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Dispersion Bound for the

Wyner-Ahlswede-Körner Network via Reverse

Hypercontractivity on Types

Jingbo Liu

Abstract

This paper introduces a new converse machinery for a challenging class of distributed source-type problems (e.g.

distributed source coding, common randomness generation, or hypothesis testing with communication constraints),

through the example of the Wyner-Ahlswede-Körner network. Using the functional-entropic duality and the reverse

hypercontractivity of the transposition semigroup, we lower bound the error probability for each joint type. Then

by averaging the error probability over types, we lower bound the c-dispersion (which characterizes the second-

order behavior of the weighted sum of the rates of the two compressors when a nonvanishing error probability is

small) as the variance of the gradient of infPU|X
tcHpY |Uq ` IpU ;Xqu with respect to QXY , the per-letter side

information and source distribution. In comparison, using standard achievability arguments based on the method of

types, we upper-bound the c-dispersion as the variance of cıY |U pY |Uq ` ıU ;XpU ;Xq, which improves the existing

upper bounds but has a gap to the aforementioned lower bound.

I. INTRODUCTION
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Figure 1. Source coding with compressed side information
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In the Wyner-Ahlswede-Körner (WAK) problem [1][2], a source Y n and a side information Xn are compressed

separately as integers W2 and W1, respectively, and a decoder reconstructs Y n as Ŷ n. Consider the discrete

memoryless setting where the per-letter source distribution is QXY , for any c ą 0, define

φcpQXY q :“ inf
PU|X

tcHpY |Uq ` IpU ;Xqu (1)

where pU,X, Y q „ PU |XQXY . The following strong converse result was proved in [2] using the blowing-up lemma:

if the error probability PrŶ n ‰ Y ns is below some ǫ P p0, 1q, then

ln |W1| ` c ln |W2| ě nφcpQXY q ´O
´?

n ln3{2 n
¯
. (2)

where the cardinality of the auxiliary can be bounded by |U | ď |X | ` 2. The first-order term in (2) is the precise

single-letter characterization [1][2]. Note that for any c ă 1, we have φcpQXY q “ cHpY q by the data processing

inequality. Moreover, ln |W1| ` c ln |W2| ě c ln |W1 ˆ W2| ě cnHpY q ´ Op?
nq, which follows simply from a

method of type analysis [3] of the single source compression problem. Therefore the only nontrivial case is c ě 1.

While recent research has succeeded in studying the second-order rates for various single-user and selected

multiuser problems (see e.g. [4][5]), it remained a formidable challenge to precisely characterize second-order

term in (2). Indeed, [5, Section 9.2.2, 9.2.3] listed the second-order rate in WAK as a major open problem, since

previous converse techniques (e.g. straightforward uses of method of types, information spectrum methods, or meta-

converses) appear insufficient for cases where the auxiliary random variable satisfies a Markov chain. In fact, the

WAK problem represents a typical challenge in a class of distributed source coding problems (or more generally,

distributed source-type problems including common randomness generation [6] or hypothesis testing [7]) involving

side information (a.k.a. a helper). Recently, Watanabe [8] examined the converse bound obtained by taking limits in

the Gray-Wyner network, yielding a strong converse for WAK but not appearing to improve the second-order term.

In [9], Tyagi and Watanabe proposed an approach of dealing with such Markov chain constraints, by replacing

it with a bound on the conditional mutual information and then taking the limits. While their approach yields

strong converses in interesting applications such as Wyner-Ziv and wiretap channels, it is not clear whether such

an approach yields sharper second-order estimates in (2).

To our knowledge, the first proof of an Op?
nq second-order converse was due to [10]. The Op?

nq rate is sharp

for ǫ ą 1{2 since an Ωp?
nq bound follows by applying the central limit theorem to the standard random coding

argument. In fact, [10] proposed a new and widely applicable converse technique based on functional-entropic duality

and reverse hypercontractivity, and it appears that the entire blowing-up lemma business for strong converses [2][3]

was merely suboptimal approximations of this approach. After the publication of [10], Zhou-Tan-Yu-Motani [11]

and Oohama [12] improved a previous technique of Oohama and claimed that an Op?
nq converse for WAK also

follows from that technique.

The idea of [10] is roughly described as follows: first we note that an entropic quantity related to φc has an

equivalent functional version (32) which contains quantities such as
ş
ln f dP . If one directly takes f to be the

indicator function of a decoding set, then generally
ş
ln f dP “ ´8 which is useless. However, using a machinery

called reverse hypercontractivity, we design some “magic operator” Λ such that
ş
lnpΛfqdP ě ln

ş
f dP , and
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ş
f dP is the probability of correct decoding which we desired. For all source and channel networks where a strong

converse was proved in [3], we can now bound the second-order term as C
b
n ln 1

1´ǫ
.

One deficiency of the machinery of [10] is the inability to deal with the case of ǫ ă 1{2. In this paper, we integrate

the reverse hypercontractivity machinery with the method of types, which is capable of showing, among others,

that for sufficiently small (but independent of n) ǫ, the O
´?

n ln3{2 n
¯

term in (2) is ´Ωp?
nq. More precisely,

under a mild differentiability assumption on φcp¨q, we show the following lower bound on the c-dispersion, defined

as the left side of (4):

lim
ǫÓ0

lim sup
nÑ8

rinftln |W1| ` c ln |W2|u ´ nφcpQXY qs2
2n ln 1

ǫ

ě Var
´
∇φc|QXY

pX,Y q
¯

(3)

“ VarpErcıY |U pY |Uq ` ıU ;XpU ;Xq|XY sq (4)

where the infimum is over codes for which PrEns ď ǫ, pU,X, Y q „ QUXY :“ QU |XQXY , QU |X is any infimizer

for (1), and we used the notations

ıY |U py|uq :“ 1

QY |U py|uq , @py, uq; (5)

ıU ;Xpu;xq :“ QX|U px|uq
QXpxq , @pu, xq. (6)

We can take |U | ď |X | ` 2 [2]. We remark that the second-order bound C
b
n ln 1

1´ǫ
in [10] does not give a

nontrivial bound for the dispersion, whereas the present bound (3) is analogous to the dispersion formula in most

other previously solved problems from the network information theory.

