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Abstract—Statistical inference may follow a frequentist ap-
proach or it may follow a Bayesian approach or it may use the
minimum description length principle (MDL). Our goal is to iden-
tify situations in which these different approaches to statistical
inference coincide. It is proved that for exponential families MDL
and Bayesian inference coincide if and only if the renormalized
saddle point approximation for the conjugated exponential family
is exact. For 1-dimensional exponential families the only families
with exact renormalized saddle point approximations are the
Gaussian location family, the Gamma family and the inverse
Gaussian family. They are conjugated families of the Gaussian
location family, the Gamma family and the Poisson-exponential
family. The first two families are self-conjugated implying that
only for the two first families the Bayesian approach is consistent
with the frequentist approach. In higher dimensions there are
more examples.

I. INTRODUCTION

In this paper we are interested in predition of the fu-

ture given the past. We assume that a sequence xm
1 =

x1, x2, . . . , xm has been observed and the goal is to predict

the next symbols xn
m+1 = xm+1, xm+2, . . . , xn in the sense

that we will assign a probability or a probability density to this

sequence. The prediction is compared with iid models given by

a parametrized family (Pθ)θ∈Θ of probability distributions that

assign probability
∏n

i=1 Pθ (xi) (or the corresponding density)

to the sequence xn
1 . One may think of the elements of the

family (Pθ)θ∈Θ as the models that some experts can choose

among. For the techniques used in this paper the restriction to

iid models is crusial, but some of the results may generalize

to non-iid models.

All measures will be described by their density with respect

to a dominating measure λ. Data are assumed to lie in X ⊆
R

d and vectors will be marked with bold face. Assume that

(Pθ)θ∈Θ is a natural exponential family with

dPθ

dλ
(x) =

exp (θ · x)

Z (θ)
= exp (θ · x−A (θ)) .

Here Z (θ) =
∫

exp (θ · x) dλx is the moment generating

function and A (θ) = ln (Z (θ)) is the cumulant generating

function. If the parameter has value θ then the mean value

is µθ = ∇A (θ) . The density dPθ

dλ will be denoted pθ, but

sometimes we will also use pθ for iid sequences.

One approach is the frequentist approach where the se-

quence xn
1 is generated by the distribution Pθ for some true

but unknown value of θ. The sequence xm
1 is used to make

inference about the value of θ in terms of a confidence region.

In a Bayesian approach one has a prior distribution π on the

true parameter θ and the sequence xm
1 is used to calculate a

posterior distribution of θ as

pθ (x
m)π (θ)

∫

Θ
pθ (xm)π (θ) dθ

.

Then the posterior distribution of xn
m+1 is given by

pπ
(

xn
m+1 | xm

)

=

∫

Θ

pθ
(

xn
m+1

)

dπ (θ | xm) (1)

=

∫

Θ

pθ
(

xn
m+1

) pθ (x
m)π (θ)

∫

Θ
pθ (xm)π (θ) dθ

dθ

One of the main problems is Bayesian statistics is the question

of how to determine the prior distribution π.
The moment generating function Z is related to the Laplace

transform of the measure λ, so any of the functions Z and

A can be used to reconstruct λ. The Hesse matrix of A
with respect to θ equals the co-variance matrix Cov (µθ).
The Fisher information matrix with respect to the natural

parameter is Cov (µθ) so that Jeffreys’ prior is proportional

to |Cov (µθ)|
1/2

. Therefore Jeffreys’ posterior distribution of

the parameter θ after observing a sequence of length m with

average x̄ is proportional to

exp (m · (θ · x̄−A (θ))) · |Cov (µθ)|
1/2

.

One motivation for using Jeffreys’ prior is that it is considered

as an uninformative prior. Another motivation is that if one

restricts to a bounded subset whose closure is in the interior

of the full parameter space, then the use of Jeffrey’s prior is

asymptotically optimal in a MDL sense [1].

