
ar
X

iv
:1

80
6.

01
05

0v
2

 [
cs

.I
T

]
 7

 A
pr

 2
01

9

On the Computational Complexity of Blind

Detection of Binary Linear Codes

Alexios Balatsoukas-Stimming

Department of Electrical Engineering

École polytechnique fédérale de Lausanne

CH-1015 Lausanne, Switzerland

Email: alexios.balatsoukas@epfl.ch

Aris Filos-Ratsikas

Department of Computer Science

École polytechnique fédérale de Lausanne

CH-1015 Lausanne, Switzerland

Email: aris.filosratsikas@epfl.ch

Abstract—In this work, we study the computational complexity

of the MINIMUM DISTANCE CODE DETECTION problem. In this

problem, we are given a set of noisy codeword observations

and we wish to find a code in a set of linear codes C of a

given dimension k, for which the sum of distances between the

observations and the code is minimized. We prove that, for the

practically relevant case when the set C only contains a fixed

number of candidate linear codes, the detection problem is NP-

hard and we identify a number of interesting open questions

related to the code detection problem.

I. INTRODUCTION

Modern communications systems usually employ adaptive

modulation and coding (AMC) mechanisms to cope with the

highly varying channel conditions. In an AMC scenario, the

devices at the two endpoints of each communication link agree

on a combination of modulation and coding through a control

channel. However, in recent communications standards, the

control channel can itself use one of several modulation and

coding combinations. It has thus become essential for wireless

devices to be able to blindly detect and decode the information

on the control channel in order to successfully join the wireless

network. In practice, several parameters may need to be blindly

detected (e.g., modulation, coding, interleaving), but in this

work we focus on the problem of blind channel code detection,

which can be loosely formulated as follows. Given a set

of candidate codes C, a set of noisy codewords, and the

knowledge that all of the noisy codewords are produced by

the same code C ∈ C, what is the most “plausible” candidate

code C ∈ C to have generated those words?

The design of practical algorithms for the above version

of blind detection of channel codes has drawn significant

attention in the past years. For example, various heuris-

tic methods have been proposed for the blind detection of

Hamming and BCH codes [1], [2], convolutional codes [3],

[4], Turbo codes [5], [6], LDPC codes [7], [8], and polar

codes [9]–[12]. In contrast, comparatively little is known about

the fundamental computational complexity of the blind code

detection problem.

Contributions: To the best of our knowledge, this is the

first work that formally studies the computational complexity

of the blind code detection problem. To this end, in Section II

we first express the problem in a form that enables us to

theoretically analyze its computational complexity. Then, in

Section III we examine the practically relevant case where

C contains only a constant number of candidate linear codes

(i.e., |C| = ℓ, ℓ > 0) and we show that the MINIMUM

DISTANCE CODE DETECTION problem in this case is NP-

hard. In essence, our hardness result justifies the heuristic

approach of a large body of existing work (c.f., [1]–[12] and

references therein). In the related work of [13], the author

formulated the problem when C is the set of all linear codes

of dimension k. While this choice of C is appropriate for some

scenarios (cf. [14, Sec. I]), the case where |C| = ℓ is much

more natural and has a greater practical significance, since in

most applications (cf. [1]–[12]) the set of candidate codes is

usually small and pre-defined by the employed communication

standard. We discuss the relation between [13] and our work

in more detail in Section IV. Finally, in Section V we identify

and discuss a number of interesting related open problems.

II. BLIND CODE DETECTION BACKGROUND

In this section, we first provide some brief background

on binary linear codes and we then define the MINIMUM

DISTANCE CODE DETECTION problem.