Apart from reverse hypercontractivity and functional-entropic duality, another interesting ingredient in our proof is

an argument in analyzing certain information quantity for the equiprobable distribution on a type class (Lemma 2).

We perform an algebraic expansion employing the symmetry of the type class, but different from the standard

tensorization argument for the i.i.d. distribution. This gives rise to a certain martingale, whose variance equals the

gap to the same quantity evaluated for the i.i.d. distribution.

On the achievability side, a previously published upper-bound on the c-dispersion is´b
VarpcıY |U pY |Uqq `

a
VarpıU ;XpU ;Xqq

¯2

[13]. In this paper we use the method of types to show an

improved upper bound of

Var
`
cıY |U pY |Uq ` ıU ;XpU ;Xq

˘
(7)

which generally has a gap to (4). Our achievability proof uses standard techniques, so the main methodological

contribution of the paper is the converse part. We remark that a dispersion formula of the type (7) (in lieu of (4))

has appeared in noisy lossy source coding [14]. However, the auxiliary U in WAK assumes the role of a time

sharing variable (as opposed to a reconstruction alphabet), so it may seem venturesome to draw an analogy and

conjecture (7) to be the true dispersion.

Notation. Given an alphabet Y , define H`pYq as the set of all nonnegative functions on Y , and Hr0,1spYq the

set of functions from Y to r0, 1s. For f P H`pYq, define P pfq :“ EP rf s, and define PY |Xpfq :“ EPY |X“¨
rfpY qs
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as a function on H`pX q. Given an n-type PXY , let TnpPXq be the set of all xn with type PX , and TxnpPY |Xq
the set of all yn such that pxn, ynq is type PXY . The total variation distance is denoted by |P ´ Q|. We use

PX Ñ PY |X Ñ PY to define an output distribution PX for a given input and a random transformation. Define the

Gaussian tail probability Qptq :“
ş8
t

1?
2π
e´ x2

2 dx, for t P R. The bases for all exponentials and entropic quantities

are natural. Unless otherwise stated, the constants used in bounding (e.g. E,F ,G,λ) may depend on c and QXY .

Given a probability measure Q on X , and a functional φ on the probability simplex ∆X , the gradient ∇ φ|Q is a

function on X , and x∇ φ|Q , Qy :“
ş
∇ φ|Q dQ.

II. MAIN RESULTS

A. Converse

All converse analysis in this paper assumes finite alphabets X and Y , and that φcp¨q (defined in (1)) has bounded

second derivatives in a neighborhood of QXY . The main ingredient of the converse proof is the following bound

in the case where the source sequences are equiprobably distributed on a given type class.

Lemma 1. Given QXY and c ě 1, there exists λ P p0, 1q and E ą 0 such that the following holds: for any n-type

PXY such that |PXY ´ QXY | ď λ, let pXn, Y nq be equiprobable on the type class TnpPXY q. If there exists a

WAK coding scheme with error probability ǫ P p0, 1q, then

ln |W1| ` c ln |W2|

ě nφcpPXY q ´ 2c

d
n

minx PXpxq ln
1

1 ´ ǫ

´ E lnn` c lnp1 ´ ǫq. (8)

By averaging the error probability bounded in Lemma 1 over the types, we obtain the following converse for

stationary memoryless sources:

Theorem 1. Fix c ě 1, D P R, and QXY . Let pXn, Y nq „ Qbn
XY . If a WAK coding scheme satisfies

ln |W1| ` c ln |W2| ď nφcpQXY q `D
?
n (9)

for all n then we lower bound the error probability

lim inf
nÑ8

PrEns ě sup
δPp0,1q

δQ

˜
D`

b
2

minx QX pxq
ln 1

1´δb
Varp∇φc|QXY

pX,Y qq

¸
. (10)

In particular, the c-dispersion define as the left side of (4) is lower bounded by Varp∇φc|QXY
pX,Y qq.

Proofs of Lemma 1 and (10) are given in Section IV. After (10) is established, using the fact that limrÑ8
lnQprq

r2
“

´ 1
2

we can lower-bound the c-dispersion as

sup
δPp0,1q

lim
DÑ8

lim sup
nÑ8

D2n

n ¨
´
D`

b
2

minx QX pxq ln 1

1´δ

¯
2

Varp∇φc|QXY
pX,Y qq

“ Varp∇φc|QXY
pX,Y qq (11)

establishing the second claim in Theorem 1.
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B. Achievability

As alluded, we also use the method of types (in lieu of the information spectrum approach of [13]) to obtain the

following improved upper bound on c-dispersion.

Theorem 2. Fix QXY on finite alphabets, c ě 1, and D P R. There exists a WAK scheme scheme for each n such

that

ln |W1| ` c ln |W2| ď nφcpQXY q `D
?
n; (12)

lim sup
nÑ8

PrEns ď Q

ˆ
D?
V

˙
, (13)

where we defined V as (7).

Proof of Theorem 2 is given in Section V. We remark that generally there is a gap between the bounds on

c-dispersion in Theorem 1 and Theorem 2.

III. BASIC PROPERTIES OF THE SINGLE-LETTER EXPRESSION

To better interpret our results and prepare for the proofs, it is instructive to understand some of the basic properties

of the single-letter rate expressions. To fix ideas, let us first recall the situation in the simpler and well-studied

problem of lossy compression of a single source (see e.g. [15]). In that problem, we are given a single source with

per-letter distribution QX , and a per-letter distortion d: U ˆX Ñ R on the reconstruction alphabet and the source

alphabet. If PU |X is an optimizer for ϕλpQXq :“ infPU|X
tIpU ;Xq `λErdpU ;Xqsu, then the stationarity condition

implies that

ıU ;Xpu;xq ` λdpu, xq (14)

is

1) independent of u, PU |XQX -a.s.;

2) equal to ∇ϕλ|QX
pxq, regardless of the choice of the optimal PU |X . It is known (e.g. [15]) that the dispersion

equals Var p∇ϕλ|QX
pXqq.