A co-variance matrix is positive semi-definite so the cu-

mulant generating function is convex. The convex conju-

gate of the cumulant generating function A is A∗ (x) =
supθ {θ · x−A (θ)} . The conjugate parameter x∗ equals the

value of θ such that Pθ has mean value x, i.e. x∗ is the

solution to the equation ∇A (θ) = x. Usually the conjugate

parameter x∗ is denoted θ̂ (x) and is called the maximum

likelihood estimate of θ. We can define the conjugated ex-

ponential family (if it exists) as the exponential family with

sufficient statistic θ and with cumulant generating function

A∗ (x) .
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Remark 1. For an exponential family the conjugated exponen-

tial family gives a set of “conjugated priors” as this concept

is defined in the literature on Bayesian statistics (see [2] and

[3, Sec. 12.2.6]), but a set of “conjugated priors” need not

coincide with the conjugated exponential family as it is defined

in this paper.

The Bregman divergence generated by the convex function

A is defined by

DA (θ2, θ1) = A (θ2)− (A (θ1) + (θ2 − θ1) · ∇A (θ1))

Using convex conjugation the divergence can also be written

as

DA (θ2, θ1) = DA∗ (µ1,µ2) .

The information divergence can be calculated as

D (Pθ1
‖Pθ2

) = Eθ1

[

ln

(

dPθ1

dPθ2

)]

= Eθ1
[(θ1 ·X −A (θ1))− (θ2 ·X −A (θ2))]

= DA (θ2, θ1) .

The conjugated exponential family gives posterior distribu-

tions on the parameter θ, such that the maximum likelihood

estimate θ̂ (x) is unbiased in the sense that it equals the

mean value of θ with respect to the posterior distribution of

θ given x. Therefore the use of the conjugated exponential

family implies that the maximum likelihood estimator equals

the Bayes estimator with respect to the loss function DA or

any other Bregman divergence.

The likelihood function can be written as

pθ (x) = exp (θ · x−A (θ)) =

exp
(

−A (θ) +
(

A
(

θ̂ (x)
)

+
(

θ − θ̂ (x)
)

· ∇A
(

θ̂ (x)
)))

· p
θ̂(x) (x)

= exp
(

−DA

(

θ, θ̂ (x)
))

· p
θ̂(x) (x) .

As a consequence we have the following robustness property

[1, Section 19.3, Eq. 19.12] of the exponential family

dPθ

dP
θ̂(x)

(x) = exp
(

−DA

(

θ, θ̂ (x)
))

. (2)

The likelihood function after observing the sequence xm is

m
∏

i=1

pθ (xi) =
m
∏

i=1

exp (θ · xi −A (θ))

= exp

(

θ ·

m
∑

i=1

xi −m · A (θ)

)

= exp (m · (θ · x̄−A (θ)))

= exp
(

−m ·DA

(

θ, θ̂ (x̄)
))

· exp
(

m
(

θ̂ (x̄) · x̄−A
(

θ̂ (x̄)
)))

.

In the minimum description length (MDL) approach to

statistical inference there is no assumption about a true value

of θ, and the quality of a prediction is compared with the

maximum likelihood estimate of θ in terms of a difference in

code length. For a data sequence xn the regret of predicting

p
(

xn
m+1 | xm

)

is

− ln
(

p
(

xn
m+1 | xm

))

−
(

− ln
(

p
θ̂(xn) (x

n)
))

.

Here the predictor p (· | xm) is used to code the future xn
m+1

while the expert is coding the whole sequence xn, but the

expert is allowed to choose the model θ = θ̂ (xn) that gives

the best fit to data. We take the maximum over all possible

data sequences and the predictor that minimizes the maximal

regret is called the conditional normalized maximum likelihood

predictor (CNML) [4] and is given by

pncnml

(

xn
m+1 | xm

)

=
p
θ̂(xn) (x

n)
∫

Xn−m p
θ̂(xmyn−m) (x

myn−m) dλn−m (yn−m)
. (3)

II. MAIN RESULTS

The essence of the following lemma was already present in

[5, Lem. 3].