A. Binary Linear Codes

A binary linear code C of length n is a set of n-bit vectors,

called codewords, with the property that for any c1, c2 ∈ C,

we also have c1 + c2 ∈ C, where additions are performed

using modulo-2 arithmetic. The dimension k of the code C

is equal to the dimension of the subspace spanned by the

codewords in C. The number of codewords of a binary linear

code of dimension k is 2k. A binary linear code C can be

efficiently represented using a k × n binary generator matrix

G of rank k, so that each codeword can be generated as uG,

for some u ∈ {0, 1}k, and where all operations are carried

out using modulo-2 arithmetic. We use span(G) to denote the

row span of G, i.e., span(G) =
{

uG : u ∈ {0, 1}k
}

. Note

that C = span(G) and, due to this equivalence, we slightly

abuse the terminology for simplicity and we refer to G both

as a generator matrix and as a code depending on the context.

http://arxiv.org/abs/1806.01050v2

B. Minimum Distance & Maximum Likelihood Code Detection

The blind detection problem can be formally stated as

follows. Let x1, . . . ,xN , denote a set of N binary row vectors

of length n that are observed at the output of a noisy channel

and let the matrix X be defined as:

X =
[

xT
1 . . . xT

N

]T
. (1)

We will refer to x1, . . . ,xN as the noisy codewords and to

the matrix X as the observation matrix. The code detection

problem can generally be defined as follows. Given a set of

codes C, an observation matrix X, and the knowledge that

all of the noisy codewords are produced by the same code

in C, find a code C ∈ C that optimizes an appropriately

defined metric. We briefly describe two distinct code detection

problems that use different metrics below.

In MINIMUM DISTANCE CODE DETECTION (MDCD) the

goal is to minimize the sum minimum distance between the

noisy codewords in X and the code C. More specifically, let:

d(xi, C) = min
c∈C

dH(xi, c). (2)

Then, the MDCD problem can be formulated as follows.

MINIMUM DISTANCE CODE DETECTION (MDCD)

Input: Positive integers N,n, a binary N × n matrix X,

and a set C of binary linear codes of dimension k ≤ n,

where each C ∈ C is given by a generator matrix G.

Output: A generator matrix G of a binary linear code

CMDCD ∈ C such that:

CMDCD =argmin
C∈C

N
∑

i=1

d(xi, C), (3)

where potential ties are broken arbitrarily.

MAXIMUM LIKELIHOOD CODE DETECTION (MLCD) is a

closely related problem that is of particular interest because

it minimizes the detection error rate when all codes in C are

equiprobable. Let us assume that transmission takes place over

a BSC with crossover probability p ∈
(

0, 1
2

)

, which we denote

by BSC(p), and let dH(a,b) denote the Hamming distance

between a and b. The MLCD problem, which was derived

in [13], can then be formulated as follows.

MAXIMUM LIKELIHOOD CODE DETECTION (MLCD)

Input: Positive integers N,n, a binary N × n matrix X,

and a set C of binary linear codes of dimension k ≤ n,

where each C ∈ C is given by a generator matrix G.

Output: A generator matrix G of a binary linear code

CMLCD ∈ C such that:

CMLCD =argmax
C∈C

N
∏

i=1

∑

c∈C

(

p

1− p

)dH(xi,c)

, (4)

where potential ties are broken arbitrarily.

We discuss the relation between the MDCD problem and

the MLCD problem in more detail in Section V.

III. THE MDCD PROBLEM FOR |C| = ℓ

In this section, we prove that when we are given a fixed

set of ℓ binary linear codes, finding a code that minimizes the

sum distance from the noisy codewords is NP-hard. By a fixed

set, here we mean a set of size which is constant in the input

parameters, which is a restriction that can be added to the input

of the formal definition of the MDCD problem. Typically,

when studying the computational complexity of a problem, we

refer to decision problems, i.e., problems for which the answer

is either “yes” or “no”. In contrast, the MDCD problem defined

above is an optimization problem, i.e., a problem in which we

are looking for a solution that optimizes an objective function,

potentially under some constraints. However, the definition of

NP-hardness can be extended to optimization problems using

Turing reductions, e.g., see the discussion on the complexity

of search problems in [15, Chapter 5]. We avoid talking about

NP-completeness here intentionally, because the notion is only

well-defined for the decision versions of the problems.

Theorem 1. The MDCD problem for |C| = ℓ is NP-hard.