Now in WAK, our lower and upper bounds on the dispersion in Theorem 1 and Theorem 2, although different,

are both analogous to the solution in single-user lossy source coding in certain senses. More precisely, we observe

Proposition 1 and Proposition 2 below, which are parallel to the two properties listed above for single-user lossy

compression.

Proposition 1. For any QXY on finite alphabets and c ě 1, let PU |X be optimal in the definition of φcp¨q in (1)

and suppose that U is finite1. Then ErcıY |U pY |Uq ` ıU ;XpU ;Xq|UXs is independent of U almost surely.

Proof. Let us introduce the notations

fpP 1
U |Xq “ cHpY 1|U 1q ` IpU 1;X 1q, (15)

1This is merely a simplifying assumption and is without loss of generality. Indeed, Carathéodory’s theorem implies that one can take

|U | ď |X | ` 2 [2].
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gpu, x, yq “ cıY |U py|uq ` ıU ;Xpu;xq, (16)

where P 1
U |X is any random transformation from X to U , and pU 1, X 1, Y 1q „ P 1

U |XQXY . The first order term in the

Taylor expansion of fpP 1
U |Xq´fpPU |Xq equals

ř
u,x,y gpu, x, yqpP 1

U |X´PU |Xqpu, xqQXY px, yq, which must vanish

by the optimality of PU |X . In particular, fix any x such that QXpxq ‰ 0, and suppose that pP 1
U |X ´PU |Xqpu|x1q “ 0

for all u, unless x1 “ x. We then have

ÿ

u

ErgpU,X, Y q|U “ u,X “ xspP 1
U |X ´ PU |Xqpu, xq “ 0. (17)

This shows that p
ř

u ErgpU,X, Y q|U “ u,X “ xsq
uPU is orthogonal to the subspace of vectors whose coordinates

sum to zero, so itself must be a vector with constant coordinates (depending possibly on x but not u).

We remark that cıY |U py|uq ` ıU ;Xpu;xq is generally not independent of u. Below is an explicit example.

Binary symmetric sources: Suppose that X and Y are both equiprobable on t´1, 1u and ErXY s “ ρ. Consider

any c P rρ´2,8q. Remark that c ă ρ´2 is the degenerate case since ρ2 is the strong data processing constant. Let

U be equiprobable on t´1, 1u and such that U ´X ´ Y and ErUXs “ η, where η is defined as the solution to

c “
ln 1`η

1´η

ρ ln 1`ηρ
1´ηρ

. (18)

Note that the η satisfying (18) maximizes cHpY |Uq ` IpU ;Xq for the given c and ρ. Using Mrs. Gerbers lemma

(see e.g. [16]) one can show that such PU |X is an infimizer for (1). We can compute that

cıY |U p1|1q ` ıU ;Xp1; 1q “ c ln
2

1 ` ρη
` lnp1 ` ηq; (19)

cıY |U p1| ´ 1q ` ıU ;Xp´1; 1q “ c ln
2

1 ´ ρη
` lnp1 ´ ηq. (20)

Proposition 2. For any QXY on finite alphabets and c ě 1, suppose that φcp¨q is differentiable at QXY . Then for

any optimal PU |X ,

ErcıY |U pY |Uq ` ıU ;XpU ;Xq|X,Y s “ ∇ φc|Q pX,Y q. (21)

In particular, the left side does not depend on the choice of the optimal PU |X .

Proof. Recall that φcpQXY q is defined as the infimum of cHpY |Uq ` IpU ;Xq over PU |X . As a general fact, the

derivative of an infimum equals the partial derivative of the objective function evaluated at an optimizer, under

suitable differentiability assumption (see e.g. the calculation in [17, Lemma 13]. Now for fixed PU |X , the partial

derivative of cHpY |Uq ` IpU ;Xq with respect to QXY equals the left side of (21).

IV. PROOF OF THE CONVERSE

A. Overview

1) Fixed Composition Argument: Imagine that a genie tells all encoders and decoders the joint type of the source,

and they all design coding strategies for each type. This oracle setup gives a converse to the original problem in the

stationary memoryless setting. For the purpose of second-order rate analysis, the intuition behind many previously

solved problems (including the challenging ones such as the Gray-Wyner network [18]) may be described as follows.
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One roughly sees a dichotomy: for some “good types”, the error probability essentially equals 1, and for the rest

“bad types”, the error probability is essentially 0. Thus the total error probability is tightly approximated by the

probability of those “bad types”.

2) Challenge of Fixed Composition Argument for WAK: In network information theory problems where the

auxiliary in the single-letter expression satisfies a Markov chain, a straightforward fixed composition argument as

described above does not seem to give even a strong converse (unsurprisingly, since otherwise the authors of [3][2]

who are familiar with the method of types would not need the blowing-up lemma for strong converses in [3]).

Moreover, when the blowing-up lemma is applied to a type class, the second-order term is still Op?
n ln3{2 nq, no

better than the i.i.d. case. As a side remark, some computations by the author indicate that the above 0-1 dichotomy

may not be true when the auxiliary satisfies a Markov chain.

3) New Machineries: In the present paper, we perform fixed composition analysis in the nonvanishing error

regime, and the second-order rate is improved to Op?
nq. In lieu of the blowing-up lemma, we use the dual

representation of φcp¨q as well as reverse hypercontractivity –both ingredients integrate naturally and are responsible

for the improved rates. We remark that the Op?
nq rate is the same order as the i.i.d. case in [10]. Because it is

not op?
nq, we do not get a clean bound on the second-order term for each ǫ P p0, 1q; we have a bound involving

nuisance constants depending on QX (see (10)). However, the beauty of the dispersion (4) is that the nuisance

constant disappears as ǫ Ñ 0. The technical part of the paper is to show that there exists the “magic operator”

Λ we used in the proof of the converse. This is done in Section VI, where we use the estimate of the modified

log-Sobolev constant in [19].

