check ensemble is Aωn =
(

n
ωn

)

(q− 1)ωnq−(1−r)n

and the corresponding weight spectral shape is G(ω) =
Hb(ω)+ω log(q− 1)− (1− r) log q. Uniform convergence of
1
n logAωn to G(ω) may be proved in a very simple way, by

observing that

sup
ω

∣

∣

∣

1

n
logAωn −G(ω)

∣

∣

∣
= sup

ω

∣

∣

∣

1

n
log

(

n

ωn

)

−Hb(ω)
∣

∣

∣

≤ sup
ω

∣

∣

∣

log(n+ 1)

n

∣

∣

∣
=

∣

∣

∣

log(n+ 1)

n

∣

∣

∣

where we applied the lower bound in (2). Since | log(n+1)
n | → 0

as n → ∞, we conclude that 1
n logAωn

u→ G(ω).
The function hδ(ω) defined in (8) assumes the form

hδ(ω) = −δHb

(ω

δ

)

− ω log(q − 1) + (1 − r) log q .



Let ω̂(δ) = q−1
q δ. It is easy to see that this function tends to

(1 − r) log q when ω → 0+, is monotonically decreasing for

ω ∈ (0, ω̂(δ)), takes a minimum at ω = ω̂(δ), and increases

monotonically for ω ∈ (ω̂(δ), δ]. Hence, we have g(ω) =
infω∈(0,δ] hδ(ω) = hδ(ω̂(δ)) = (1− r − δ) log q so that

g+(δ)= max{0, g(δ)} =

{

(1 − r − δ) log q if 0 < δ < 1− r
0 if 1− r ≤ δ < 1.

The parameter δ∗ is therefore equal to 1 − r. Since ǫ∗
ML

≥
δ∗ = 1− r and ǫ∗

ML
≤ 1− r, we obtain ǫ∗

ML
= 1− r.

Next, we develop EG(ǫ) analytically. Based on the above

findings, we have

EG(ǫ) = min
{

inf
δ∈(0,1−r)

[D(δ, ǫ) + (1 − r − δ) log q],

inf
δ∈[1−r,1]

D(δ, ǫ)
}

that immediately yields EG(ǫ) = 0 for all ǫ ≥ 1−r (it suffices

to take δ = ǫ), corresponding to the third row of (10). For 0 <
ǫ < 1 − r we need to analyze the function fǫ(δ) = D(δ, ǫ) +
g+(δ) = D(δ, ǫ) + (1 − r − δ) log q. Let δ̂(ǫ) = qǫ

1+(q−1)ǫ .

Taking the derivative with respect to δ, it is immediate to

see that this function decreases monotonically for δ < δ̂(ǫ),
takes a minimum at δ = δ̂(ǫ), and increases monotonically

for δ > δ̂(ǫ). Hereafter we need to distinguish the two cases

δ̂(ǫ) < 1− r and δ̂(ǫ) ≥ 1 − r. It is immediate to verify that

they correspond to 0 < ǫ < ǫc and ǫc ≤ ǫ < 1−r, respectively,

where ǫc = (1− r)/(1 + (q − 1)r).
Case 1: 0 < ǫ < ǫc. In this case the function D(δ, ǫ)+ (1−

r − δ) log q has a minimum at δ = δ̂(ǫ). It takes the value

D(1 − r, ǫ) at δ = 1− r. Therefore we obtain

EG(ǫ) = min{D(δ̂(ǫ), ǫ) + (1− r − δ̂(ǫ)) log q,D(1− r, ǫ)}

= D(δ̂(ǫ), ǫ) + (1− r − δ̂(ǫ)) log q

= − log
(1− ǫ

q
+ ǫ

)

− r log q

where the third expression follows from simple algebraic

manipulation. This yields the first row of (10).

Case 2: ǫc < ǫ < 1− r. In this case the function D(δ, ǫ) +
(1−r−δ) log q is monotonically decreasing for δ ∈ (0, 1−r),
so its infimum is taken as δ → (1− r)−. We obtain EG(ǫ) =
min{D(1 − r, ǫ),D(1− r, ǫ)} = D(1− r, ǫ) that corresponds

to the second row of (10).