Lemma 2. Assume that (Pθ)θ∈Θ is a natural exponential

family. Assume that m is a number such that CNML and

Bayesian prediction based on a prior π give equal prediction

strategies for sequences xn
m+1 for all n > m. Then for any

n > m the integral
∫

Θ

pθ (x
n)

p
θ̂(xn) (x

n)
π (θ) dθ

is constant as a function of the data sequence xn =
x1x2 . . .xn ,

Remark 3. Prediction with CNML and prediction based of

Jeffreys prior can only be equal if they are both defined. The

values of m for which these prediction methods are defined,

may in principle be different and may depend on the data

sequence [6].

Proof: For all xn ∈ Xn we must have

pπ
(

xn
m+1 | xm

)

= pncnml

(

xn
m+1 | xm

)

.

Using (1) and (3) we get

∫

Θ

pθ
(

xn
m+1

) pθ (x
m)π (θ)

∫

Θ
pθ (xm) π (θ) dθ

dθ

=
p
θ̂(xn) (x

n)
∫

Xn−m p
θ̂(xmyn−m) (x

myn−m) dλn−m (yn−m)

and
∫

Θ pθ (x
n)π (θ) dθ

p
θ̂(xn) (x

n)

=

∫

Θ
pθ (x

m)π (θ) dθ
∫

Xn−m p
θ̂(xmyn−m) (x

myn−m) dλn−m (yn−m)
.

The quantity on the left side is a function of xn while the

quantity on the right side is a function of the sub-string



xm. Since the model is invariant under permutations of the

elements in the string xn both sides must equal a constant.

Finally we note that
∫

Θ pθ (x
n)π (θ) dθ

p
θ̂(xn) (x

n)
=

∫

Θ

pθ (x
n)

p
θ̂(xn) (x

n)
π (θ) dθ ,

which proves the lemma.

Note that we have not really used that the parametrized

family is an exponential family, so a similar result holds

as long as the parametrization is sufficiently smooth. If the

parametrization is sufficiently smooth one can also prove that

the prior must be proportional to Jeffrey’s prior. We conjecture

that if conditional MDL is a Bayesian prediction for some

smoothly parametrized family where the parameter space is

finitely dimensional, then the family must be exponential. Re-

call that the saddle point approximation [7] for the exponential

family is

exp
(

−nDA

(

θ, θ̂ (xn)
)) |Cov (µθ)|

1/2

τd/2
,

where τ is short for 2π.

Theorem 4. Assume that (Pθ)θ∈Θ is a natural exponential

family. Then the following conditions are equivalent:

• CNML is a Bayesian prediction strategy.

• Jeffreys’ posterior distributions are elements of the con-

jugated exponential family.

• The renormalized saddle-point approximation is exact for

the conjugated exponential family.

Proof: According to expression (2) we may define a

constant Cn by

Cn =

∫

Θ

pθ (x
n)

p
θ̂(xn) (x

n)
π (θ) dθ.

Then
pθ (x

n)

p
θ̂(xn) (x

n)
·
π (θ)

Cn
(4)

is a probability density function for θ. We will demonstrate

that the family of probability measures (4) parametrized by

xn is the conjugated exponential family with θ as sufficient

statistic. We have

pθ (x
n)

p
θ̂(xn) (x

n)
·
π (θ)

Cn

=
exp (n (θ · x̄−A (θ)))

exp
(

n
(

θ̂ (xn) · x̄−A
(

θ̂ (xn)
))) ·

π (θ)

Cn

= exp (n (θ · x̄−A∗ (x̄))) ·
π (θ)

exp (nA (θ))Cn
.

According to the robustness property (2) the density can be

rewritten as

exp
(

−nDA

(

θ, θ̂ (xn)
))

·
π (θ)

Cn
.