B. Proof of Lemma 1

Suppose that f : Xn Ñ W1, g : Yn Ñ W2 are the encoders, and V : W1 ˆ W2 ÞÑ Yn denotes the decoder. For

each w P W1, define the “correctly decodable set”:

Bw :“ tyn : V pw, gpynqq “ ynu. (22)

Let PXnY n be the equiprobable distribution on TnpPXY q. By the assumption,
ż
PY n|XnrBfpxnq|xns dPXnpxnq ě 1 ´ ǫ. (23)

Next, we lower bound the error probability using the functional inequality and reverse hypercontractivity approach.

We introduce a “magic” linear operator Λn,t : H`pYq Ñ H`pYq, apply it to the indicator function of a decodable

set, and plug the resulting function into the functional inequality. To streamline the presentation, we postpone the

definition of Λn,t to (110). The key properties of Λn,t, the proofs of which deferred to Section VI, are the following:

for f P Hr0,1spYnq and t “ 1{?
n,

‚ Lower bound (112) PY n|Xnpln Λn,tfq ě Op?
nq lnPY n|Xnpfq,

‚ Upper bound (117) PY npΛn,tfq ď exppOp?
nqqPY npfq.

Now, for any t ą 0,

p1 ´ ǫqcp1` 1

t q

September 14, 2018 DRAFT
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ď
ż
P

cp1` 1

t q
Y n|Xn rBfpxnq|xns dPXnpxnq (24)

“
ÿ

wPW1

ż

xn : fpxnq“w

P
cp1` 1

t q
Y n|Xn rBw|xns dPXnpxnq (25)

ď |W1|
ż
P

cp1` 1

t q
Y n|Xn rBw˚|xns dPXnpxnq (26)

ď |W1|
ż
exp

`
cPY n|Xn“xnpln Λn,t1Bw˚ q

˘
dPXn (27)

ď ed|W1|P c
Y npΛn,t1B

w˚ q (28)

ď ed|W1| expe
ˆ

nt

minx PXpxq

˙
P c
Y nrBw˚s (29)

ď ed|W1| expe
ˆ

nt

minx PXpxq

˙
|W2|c ¨ |TnpPY q|´c. (30)

Here,

‚ (24) used Jensen’s inequality.

‚ For (26), we can clearly choose some w˚ P W1 such that this line holds.

‚ (27) used the precise form of the lower bound stated above. This is the reverse hypercontractivity step.

‚ For (28), we defined2

d :“ sup
SXn

tcDpSY n}PY nq ´DpSXn}PXnqu (31)

where SXn Ñ PY n|Xn Ñ SY n . A basic functional-entropic duality result (see e.g. [20]) is that

d “ sup
fPH`pYnq

!
lnPXnpecPY n|Xn pln fqq ´ c lnPY npfq

)
(32)

which is the key functional-entropic duality step.

‚ (29) used the precise form of the upper bound stated above.

‚ (30) used |Bw˚| ď |W2|.

We thus obtain

ln |W1| ` c ln |W2|

ě ´d` c ln |TnpPY q|

´ inf
tą0

"
nt

minx PXpxq ` c

ˆ
1 ` 1

t

˙
ln

1

1 ´ ǫ

*
(33)

ě ´d´ c ln |TnpPY q| ` c lnp1 ´ ǫq

´ 2c

d
n

minx PXpxq ln
1

1 ´ ǫ
. (34)

Lemma 2 bounds ´d´ c ln |TnpPY q|, and we are done.

Remark 1. From the proof we see that the result continues to hold if the Y-encoder is allowed to access the message

of the X -encoder: g : Y ˆ W1 Ñ W2.

2It is interesting to note that the largest c ą 1 for which d “ 0 equals the reciprocal of the strong data processing constant.
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Remark 2. We used Jensen inequality to get (26) from (23). In contrast, [2] used a reverse Markov inequality,

essentially deducing from (23) that

PXnrxn : PY n|Xn“xnrBw˚s ě 1 ´ ǫ1s ě ǫ1 ´ ǫ

ǫ1|W1| (35)

which gives rise to a new parameter ǫ1 to be optimized. It is possible to follow (35) with the functional approach

as we did in [10]. However, proceeding with (26) is more natural and better manifests the simplicity and flexibility

of the functional approach [10].

C. Proof Theorem 1

Let PXY be an arbitrary n-type such that |PXY ´ QXY | ď λ as in Lemma 1. Then if the error probability

conditioned on type PXY is less than δ P p0, 1{2q, we have

nφcpQXY q `D
?
n ě nφcpPXY q ´ 2c

b
n

minx PXpxq ln
1

1´δ

´ E lnn´ c ln 2. (36)

Remark that the last two terms will be immaterial for the asymptotic analysis. Note that by the Taylor expansion,

there exists F ą 0 (depending on QXY and c) such that for any PXY in the λ-neighborhood of QXY ,

φcpPXY q ě φcpQXY q ` x∇ φc|Q , PXY ´QXY y

´ F |PXY ´QXY |2. (37)

Combining the two bounds above, the error conditioned on type PXY exceeds δ if

nx∇ φc|Q , PXY ´QXY y

ą D
?
n ` 2c

d
n

minx PXpxq ln
1

1 ´ δ

` E lnn` nF |PXY ´QXY |2 ` c ln 2. (38)

Now particularize PXY to be the empirical distribution of pXn, Y nq „ Qbn
XY . Then with probability 1´Ope´n1{3q

we have |PXY ´ QXY | ă n´1{3 (by Hoeffding’s inequality) and 1
minx PX pxq ă 2

minx QX pxq , and (38) holds if (for

some G ą 0)

nÿ

i“1

φc|Q pXi, Yiq ´ Erφc|Q pX,Y qs

ą D
?
n` 2c

d
2n

minxQXpxq ln
1

1 ´ δ
`Gn1{3. (39)

Thus by CLT, we conclude that the probability of type with error exceeding δ is at least

Q

¨
˝
D `

b
2

minx PX pxq ln
1

1´δb
Varp∇ φc|Q pX,Y qq

˛
‚´ op1q. (40)
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The c-dispersion is then lower bounded by

lim
DÑ8

D2

2 ln 1
δ

´ 2 lnQ

˜
D`

b
2

minx PX pxq ln 1

1´δ?
Varp∇φc|QpX,Y qq

¸

“ Varp∇ φc|Q pX,Y qq. (41)

D. Single-letterization on Types

Given an n-type PXY , let PXnY n be the equiprobable distribution on TnpPXY q, and let PY n|Xn be the induced

random transformation defined for distributions supported on TnpPXq. Let

ψc,npPXY q :“ inf
SXn

tcHpSY nq `DpSXn}PXnqu. (42)

Here, the infimum is over SXn supported on TnpPXq, and we have set SY n by SXn Ñ PY n|Xn Ñ SY n .