Remark 3. Interestingly, the expression (10) of EG(ǫ) turns

out to coincide with that of Gallager’s random coding error

exponent for the q-EC [11].

B. Fixed-Rate Raptor Codes with Linear Random Precoders

In this subsection we consider binary fixed-rate Raptor

code ensembles with linear random precoding. A vector of

rn information bits is first encoded by an outer linear block

code picked randomly in the ensemble of binary linear random

parity-check codes with design rate ro, providing a vector of

rn/ro intermediate bits. Intermediate bits are further encoded

by an inner fixed-rate Luby-transform (LT) code of rate ri

and output degree distribution Ω(x) =
∑

j Ωjx
j , generating

n encoded bits. The overall design rate is r = rori.
The weight spectral shape of this ensemble was character-

ized in [9]. It is given by

G(ω) = Hb(ω)− ri(1− ro)− νω(λ0) (11)

where

νω(λ) = Hb(λ) + ω log(ρ(λ)) + (1− ω) log(1− ρ(λ))

and

λ0 = λ0(ω) = argmax
λ∈D

νω(λ). (12)

In (12), D = [0, 1) if Ωj = 0 for any even j and D = (0, 1)

otherwise. Moreover, ρ(λ) = 1
2

∑d
j=1 Ωj [1−(1−2λ)j ], being

d the maximum LT output degree. Again from [9]:

1) G(ω) in (11) is continuous.

2) limω→0+ G(ω) < 0 iff (ri, ro) ∈ P , where

P =
{

(ri, ro) � (0, 0) : ri(1 − ro)

> max
λ∈D

[riHb(λ) + log(1− ρ(λ))]
}

. (13)

3) The derivative of G(ω) is

G′(ω) = log
1− ω

ω
+ log

ρ(λ0)

1− ρ(λ0)
. (14)

4) G′(ω) > 0 for 0 < ω < 1
2 and limω→0+ G′(ω) = +∞.

Uniform convergence of 1
n logAωn to G(ω) can be proved

using arguments from [9, Sec. III]. Moreover, the hypotheses

of Theorem 2 are satisfied when (ri, ro) ∈ P , where P is given

by (13). As opposed to linear random parity-check ensembles,

in this case EG(ǫ) shall be computed numerically. However,

if only the lower bound δ∗ on the ML decoding threshold ǫ∗
ML

is of interest, it may be computed efficiently, as shown next.

Theorem 4. Consider a binary Raptor ensemble with a linear

random precoder and let (ri, ro) ∈ P . Then ǫ∗
ML

≥ δ∗ where

δ∗ is the smallest δ̂ s.t. (δ̂, λ̂0) is a solution of the 2×2 system

ri(1 − ro)− riHb(λ̂0)− (1− δ̂) log(1− ρ(λ̂0)) = 0 (15)

ri log
1− λ̂0

λ̂0

−
1− δ̂

1− ρ(λ̂0)
ρ′(λ̂0) log e = 0 . (16)

Proof: If (ri, ro) ∈ P then Theorem 2 applies. We have

ǫ∗
ML

≥ δ∗, where δ∗ = sup{δ ∈ (0, 1 − r] : g+(δ) > 0} and

δ∗ > 0. Owing to continuity of hδ(ω) we can write g+(δ) =
max{0, hδ(ω̂)}, where ω̂ = ω̂(δ) = argmaxω∈(0,δ] hδ(ω).
From (8) and (14) we obtain

dhδ(ω)

dω
= log

ω

δ − ω
− log

ρ(λ0)

1− ρ(λ0)
(17)

which reveals how dhδ(ω)/dω → +∞ as ω → δ−.5 Thus, the

maximum cannot be taken at ω = δ and ω̂ must be a solution

of dhδ(ω)/dω = 0. Defining λ̂0 = argmaxλ∈D νω̂(λ) and

5ρ(λ0(ω)) cannot converge to 1 as ω → δ− for any 0 < δ ≤ 1− r.



recalling (17), after some algebraic manipulation this translates

to

ω̂ = δρ(λ̂0) . (18)

The parameter λ̂0 must be a solution of dνω̂(λ)/dλ = 0.