We construct a reduction from the MINIMUM DISTANCE

DECODING problem (MDD), proven to be NP-hard in [16].1

The MDD problem can be formulated as follows.

MINIMUM DISTANCE DECODING (MDD)

Input: A generator matrix G of a binary linear code C of

length n and an n-bit binary vector y.

Output: An n-bit binary vector ĉ = argminc∈C dH(y, c).

Our reduction constructs an algorithm AMDD that solves the

MDD problem when given access to any algorithm AMDCD

that solves the MDCD problem. The algorithm AMDD only

makes a polynomial number of calls to AMDCD and only

performs polynomial-time computations otherwise. Therefore,

if an efficient algorithm for MDCD existed, AMDD would solve

the MDD problem in polynomial time, which is not possible

(unless P = NP) since the MDD problem is NP-hard.

More precisely, the AMDCD algorithm has inputs C (i.e.,

a set of ℓ generator matrices, here we take ℓ = 3) and the

observation matrix X, and it outputs a generator matrix G for

a code C ∈ C which is a solution to the MDCD problem. Our

algorithm for solving the MDD problem using AMDCD is given

in Algorithm 1. The main idea is that, starting from the code

G of dimension k given as an input to the MDD problem,

we call the SPLITCOVER function described in Algorithm 2.

This function constructs (in polynomial time) three generator

matrices G1, G2, and G3 of binary linear codes of dimension

1The MDD problem was referred to as the COSET WEIGHTS problem

in [16], where it was defined as a decision problem. We reduce from the

optimization version of the MDD problem which is NP-hard as well, since
the objective function is computable in polynomial time [15, Chapter 5].

Algorithm 1: Algorithm AMDD for solving the MDD

problem using AMDCD as a subroutine.

Input: Full-rank k × n generator matrix G, an n-bit

binary vector y.

Output: Codeword ĉ = argminc∈C dH(y, c).
1 G(k) = G;

2 l = k;

3 while l > 0 do

4 {G1,G2,G3} = SPLITCOVER(G(l));

5 G(l−1) = AMDCD(y, {G1,G2,G3});
6 l = l − 1;

7 ĉ = G(0);

(k− 1), with the property that a codeword is generated by G

if and only if it is generated by at least one of G1, G2, or

G3. Then, we use the AMDCD algorithm on y (i.e., the input

of the MDD problem) and {G1,G2,G3}, which returns the

code of dimension (k−1) with the minimum distance from y

that contains the solution to the MDD problem. We repeat this

another (k−1) times until the resulting code contains a single

codeword, which is the solution ĉ to the MDD problem.

In the following lemma, we prove the aforementioned

properties of the SPLITCOVER function.

Lemma 2. SPLITCOVER given in Algorithm 2 takes an

l × n matrix G of rank l as an input and produces (in

polynomial time) a set of three (l− 1)×n generator matrices

{G1,G2,G3} with the following properties:

1) The rank of G1, G2, and G3 is (l − 1).
2) span(G) = span(G1) ∪ span(G2) ∪ span(G3).

Proof: The construction of G1, G2, and G3 is a concate-

nation of a subset of rows of G, so it clearly has polynomial

complexity. Moreover, by assumption, G has l linearly inde-

pendent rows. Since G1 and G2 are constructed using (l− 1)
distinct rows of G, they are clearly of rank (l− 1). Similarly,

G3 is constructed using (l − 2) distinct rows of G and one

row that is the sum of the remaining 2 rows of G, so it also

clearly of rank (l − 1) and the first property follows. Finally,

recall that span(G) =
{

uG : u ∈ {0, 1}k
}

. Since G1 is G

with the second row omitted, it is easy to see that

span(G1) =
{

uG : u ∈ {0, 1}k, u2 = 0
}

. (5)

Similarly, we have:

span(G2) =
{

uG : u ∈ {0, 1}k, u1 = 0
}

. (6)

Finally, since the first row of G3 is equal to (g1 + g2),
span(G3) will contain all vectors uG for which either u1 = 0
and u2 = 0, or u1 = 1 and u2 = 1, or equivalently:

span(G3) =
{

uG : u ∈ {0, 1}k, u1 = u2

}

. (7)

Since the set span(G1) ∪ span(G2) ∪ span(G3) covers all

possibilities for u1 and u2 and the remaining elements of u are

Algorithm 2: Algorithm SPLITCOVER.