Lemma 2. Given QXY and c ě 1, there exists λ P p0, 1q and E ą 0 such that for any n-type PXY : |PXY ´QXY | ă
λ,

ψc,npPXY q ě nφcpPXY q ´ E lnn. (43)

Proof. Under the assumption that φc has bounded second derivatives in a neighborhood of QXY , there exists

λ P p0, 1q and E1 ą 0 large enough such that

φcpSXY q ě φcpPXY q ` x∇ φc|PXY
, SXY ´ PXY y

´ E1}SXY ´ PXY }2 (44)

for any PXY : |PXY ´ QXY | ď λ and any SXY in the probability simplex (the Taylor expansion proves (44) for

SXY in a neighborhood of PXY . Then using the boundedness of φcp¨q we can extend (44) to all SXY by choosing

E1 large enough). Here } ¨ } denotes the ℓ2 norm, although any norm admitting an inner product would work.

Consider any SXn supported on TnpPXq, and put SXnY n “ SXnPY n|Xn . Let I be equiprobable on t1, . . . , nu
and independent of pXn, Y nq under S. Let XzI denote the coordinates excluding the I-th one. We have

HpSY nq “ HpSYI |I |SIq `HpSYzI |IYI
|SIYI

q (45)

ě HpSYI |I |SIq `HpSYzI |IXIYI
|SIXIYI

q, (46)

DpSXn}PXnq

“ DpSXI |I}PXI
|SIq `DpSXzI |IXI

}PXzI |XI
|SIXI

q (47)

“ DpSXI |I}PXI
|SIq `DpSXzI |IXIYI

}PXzI |XIYI
|SIXIYI

q (48)

where (48) follows from XzI ´ IXI ´ YI under S. Noting that PXI
“ PX and SIXIYI

“ SI|XI
PXY , we can

bound the weighted sum of the first terms in the above two expansions:

cHpSYI |I |SIq `DpSXI |I}PXI
|SIq ě φcpPXY q. (49)
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To bound the weighted sum of the second terms in (46) and (48), for any px, yq, define

P
xy
XY px1, y1q :“ 1

n´1
rnPXY px1, y1q ´ 1px1,y1q“px,yqs, @px1, y1q. (50)

That is, P
xy
XY denotes the pn ´ 1q-type obtained by removing one pair px, yq from sequences of the type n-type

PXY . Then

cHpSYzI |IXIYI
|SIXIYI

q `DpSXzI |IXIYI
}PXzI |XIYI

|SIXIYI
q

ě
ÿ

x,y,i

ψc,n´1pP xy
XY qSIXIYI

pi, x, yq (51)

“
ÿ

x,y,i

ψc,n´1pP xy
XY qPXY px, yq. (52)

Summarizing and iterating,

ψc,npPXY q ě φcpPXY q ` Erψc,n´1pPXY ` ∆1qs (53)

ě . . . (54)

ě
n´1ÿ

k“0

ErφcpPXY ` ∆1 ` ¨ ¨ ¨ ` ∆kqs (55)

where we defined the sequence ∆1,∆2, . . . of random vectors in the following way: conditioned on ∆1,∆k, denote

SXY :“ PXY ` řk
i“1 ∆k, and then ∆k`1 :“ S

xy
XY ´SXY with probability SXY px, yq for each px, yq. Using (44),

and noting that ∆1 ` ¨ ¨ ¨ ` ∆k is a zero mean martingale, we have

ψc,npPXY q ě nφcpPXY q ´ E1
n´1ÿ

k“1

E}∆1 ` ¨ ¨ ¨ ` ∆k}2

ě nφcpPXY q ´ E1
n´1ÿ

k“1

pn ´ kqE}∆k}2 (56)

“ nφcpPXY q ´ E1
n´1ÿ

k“1

pn ´ kq ¨ 4

pn´ kq2 (57)

“ nφcpPXY q ´ 4E1p1 ` lnpn ´ 1qq (58)

where (57) follows from the fact that }∆k} ď |∆k| ď 2
n´k

with probability 1. Taking E “ 10E1 completes the

proof.

V. PROOF OF THE ACHIEVABILITY

We first make a few preliminary observations about the optimization problem in the definition of φc:

Proposition 3. Let c ą 0, and QXY be fully supported on the finite set X ˆ Y (that is, PXY px, yq ą 0 for each

px, yq). Let P ‹
U |X be an infimizer for (1). Assume without loss of generality that P ‹

U is fully supported on some

finite set U . Then

1) P ‹
U |X“x

is also fuly supported on U for each x.

2) as long as IpU ;Xq ą 0, pU,Xq „ P ‹
U |XQX , we have

∇PU|X
IpU ;Xq

ˇ̌
P ‹

U|X

‰ 0. (59)
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Proof. The proofs follow from the first-order optimality condition. For the first claim, note that if PU is fully

supported and PU |Xpu|xq “ 0, we have B
BPU|Xpu|xqIpU ;Xq

ˇ̌
ˇ
P ‹

U|X

“ ´8 whereas B
BPU|Xpu|xqHpY |Uq

ˇ̌
ˇ
P ‹

U|X

. This

contradicts the optimality of P ‹
U |X . For the second claim, observe that IpU ;Xq ą 0 under P ‹

U |XQX implies the

existence of some x such that pıU ;Xpu;xqq
uPU , which equals to ∇PU|X“x

IpU ;Xq
ˇ̌
P ‹

U|X

up to an additive constant,

cannot be a vector with constant coordinates.