Since this should hold for n tending to infinity the saddle

point approximation implies that π (θ) is proportional to

|Cov (µθ)|
1/2

. Therefore the density in the exponential family

is proportional to the saddle point approximation.

Corollary 5. If any of the equivalent conditions of Theorem 4

are fulfilled the exponential family is steep and the parameter

space is maximal.

The goal is now to identify exponential families where

Jeffreys’ posterior distributions form exponential families with

exact renormalized saddle point approximations. In [8] it was

proved that under certain regularity conditions the renormal-

ized saddle point approximation is exact for reproductive

exponential families. The reproductive exponential families

were defined and described in detail in [9] where it was proved

in 1 dimension the following families were reproductive: the

Gaussian location families, the Gamma exponential families

and the Inverse Gaussian families. The idea of reproductive

exponential families can be used to construct reproductive

exponential families in higher dimension by combining re-

productive exponential families in lower dimensions. Five

non-trivial examples of 2-dimensional (strongly) reproducible

exponential families obtained by combining reproductive 1

dimensional families were listed in [9]. For each reproductive

exponential family the conjugate exponential family (if it ex-

ists) will satisfy the conditions of Theorem 4. We will illustrate

how this works for 1-dimensional reproductive exponential

families.

The only 1-dimensional natural exponential families where

the renormalized saddle point approximation is exact, are the

three reproductive exponential families mentioned above [10],

and it can be proved by solving ordinary differential equations

[8]. A complete classification of exponential families with

exact renormalized saddle point approximation in dimension

2 or higher would require solving some complicated partial

differential equations. Therefore a complete catalog of families

for which the equivalent conditions of Theorem 4 are fulfilled,

seems inaccessable.

For the 1-dimensional reproductive exponential families the

functions A∗ is exactly the ones used in [9] to prove that the

exponential family is reproductive. Exploration of this fact in

higher dimensions will be covered in a future paper.

III. THE GAMMA FAMILY

A Gamma distribution can be parametrized by the shape

parameter α and the rate parameter β. With these parameters

the Gamma distribution Γ (α, β) has density

βαxα−1

Γ (α)
exp (−βx) =

xα−1

Γ (α)
exp (−βx+ α ln (β))

for x > 0. For a fixed value of α this is a natural exponential

family with natural parameter θ = −β < 0. Therefore A (θ) =
−α ln (−θ) . The mean value is µ = −α/θ so that θ = −α/µ.
The variance is V ar = αθ−2 , so that the variance function

is V (µ) = µ2

α . In terms of the parameter β the mean value is

µ = α/β and the variance is V ar = α · β−2 . Jeffreys’ prior

has density proportional to α
1/2

β , which cannot be normalized.



The Bregman divergence is

DA (θ1, θ2)

= α ln

(

−
1

θ1

)

−

(

α ln

(

−
1

θ2

)

+ (θ1 − θ2) ·
−α

θ2

)

= α

(

θ1
θ2

− 1− ln

(

θ1
θ2

))

.

For α = 1 this Bregman divergence is called the Itakura-Saito

divergence.

The convex conjugate of A is

A∗ (x) = sup
θ

{x · θ −A (θ)} = x ·
(

−
α

x

)

−A
(

−
α

x

)

= −α+ α ln
(α

x

)

= −α+ α ln (α)− α ln (x) .

We see that the conjugated exponential family of β = −θ is

again a Gamma exponential family with shape parameter α,

i.e. the Gamma exponential family is self-conjugated. If x is

observed the posterior distribution of β has rate parameter x. If

a sequence of length m has been observed then the posterior

distribution is a Gamma distribution with shape parameters

mα and rate parameter mx̄.
Since the density of a Gamma distribution equals the

re-normalized saddle point approximation we have that the

conditions in Theorem 4 are fulfilled and the CNML predictor

equals Bayesian prediction based on Jeffreys’ prior. This also

holds for exponential families like the inverse Gamma family,

the Pareto family, the Nakagima family, and the Weibull family

where the sufficient statistic is a smooth 1-to-1 function of the

sufficient statistic in a Gamma family.