Input: Full-rank l × n matrix

G =
[

gT
1 gT

2 . . . gT
l

]T
.

Output: Set of three (l− 1)× n matrices {G1,G2,G3}.

1 Function SPLITCOVER(G):

2 G1 =
[

gT
1 gT

3 . . . gT
l

]T
;

3 G2 =
[

gT
2 gT

3 . . . gT
l

]T
;

4 G3 =
[

(g1 + g2)T gT
3 . . . gT

l

]T
;

5 return {G1,G2,G3};

free variables in all three cases, the second property follows.

Proof of Theorem 1: First, note that in our reduction, the

observation matrix X is in fact an n-bit binary vector and, in

particular, it is the n-bit binary vector y that is given as input

to the MDD problem. In that case, the solution to the MDCD

problem is a code C ∈ C such that:

C = argmin
C∈C

d(y, C) = argmin
C∈C

(

min
c∈C

dH(y, c)

)

, (8)

where the last equation follows from the definition of d(y, C).
Let Gℓ = {G1, . . . ,Gℓ} denote a set of ℓ generator matrices

and let span(Gℓ) =
⋃ℓ

i=1 span(Gi). Then, identifying a code

in Gℓ that is closest to y in terms of the minimum Hamming

distance is equivalent to identifying a code in Gℓ that contains

a codeword ĉ = argmin
c∈span(Gℓ) dH(y, c). In Algorithm 1,

at every iteration l it holds that span(G(l)) = span(G1) ∪
span(G2) ∪ span(G3) by Lemma 2. By the discussion above

and since we started from G(k) = G, at every iteration

l of Algorithm 1, the AMDCD algorithm identifies the code

G(l−1) ∈ {G1,G2,G3} that contains a solution ĉ to the

MDD problem. Since G(0) is a single n-bit binary vector,

Algorithm 1 terminates by returning ĉ.

Both AMDCD and SPLITCOVER are called k times in Algo-

rithm 1. Moreover, by Lemma 2 we know that the complexity

of SPLITCOVER is polynomial. Finally, all remaining compu-

tations can clearly be carried out in polynomial time, meaning

that the overall complexity of our reduction is polynomial.

One can view our reduction as a ternary search-style proce-

dure, where the space of all codewords is split into three sets

(which only have a constant overlap of codewords) and the

set containing a solution is returned by the AMDCD algorithm.

IV. THE MDCD PROBLEM FOR C = LCk

In Section III, we studied the MDCD problem when C
is a fixed set of ℓ binary linear codes. In contrast, in [13]

the author formulated the MDCD problem when C is the

space of all possible linear codes of a given dimension k,

which we will denote by LCk. We note that the MDCD

problems for C = LCk and for C = {C1, C2, . . . , Cℓ} are

fundamentally different. When C = LCk, we are looking for

some code among all possible linear codes that minimizes the

Algorithm 3: Rank augmentation of G.

Input: Full-rank r × n generator matrix G from step 1.

Output: Full-rank k × n generator matrix G.

1 i = 1;

2 while rank(G) < k and i ≤ n do

3 G′ =

[

G

ei

]

;

4 if rank(G′) > rank(G) then

5 G = G′;

6 i = i+ 1;

total distance from the noisy codewords and there might be a

very large number of codes that are solutions to the problem.

On the other hand, when C = {C1, C2, . . . , Cℓ}, we need to

decide which code is closest to the observation matrix X in

terms of the minimum Hamming distance, which might be a

much harder task to do.