We next define the encoders and the decoder for each type of Xn, and perform the error analysis. One challenge

in an obvious strategy is that the compression lengths for the two encoders will have to depend on the type pPXn ,

even though their weighted sum does not vary with the type. A remedy is to perturb the “encoder” PU |X according

to pPXn , so that each individual compression length does not vary with pPXn either. We will see that (59) guarantees

that we can find such a perturbation to “trade off” the two compression lengths; the first-order optimality condition

∇PU|X
IpU ;Xq

ˇ̌
P ‹

U|X

` c ¨ ∇PU|X
HpY |Uq

ˇ̌
P ‹

U|X

“ 0, (60)

where pU,X, Y q „ PU |XQXY , ensures that such “trade-off” does not affect the weighted sum.

Encoder 1: Define M1 by

logM1 “ nIpU‹;X‹q ` n0.02 (61)

where

pU‹, X‹, Y ‹q „ P ‹
U |XQXY . (62)

Encoder 1 constructs a codebook consisting of M1 codewords i.i.d. according to P ‹bn
U . Upon observing Xn,

Encoder 1 will send the index of pPXn (using Oplog nq bits) and then send the index of the codeword. The codeword

is selected in the following way: For each pPXn satisfying

| pPXn ´QX | ď n´0.49, (63)

we define below a PU |X which is a perturbation of P ‹
U |X . Then upon observing Xn, the encoder selects the first

codeword Un such that pUn, Xnq has type PU |X pPXn (if any).

To define such a PU |X associated with each pPXn , we can first pick a fixed P 1
U |X such that

B
BtIpQX , tP

1
U |X ` p1 ´ tqP ‹

U |Xq
ˇ̌
ˇ̌
t“0

‰ 0. (64)

This is possible in view of Proposition 3. Then take

PU |X “ tP 1
U |X ` p1 ´ tqP ‹

U |X , (65)

rounded such that PU |X pPXn is n-type, where

t :“ ´

〈

ıU‹;X‹ , P ‹
U |Xp pPXn ´QXq

〉

B
BtIpQX , tP

1
U |X ` p1 ´ tqP ‹

U |Xq
ˇ̌
ˇ
t“0

. (66)

Encoder 2: Each yn sequence is mapped randomly to one of M2 bins, where we defined M2 by

logM2 “ nHpY ‹|U‹q ` D

c

?
n` n0.03, (67)
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and the bin index is sent.

Decoding rule: The decoder receives pPXn , and hence knows the previously agreed PU |X as long as (63)

holds. The decoder selects the yn sequence in the m2-th bin that minimizes the empirical conditional entropy

Hp pPyn|un | pPunq.

Error analysis:

‚ Let E0 be the event that

| pPUnXnY n ´ P ‹
U |XQXY | ą n´0.49. (68)

Using the Bernstein inequality, we can show that with high probability, | pPXnY n ´QXY | ď Opn´0.49q, which

in turn implies that }PU |X ´ P ‹
U |X} ď Opn´0.49q (of course, the choice of the norm is immaterial). More

precisely, we have

PrE0s “ Ope´n0.001 q. (69)

‚ Let E1 be the event that no codeword is selected by Encoder 1. We first argue that Ec
0 guarantees that

nDpPU |X}Q‹
U | pPXnq ` n0.01 ď logM1. (70)

Indeed, Ec
0 implies

| pPXn ´QX | ď n´0.49, (71)

which in turn implies

t “ Opn´0.49q, (72)

and

sup
x

|PU |X“x ´ P ‹
U |X“x| “ Opn´0.49q. (73)

Then by the Taylor expansion we have

DpPU |X}P ‹
U | pPXnq

“ IpU‹;X‹q `
〈

ıU‹;X‹ , pPU |X ´ P ‹
U |XqQX

〉

`
〈

ıU‹;X‹ , P ‹
U |Xp pPXn ´QXq

〉

`Opn´0.98q. (74)

The choice of PU |X in (65) ensures that the second and the third terms in (74) cancel, so that (70) is fulfilled.

Next, recalled that each codeword is generated according to P ‹bn
U . Conditioned on any pPXn , a codeword and

Xn has the joint type PU |X pPXn with probability e´nDpPU|X}P ‹
U | pPXn q´Oplognq. Hence for any pPXn satisfying

(71), using (70) we have

PrE1| pPXns ď r1 ´ e´nDpPU|X}P ‹
U | pPXn q´OplognqsM1 (75)

ď Opexpp´e0.001nqq, (76)
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and consequently,

PrE1zE0s ď Opexpp´e0.001nqq. (77)

‚ Let E2 be the event that there exists some y1n ‰ Y n such that the conditional entropy for its conditional

empirical distribution is smaller:

Hp pPy1n|Un | pPUnq ă Hp pPY n|Un | pPUnq, (78)

where Un denotes the codeword selected by Encoder 1, and y1n and Y n are assigned to the same bin by

Encoder 2. Since there are at most enHp pPY n|Un | pPUnq sequences in Yn and since each sequence is mapped to

the same bin as Y n with probability 1{M2, by the union bound we have

PrE2zE0s ď E

«
1Ec

0
^ enHp pPY n|Un | pPUn q

M2

ff
. (79)

We now simplify (79) using the Taylor expansion. Under Ec
0 , we have

nHp pPY n|Un | pPUnq “ nHpY ‹|U‹q ´ n
〈

ıY |U , pPUnY n ´ P ‹
UY

〉

`Opn0.02q. (80)

“
nÿ

i“1

ıY |U pYi|Uiq `Opn0.02q. (81)

Therefore,

PrE2zE0s ď Ope´n0.04q ` P

«
Ec
0 ,

nÿ

i“1

ıY |U pYi|Uiq ´ nHpY ‹|U‹q ´ D

c

?
n ą 0

ff
(82)

Define a random variable S :“ řn
i“1 ıY |U pYi|Uiq ´ nHpY ‹|U‹q. Conditioned on each pPXn satisfying