We will now look at the consequences of self-conjugation

for calculations of one-sided credible intervals and one-sided

confidence intervals.

Let G denote the distribution function of Γ (mα,mx̄), i.e.

the posterior distribution of β if the average is observed to be

x̄. Then
[

0, G−1 (1− α̃)
]

is a 1 − α̃ credible interval for β.
We can write

G−1 (1− α̃) =
F−1 (1− α̃)

x̄

where F is the distribution function of Γ (mα,m) . If Xi ∼
Γ (α, β) then

∑m
i=1 Xi ∼ Γ (mα, β) and 1

m

∑m
i=1 Xi ∼

Γ (mα,mβ) so that βX̄ ∼ Γ (mα,m). Therefore

P

(

β ∈

[

0,
F−1 (1− α̃)

X̄

])

= P

(

X̄ ∈

[

0,
F−1 (1− α̃)

β

])

= 1− α̃

so that the 1 − α̃ credible interval
[

0, F−1(1−α̃)
x̄

]

is also a

1 − α̃ confidence interval for β as defined in the frequentist

approach to statistics.

IV. THE GAUSSIAN LOCATION FAMILY

If the parameter space equals R
d the notion of self-

conjugation becomes very simple. The proof of the following

lemma is an easy exercise.

Lemma 6. Let B : Rd → R
d denote a linear invertible self-

adjoint mapping. If G is a convex function and F = G ◦ B
then F ∗ = G∗ ◦B−1.

The Gaussian location model has density

exp
(

− 1
2 (x− µ) · B−1 (x− µ)

)

τd/2 · |B|
1/2

where µ is the mean and B denotes the co-variance matrix.

Theorem 7. If an exponential family has a cumulant gener-

ating function A : Rd → R that satisfies A∗ = A ◦ B for

some positiv definite linear function B : Rd → R
d then the

exponential family is a Gaussian location model where B can

be identified with the co-variance matrix.

Proof: Define F = A ◦B
1/2. Then

F ∗ = A∗ ◦
(

B
1/2
)−1

= A ◦B ◦B−1/2 = A ◦B
1/2 = F .

Since F is self-conjugated and defined on R
d we can apply

[11, Prop. 29a] to get F (x) = 1
2 ‖x‖

2 . Therefore

A (x) = F
(

B−1/2 (x)
)

=
1

2
B−1/2 (x) · B−1/2 (x)

=
1

2
x · B−1 (x) .

It is easy to prove that the Gaussian location model also has

cumulant generating function 1
2x · B−1 (x) .

Since the saddle point approximation is exact for the Gaus-

sian location family the conditions of Threorem 4 are fulfilled.

For the Gaussian location family the Bregman divergence

is symmetric in its arguments and inference reduces to the

principle of least squares.

In Bayesian statistics a 1− α̃ credible region for the mean

value parameter can be calculated as a divergence ball
{

θ ∈ Rd | DA

(

θ, θ̂ (x)
)

≤ r
}

(5)

where the radius r is chosen so that the ball has probability

1− α̃. Using that the exponential family is self-conjugated we

see that the ball (5) is also a 1−α̃ confidence region as defined

in frequentist statistics.

V. THE POISSON-EXPONENTIAL FAMILY

The saddle point approximation is exact for the inverse

Gaussian family with density
(

κ

τβ3

)1/2

exp

(

−κ
(β − β0)

2

2β2
0β

)

,

where β is the sufficient statistic and β0 denotes the mean

value of the distribution and κ denotes the shape parameter.

We are going to identify the conjugated exponential family.