In [13], it is stated that the MDCD problem is equivalent2

to a RANK REDUCTION (RR) problem, which is then proven

to be NP-hard via a reduction from the MINIMUM DISTANCE

problem [17]. The term “rank-reduction” already hints at the

fact that such an equivalence requires that the rank of the

observation matrix X is at least k, which implies that at

least k noisy codewords have to be observed. However, in

the practical application described in Section I, the number of

observations (and thus rank(X)) is always significantly smaller

than k, since the decision latency and the signal processing

cost have to be minimized.

In this case, it turns out that it is simple to identify the com-

putational complexity of the MDCD problem. In particular,

we describe a polynomial-time algorithm that can find a code

C ∈ LCk that minimizes
∑N

i=1 d(xi, C) when rank(X) ≤ k.

The main idea of the algorithm is that, since rank(X) ≤ k,

we can always construct a full-rank k × n generator matrix

G with X as a submatrix to achieve
∑N

i=1 d(xi, C) = 0 in

polynomial time. This algorithm has two steps: the first step

ensures that
∑N

i=1 d(xi, C) is minimized, while the second

step ensures that G has rank k and thus generates a code of

the desired dimension k.

Step 1: Let rank(X) = r ≤ k and let L = {l1, l2, . . . , lr}
denote a set of indices of any r linearly independent rows of

X. The set L can be constructed in polynomial time using

Gaussian elimination. We construct the r first rows of G as:

Gr×n =
[

xT
l1

. . . xT
lr

]T
. (9)

Step 2: Let ei denote the standard basis row vector of length

n with a 1 in the i-th coordinate and 0’s elsewhere. We extend

G to have dimensions k × n and rank k by following the

procedure of Algorithm 3. This procedure is guaranteed to

2Such an equivalence result would indeed imply that the MDCD problem

is generally NP-hard when C = LCk , which is the claim attributed to [13]

in certain related works (e.g., [2], [14]). However, the equivalence statement
appears without proof in [13].

construct a full-rank k×n generator matrix G and it requires

at most n steps, with each step having polynomial complexity.

The final k × n generator matrix G has the following form:

Gk×n =
[

xT
l1

. . . xT
lr

eTi1 . . . eTik−r

]T
, (10)

for some {i1, . . . , ik−r} ⊂ {1, . . . , n}. Since the 2k codewords

of the code C corresponding to G are generated as uG, where

u ∈ {0, 1}k, it is easy to see that xi ∈ C, ∀i = 1, . . . , N .

This means that
∑N

i=1 d(xi, C) = 0 and C indeed minimizes
∑N

i=1 d(xi, C).

V. OPEN PROBLEMS

In this section, we identify and discuss some interesting

open problems related to the complexity of code detection.

A. Computational Complexity of the MLCD Problem

Unlike minimum distance decoding and maximum likeli-

hood decoding which are equivalent over the BSC (and known

to be NP-hard [16]), MDCD is generally not equivalent to

MLCD. This is demonstrated through the following example.

Example 1. Consider the case where transmission takes place

over a BSC(0.25), we have |C| = 2, and the full-rank

generator matrices G1 and G2 that describe the codes C1

and C2 (both of dimension k = 3), respectively, are:

G1 =





0 1 0 0 1
1 1 1 0 0
1 1 1 1 1



 , G2 =





0 1 0 1 0
1 0 0 1 0
0 1 1 0 0



 . (11)

Moreover, let us assume that we have the following obser-

vation matrix with a single noisy codeword X = x1 =
[

1 1 1 0 0
]

. Finally, let us define:

f(C) =
∑

c∈C

(

p

1− p

)dH(x1,c)

, (12)

so that CMLCD = argmaxC∈{C1,C2} f(C). It is easy to verify

that d(x1, C1) = 0 and d(x1, C2) = 2, but f(C1) = 1.449
and f(C2) = 1.481, meaning that CMDCD 6= CMLCD. So, the

code that is the optimal solution of the MDCD problem is not

the optimal solution of the MLCD problem, and vice-versa.