(71), notice that pUn, Xnq has the empirical distribution PU |X pPXn , and the conditional distribution of

1?
n

´
S ´ ErS| pPXns

¯
converges to that of a Gaussian distribution. Under Ec

0 , the conditional mean is

E

”
S

ˇ̌
ˇ pPXn

ı
“ n

〈

ıY |U , PU |X pPXnQY |X
〉

´ nHpY ‹|U‹q (83)

“ n

〈

ıY |U ` 1

c
ıU ;X , PU |X pPXnQY |X

〉

´ nHpY ‹|U‹q ´ n

c
IpU‹;X‹q

´ n

c

〈

ıU ;X , PU |X pPXnQY |X
〉

` n

c
IpU‹;X‹q (84)

“ n

〈

ıY |U ` 1

c
ıU ;X , PU |X pPXnQY |X ´ P ‹

U |XQXY

〉

`Opn0.02q (85)

“ n

〈

ıY |U ` 1

c
ıU ;X , P

‹
U |Xp pPXn ´QXqQY |X

〉

`Opn0.02q (86)

“
nÿ

i“1

EP ‹
U|X

QY |X

„
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌X “ Xi


´ 1

c
φcpQXY q `Opn0.02q, (87)

where

– (85) follows from bounding the last two terms in the previous step:

〈

ıU ;X , PU |X pPXnQY |X
〉

´ IpU‹;X‹q

“
〈

ıU ;X , pPU |X ´ P ‹
U |XqQXY

〉

`
〈

ıU ;X , P
‹
U |Xp pPXn ´QXqQY |X

〉

`Opn´0.98q (88)

“ Opn´0.98q, (89)
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where we used the Taylor expansion and the definition of PU |X in (65).

– To see (86), we note that

〈

ıY |U ` 1

c
ıU ;X , pPU |X ´ P ‹

U |Xqp pPXn ´QXqQY |X

〉

“ O
´

}PU |X ´ P ‹
U |X} ¨ | pPXn ´QX |

¯
“ Opn´0.98q

(90)

and moreover, the first order optimality of P ‹
U |X implies

〈

ıY |U ` 1

c
ıU ;X , pPU |X ´ P ‹

U |XqQXY

〉

“ Op}PU |X ´ P ‹
U |X}2q “ Opn´0.98q. (91)

These two inequalities show the step from (85) to (86) upon rearrangements.

The conditional variance is bounded as

1

n
Var

´
S

ˇ̌
ˇ pPXn

¯
“ E pPXnPU|X

“
VarQY |X

`
ıY |U |UX

˘‰
(92)

“ E pPXnPU|X

„
VarQY |X

ˆ
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌UX

˙
(93)

“ EQXP ‹
U|X

„
VarQY |X

ˆ
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌UX

˙
`Opn´0.49q (94)

“ EQXP ‹
U|X

„
VarQY |X

ˆ
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌X

˙
`Opn´0.49q (95)

where (92) follows since the distribution of S depends only on the empirical distribution pUn, Xnq, which is

PU |X pPXn , and (95) follows from Proposition 1.

Finally, for each type pPXn under Ec
0 , by the Berry-Esseén central limit theorem we see that

P

„
1?
n
S ´ E

„
1?
n
S

ˇ̌
ˇ̌ pPXn


ą λ

ˇ̌
ˇ̌ pPXn


ď PrGn ą λs ` ξn, @λ P R (96)

where Gn „ N p0, σ2
nq, with σ2

n defined as the right side of (94), and ξn is some op1q sequence depending

only on QXY , P ‹
U |X , and c. Writing in an equivalent way, we have

P

„
1?
n
S ą λ

ˇ̌
ˇ̌ pPXn


ď P

„
Gn ` E

„
1?
n
S

ˇ̌
ˇ̌ pPXn


ą λ

ˇ̌
ˇ̌ pPXn


` ξn, @λ P R. (97)

The result then follows by unconditioning on pPXn . Note that we essentially bounded the variance proxy of

1?
n
S as

1

n
E

”
Var

´
S

ˇ̌
ˇ pPXn

¯ı
` 1

n
Var

´
E

”
S

ˇ̌
ˇ pPXn

ı¯

“ EQXP ‹
U|X

„
VarQY |X

ˆ
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌X

˙

` Var

ˆ
EP ‹

U|X
QY |X

„
ıY |U ` 1

c
ıU ;X

ˇ̌
ˇ̌X

˙
`Opn´0.49q (98)

“ VarQY |X

ˆ
ıY |U ` 1

c
ıU ;X

˙
`Opn´0.49q. (99)

VI. APPENDIX: REVERSE HYPERCONTRACTIVITY FOR THE TRANSPOSITION MODEL

In this section we construct the “magic operator” Λn,t used in Section IV through several stages.
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A. The Transposition Model

Let S “ t1, . . . , nu. Consider a reversible Markov chain where the state space Ω consists of the n! permutations

of the sequence p1, 2, . . . , nq, and the generator is given by

Lnf :“ 1

n

ÿ

1ďi,jďn

pfσij ´ fq (100)

for any real-valued function f on Ω, where fσij denotes the composition of two mappings, and σij denotes the

transposition operator. That is, σij switches the i-th and the j-th coordinates of a sequence for any sn P Ω,

pσijsnqk :“

$
’’’&
’’’%

si k “ j;

sj k “ i;

sk otherwise.

(101)

As an alternative interpretation of this Markov chain, whenever a Poisson clock of rate 1
n

clicks, an index pair

pi, jq P t1, . . . , nu2 is randomly selected and the corresponding coordinates are switched. Remark that the rate at

which each coordinate changes its value roughly equals 1, which is the same as the semi-simple Markov Chain we

used in [10]. Functional inequalities such as Poincaré, log-Sobolev, and modified log-Sobolev for such a Markov

chain have been studied to bound its mixing time under various metrics. In particular, we recall the following upper

bound on the modified log-Sobolev constant in [19], which was proved using a chain-rule and induction argument:

Theorem 3 ([19]). Let P be the equiprobable distribution on Ω. For any n ě 2,

DpS}P q ď ´E

„ˆ
Ln log

dS

dP

˙
pXq


, @S ! P, (102)

where X „ S.