First we rewrite

(

κ

τβ3

)1/2

exp

(

−κ
(β − β0)

2

2β2
0β

)

=

(

κ

τβ3

)1/2

exp

(

−
κ

2β

)

exp

(

−κ

2β2
0

· β +
κ

β0

)

.



The natural parameter is θ = −κ
2β2

0

and the cumulant generating

function is A (θ) = (−2κθ)
1/2 .

The convex conjugate is

A
∗

(β) = sup {β · θ −A (θ)}

= β ·
−κ

2β2
−

(

−2κ ·
−κ

2β2

)1/2

=
κ

2β
.

One can identify an exponential family with this function as

cumulant generating function by taking the inverse Laplace

transform, but it is more instructive to identify it by calculating

the variance function. We have

(A∗)′ (β) = −
κ

2β2
and (A∗)′′ (β) =

κ

β3
.

Thus θ̂ (β) = −κ
2β

−2 so that β (θ) =
(

− κ
2θ

)1/2
and V (θ) =

κ (β (θ))−3 = 23/2κ−1/2 (−θ)
3/2 = φ · (−θ)

3/2
where φ =

23/2κ−1/2. Since the variance function is a power function of

order 3/2 one says that the corresponding exponential family

is a Tweedie family of order p = 3/2 . Jeffreys’ prior for this

family is proportional to

(

(A∗)
′′
(β)
)1/2

= κ
1/2 · β−3/2,

which cannot be normalized. Credible intervals and confidence

intervals can be calculated using tweedie and the statmod

package in the R program, but the 1− α̃ credible intervals do

not coincide with the 1− α̃ confidence intervals reflecting that

the Poisson-exponential family is not self-conjugated.

One cannot calculate the density of elements of the Tweedie

family of order p = 3/2 exactly, but they can be obtained by the

following construction. Let N denote a random variable with

a Poisson distribution Po (λ). Let X1, X2, . . . denote a se-

quence of iid random variables each exponentially distributed

Exp (β). Then we may define

Y =
N
∑

n=1

Xn .

Then the distribution of Y is a compound Poisson distribution.

Distributions where Xi are Gamma distributions were called

Poisson-gamma distributions in [12], so we will call the

distribution of Y a Poisson-exponential distribution when Xi

are exponential. The density of
∑α

n=1 Xn is

β̃αxα−1 exp
(

−β̃x
)

Γ (α)
.

Therefore the Poisson-exponential distribution has a point

mass in 0 of weight exp (−λ) and it has density

∞
∑

α=0

λα exp (−λ)

α!
·
βαxα−1 exp (−βx)

Γ (α)

for x > 0. We introduce κ = β̃·λ
2 so that the density can be

written as
∞
∑

α=0

(

κ
2

)α
xα−1

α!Γ (α)
· exp

(

−β · x−
κ

2β

)

.

This is a natural exponential family with with natural parame-

ter −β and cumulant generating function κ/ (2β). Except for

a change of sign it is the conjugated exponential family of the

inverse Gaussian family.

Since the saddle point approximation is exact for the inverse

Gaussian family, prediction for the Poisson-exponential family

based on CNML equals prediction based on Jeffreys prior, and

Jeffreys posterior equals an inverse Gaussian distribution.

The Poisson-exponential families have been used to model

the accumulated amount of rain in rainfalls, where the amount

of rain in each rainfall is modeled by an exponential distri-

bution and the number of rainfalls is modeled by a Poisson

distribution [13], [14]. This application dates back to Cornish

and Fisher. Reference to other applications as well as a deriva-

tion of the basic properties of Poisson-gamma distributions can

be found in [15]. Note that the Poisson-exponential family

is a Tweedie family of order p = 3/2 and that some of the

literature on applications of the Poisson-exponential family

treat the order p as a free parameter that should be estimated

in order to give a good fit with data. According to our results

the value p = 3/2 is special with respect to statistical inference,

so that p cannot be considered as a free parameter if we want

to have the properties developed here.
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