In [13], it is not explained rigorously how MDCD is related

to MLCD. Here, we provide the following explanation. Let

α = p

1−p
. Then, using the well-known max-log approximation

with a base-α logarithm and the fact that logα(x) is decreasing

in x since α ≤ 1, we can re-write (4) as:

CMLCD =argmax
C∈C

N
∑

i=1

logα

(

∑

c∈C

αdH(xi,c)

)

(13)

≈ argmin
C∈C

N
∑

i=1

min
c∈C

dH(xi, c) = CMDCD. (14)

Note however, that this approximation does not imply anything

about the computational complexity of MLCD merely from the

computational complexity of MDCD, nor vice-versa.

Arguably, the maximum likelihood objective of the MLCD

problem is a better distance metric than the minimum distance

objective of the MDCD problem, since it minimizes the prob-

ability of detection error. As such, studying the complexity

of the MLCD problem is an important next step. In this

direction, one could attempt to construct a reduction from the

MDD problem to the MLCD problem by replacing AMDCD

with an algorithm AMLCD that solves the MLCD problem in

Algorithm 1. However, for this to work one would have to

show that the code G(l−1) returned by AMLCD always contains

the solution to the MDD problem (as shown for AMDCD in the

proof of Theorem 1), which does not necessarily hold.

B. Detection Complexity for Subclasses of Linear Codes

Similarly to the case of maximum likelihood decoding, it

would be interesting to examine specific subclasses of linear

codes (e.g., LDPC codes, polar codes), for which, in principle,

efficient algorithms for the MDCD problem could exist. In

this direction, given a subclass of linear codes, our reduction

can be applied if this subclass is closed under a split-cover

operation similar to SPLITCOVER defined in Algorithm 2.

Specifically, closure in this context means that a full-rank

k×n generator matrix G that belongs to the given subclass of

linear codes, can be split into ℓ full-rank (k−1)×n generator

matrices G1, . . . ,Gℓ, that belong to the same subclass such

that span(G) =
⋃ℓ

i=1 span(Gi). A procedure that generates

G1, . . . ,Gℓ, in polynomial time can be then used instead of

the specific SPLITCOVER function that we used in Algorithm 1

in order to prove hardness for specific subclasses of codes.

C. Complexity of MDCD for any ℓ and N

The proof of Theorem 1 establishes the NP-hardness of the

MDCD problem when ℓ = 3 and N = 1, which is sufficient

to show that the problem is NP-hard in general.

A very similar reduction can be used to prove NP-hardness

for any ℓ > 3. The main idea is that Lemma 2 can be extended

to the case where G is split into ℓ distinct3 codes G1, . . . ,Gℓ.

We note that the case of ℓ = 1 is trivial and the NP-hardness

of the case when ℓ = 2 follows easily from the NP-hardness of

the case when ℓ = 3. Specifically, a hypothetical polynomial-

time algorithm for the ℓ = 3 case could call a hypothetical

polynomial-time algorithm for the ℓ = 2 case three times

(one for each of the three possible pairs of candidate codes)

and combine the partial results in order to solve the MDCD

problem.

The case where N > 1 observations are available is also

of practical interest. Showing NP-hardness for a given N > 1
is an open problem, which does not seem to follow directly

from the techniques we have used in this work.

3Note that, if the codes in C are not required to be distinct, the NP-hardness

of the MDCD problem with ℓ > 3 follows easily from the NP-hardness of
the ℓ = 3 case since we can simply set, e.g., Gℓ = G3 for all ℓ > 3.

VI. CONCLUSION

In this work, we studied the fundamental problem of the

computational complexity of code detection for binary linear

codes and we proved that the MDCD problem is NP-hard

through a reduction from the MINIMUM DISTANCE DECOD-

ING problem in the practically relevant case where C contains

a fixed number ℓ of candidate codes. Moreover, we identified

a number of open problems, the most interesting being the

computational complexity of the MLCD problem.

VII. ACKNOWLEDGMENT

The work of Alexios Balatsoukas-Stimming is supported by

the Swiss National Science Foundation project #175813. The

work of Aris Filos-Ratsikas is supported by the Swiss National

Science Foundation under contract No. 200021 165522. The

authors would like to thank the anonymous reviewers for their

useful suggestions.