Developing the derivative we obtain

ri log
1− λ̂0

λ̂0

+ ω̂
ρ′(λ̂0)

ρ(λ̂0)
log e− (1− ω̂)

ρ′(λ̂0)

1− ρ(λ̂0)
log e = 0.

(19)

So far we have shown that g+(δ) = max{0, hδ(ω̂)} where

(ω̂, λ̂0) is a solution of the system of simultaneous equations

(18) and (19). Recall now from Theorem 2 that g+(δ) > 0
for all 0 < δ < δ∗ and g+(δ) = 0 for all δ∗ ≤ δ ≤ 1.

This necessarily implies hδ(ω̂) > 0 for all 0 < δ < δ∗ and

hδ∗(ω̂) = 0, i.e., δ∗ is the smallest δ̂ such that hδ̂(ω̂) = 0, i.e.,

after simple manipulation, the smallest δ̂ such that

ri(1− ro)− riHb(λ̂0)− (1 − δ̂)− (1− δ̂) log
(

1−
ω̂

δ̂

)

= 0.

Substituting (18) (with δ = δ̂) into this latter equation yields

(15), while substituting it into (19) yields (16).

Example 1. Let ro = 0.99, ri = 0.8, and Ω(x) be the LT

output distribution of 3GPP Raptor codes, i.e.,

Ω(x) = 0.0098x+ 0.4590x2 + 0.2110x3 + 0.1134x4

+ 0.1113x10 + 0.0799x11 + 0.0156x40 .

By direct calculation one can verify that (ri, ro) ∈ P . Solv-

ing (15) and (16) we obtain the unique solution (δ̂, λ̂0) =
(0.090771, 0.009951) from which we conclude that ǫ∗

ML
≥

δ∗ = 0.090771. This bound is relatively tighter that the one

obtained by employing the general bound in [1], which returns

ǫ∗
ML

≥ 0.003827.

V. CONCLUSIONS

A lower bound on the ML error exponent of linear code

ensembles over erasure channels has been derived. The lower

bound requires, under mild conditions, just the knowledge

of the ensemble weight spectral shape. The application to

some linear block code ensembles has been demonstrated.

For the specific case of fixed-rate Raptor code ensembles, the

bound allows to compute a lower bound on the ML decoding

threshold, that is remarkably tighter with respect to the lower

bound obtained with established techniques.

REFERENCES

[1] N. Shulman and M. Feder, “Random coding techniques for nonrandom
codes,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2101–2104, Sep.
1999.

[2] G. Miller and D. Burshtein, “Bounds on the maximum-likelihood
decoding error probability of low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 7, pp. 2696–2710, 2001.

[3] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA:
M.I.T. Press, 1963.

[4] C. Di, D. Proietti, T. Richardson, E. Telatar, and R. Urbanke, “Finite
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Trans. Inf. Theory, vol. 48, pp. 1570–1579, 2002.

[5] G. Liva, E. Paolini, and M. Chiani, “Bounds on the error probability
of block codes over the q-ary erasure channel,” IEEE Trans. Commun.,
vol. 61, no. 6, pp. 2156–2165, Jun. 2013.

[6] D. Burshtein and G. Miller, “Asymptotic enumeration methods for
analyzing LDPC codes,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp.
1115–1131, Jun. 2004.

[7] R. G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

[8] M. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, Jun. 2006.

[9] F. Lázaro, E. Paolini, G. Liva, and G. Bauch, “Distance spectrum of
fixed-rate Raptor codes with linear random precoders,” IEEE J. Sel.

Areas Commun., vol. 34, no. 2, pp. 422–436, Feb. 2016.
[10] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:

McGraw-Hill, 1976.
[11] S. Fashandi, S. O. Gharan, and A. K. Khandani, “Coding over an erasure

channel with a large alphabet size,” in Proc. 2008 IEEE Int. Symp. Inf.

Theory, Toronto, Canada, Jul. 2008, pp. 1053–1057.


	I Introduction
	II Preliminaries
	III Main Results
	III-1 Lower bounding -1n logEC(n,r,q) [PB(C,)]
	III-2 Taking the limit


	IV Results for Specific Ensembles
	IV-A Linear Random Parity-Check Codes
	IV-B Fixed-Rate Raptor Codes with Linear Random Precoders

	V Conclusions
	References