It is known (e.g. [21, Theorem 1.11]) that a modified log-Sobolev inequality is equivalent to a reverse

hypercontractivity of the corresponding Markov semigroup operator eLnt :“ ř8
k“0

tk

k!
Lk
n. We thus have

Corollary 1. In the transposition model, For any q ă p ă 1, t ě ln 1´q
1´p

, and f P H`pΩq,

}eLntf}LqpΩq ě }f}LppΩq. (103)

We remark that the norms in (103) are with respect to the equiprobable measure P . By taking the limits, we

have

}f}L0pΩq “ exp pP pln fqq . (104)

B. Reverse Hypercontractivity on Types

Now consider any finite Y and a Markov chain with state space Yn. With a slight abuse of notation, let Ln

also denote the generator of this new Markov chain. Let PY be an n-type. Note that TnpPY q is invariant under

transposition and hence also an invariant subspace for the chain. We now prove a reverse hypercontractivity for the
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Markov semigroup operator for this new chain. Pick any map φ : S Ñ Y such that |φ´1pyq| “ nPY pyq for each y.

Then the extension φn defines a function Ω Ñ TnpPY q. Now for any f P H`pYnq, from (103) we have

}eLntpfφnq}LqpΩq ě }fφn}LppΩq. (105)

We claim that (105) is equivalent to

}eLntf}LqpTnpPY qq ě }f}LppTnpPY qq. (106)

Indeed, }fφn}LppΩq “ E
1

p rpfφnpSnqqps “ E
1

p rfppY nqs “ }f}LppTnpPY qq. Here, LppTnpPY qq is with respect to

the equiprobable measure on TnpPY q, and so the value of f on YnzTnpPY q is immaterial. Moreover, from the

definitions we can see that φn commutes with transposition, so
`
eLntpfφq

˘
psnq “ peLntfqpφnpsnqq for any sn P Ω,

and the left sides of (105) and (106) are therefore also equal by the same argument.

We remark that for PY not concentrated on a y P Y and as n Ñ 8, we don’t lose too much tightness in

the composition step argument, and the estimate in (106) is sharp. That is, the modified log-Sobolev constant is

indeed of the constant order; the lower bound can be seen by taking linear functions in the corresponding Poincaré

inequality, which is weaker than the modified log-Sobolev inequality.

C. Conditional Types: the Tensorization Argument

Let X and Y both be finite sets. For any xn P Xn, define a linear operator Lxn : H`pYnq Ñ H`pYnq by

Lxnf :“
ÿ

xPX

1

n pPxnpxq
ÿ

i,j : xi“xj“x

pfσij ´ fq. (107)

where we recall that pPxn denotes the empirical distribution of xn. Note that Lxn is the generator of the Markov

chain where independently for each x P X , the length nPXpxq subsequence of Yn with indices ti : xi “ xu
is the transposition model in Section VI-B. Since Lxn is the sum of |X | generators for transposition models,

the Markov semigroup operator eLxnt is a tensor product, which satisfies the reverse hypercontractivity with the

same constant, by the tensorization property (see e.g. [21]). Therefore for any n-type PXY , xn P TnpPXq, and

f : H`pYnq Ñ H`pYnq,

}eLxntf}LqpTxn pPY |Xqq ě }f}LppTxnpPY |Xqq. (108)

D. A Dominating Operator

The operator in (108) depends on xn and hence cannot be used directly in the proof of Lemma 1. We now find

an upper bound which is independent of xn. Define a linear operator L̃n : H`pYnq Ñ H`pYnq by

L̃nfpynq “ 1

nminx PXpxq
ÿ

1ďi,jďn

fpσijynq. (109)

Note that the summation includes the i “ j case, where σij becomes the identity. From the general formula

d
d t

peLtfq “ LeLtf we can see a comparison property: since the matrix of L̃n entry-wisely dominate Lxn , we have

eL̃ntf ě eLxntf pointwise for any t ě 0 and f P H`pYnq. Now consider

Λn,t :“ eL̃nt, @t ą 0 (110)
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which forms an operator semigroup (although not associated with a conditional expectation). Now Λn,t is the

operator we used in the proof of Lemma 1, and the two key properties we used are:

Lower bound: for any f : Yn Ñ r0, 1s,

exppPY n|Xn“xnpln Λn,tfqq

“ }Λn,tf}L0pTxnpPY |Xqq

ě }eLxntf}L0pTxn pPY |Xqq (111)

ě }f}
L1´e´tpTxnpPY |X qq

ě P
1

1´e´t

Y n|Xn“xnpfq

ě P
1` 1

t

Y n|Xn“xnpfq (112)

where (112) follows from et ě 1 ` t.

Upper bound (in fact, equality): For any f : Yn Ñ r0,8q,

d

d t
PY npΛn,tfq

“ PY npL̃nΛn,tfq (113)

“ 1
nminx PX pxq

ÿ

ynPTnpPY q
PY npynq

ÿ

i,j

pΛn,tfqpσijynq (114)

“ n
minx PX pxq

ÿ

znPTnpPY q
PY npznqpΛn,tfqpznq (115)

“ n
minx PX pxq PY npΛn,tfq (116)

where (115) used the fact that PY n is the equiprobable distribution on TnpPY q. Thus

PY npΛn,tfq “ expe

ˆ
nt

minx PXpxq

˙
PY npfq. (117)

VII. DISCUSSION

Through the example of the Wyner-Ahlswede-Körner (WAK) network, we supplied the mathematical ingredients

needed for extending this new converse approach to other potential applications. There are several distributed source

type problems which are very similar to the WAK problem. For example using a tensor product semigroup for the

stationary memoryless settings, [22] proved an Op?
nq second-order converse for common random generation with

one-way rate limited communications. It appears straightforward to upgrade to dispersion bounds and obtain similar

results as WAK, by following the same steps therein but using the techniques of the present paper.
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