REFERENCES

[1] A. D. Yardi, A. Kumar, and S. Vijayakumaran, “Channel-code detection

by a third-party receiver via the likelihood ratio test,” in IEEE Int. Symp.

Inf. Theory (ISIT), Jun. 2014, pp. 1051–1055.
[2] C. Chabot, “Recognition of a code in a noisy environment,” in IEEE

Int. Symp. Inf. Theory (ISIT), Jun. 2007, pp. 2211–2215.

[3] M. Cluzeau and M. Finiasz, “Reconstruction of punctured convolutional

codes,” in IEEE Inf. Theory Workshop (ITW), Oct. 2009, pp. 75–79.

[4] R. Moosavi and E. G. Larsson, “A fast scheme for blind identification

of channel codes,” in IEEE Global Telecommunications Conf. (GLOBE-

COM), Dec. 2011, pp. 1–5.
[5] Y. G. Debessu, H. C. Wu, and H. Jiang, “Novel blind encoder parameter

estimation for turbo codes,” IEEE Commun. Lett., vol. 16, no. 12, pp.

1917–1920, Dec. 2012.

[6] J. P. Tillich, A. Tixier, and N. Sendrier, “Recovering the interleaver of

an unknown turbo-code,” in IEEE Int. Symp. Inf. Theory (ISIT), Jun.

2014, pp. 2784–2788.
[7] T. Xia and H. C. Wu, “Novel blind identification of LDPC codes using

average LLR of syndrome a posteriori probability,” IEEE Trans. Signal

Process., vol. 62, no. 3, pp. 632–640, Feb. 2014.

[8] P. Yu, H. Peng, and J. Li, “On blind recognition of channel codes within

a candidate set,” IEEE Commun. Lett., vol. 20, no. 4, pp. 736–739, Apr.

2016.
[9] C. Condo, S. A. Hashemi, A. Ardakani, F. Ercan, and W. J. Gross,

“Design and implementation of a polar codes blind detection scheme,”

IEEE Trans. Circuits Syst. II, vol. pp, Sep. 2018.

[10] C. Condo, S. A. Hashemi, and W. J. Gross, “Blind detection with polar

codes,” IEEE Commun. Lett., vol. 21, no. 12, pp. 2550–2553, Dec. 2017.

[11] P. Giard, A. Balatsoukas-Stimming, and A. Burg, “Blind detection of

polar codes,” in IEEE Int. Workshop on Signal Proc. Syst. (SiPS), Oct.
2017, pp. 1–6.

[12] P. Giard, A. Balatsoukas-Stimming, and A. Burg, “On the tradeoff

between accuracy and complexity in blind detection of polar codes,”

in Int. Symp. Turbo Codes & Iterative Inf. Proc., Dec. 2018.

[13] A. Valembois, “Detection and recognition of a binary linear code,”

Discrete Applied Mathematics, vol. 111, no. 1–2, pp. 199–218, Jul. 2001.
[14] K. Carrier and J.-P. Tillich, “Identifying an unknown code by partial

Gaussian elimination,” Designs, Codes and Cryptography, Dec. 2018.

[15] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman and Company,

1979.

[16] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems,” IEEE Trans. Inf. Theory,

vol. 24, no. 3, pp. 384–386, May 1978.

[17] A. Vardy, “The intractability of computing the minimum distance of a

code,” IEEE Trans. Inf. Theory, vol. 43, no. 6, pp. 1757–1766, Nov.

1997.

	I Introduction
	II Blind Code Detection Background
	II-A Binary Linear Codes
	II-B Minimum Distance & Maximum Likelihood Code Detection

	III The MDCD Problem for |C| =
	IV The MDCD Problem for C=LCk
	V Open Problems
	V-A Computational Complexity of the MLCD Problem
	V-B Detection Complexity for Subclasses of Linear Codes
	V-C Complexity of MDCD for any and N

	VI Conclusion
	VII Acknowledgment
	References

