
ar
X

iv
:1

10
7.

23
21

v2
  [

m
at

h.
N

T
]  

5 
A

pr
 2

01
2

An algorithm for list decoding number field codes
Jean-François Biasse

Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, Alberta, Canada T2N 1N4
Email: biasse@lix.polytechnique.fr

Guillaume Quintin
LIX
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Abstract—We present an algorithm for list decoding codewords
of algebraic number field codes in polynomial time. This is
the first explicit procedure for decoding number field codes
whose construction were previously described by Lenstra [1] and
Guruswami [2]. We rely on a new algorithm for computing the
Hermite normal form of the basis of anOK-module due to Biasse
and Fieker [3] where OK is the ring of integers of a number
field K.

I. I NTRODUCTION

Algorithms for list decoding Reed-Solomon codes, and their
generalization the algebraic-geometric codes are now well
understood. The codewords consist of sets of functions whose
evaluation at a certain number of points are sent, thus allowing
the receiver to retrieve them provided that the number of errors
is manageable.

The idea behind algebraic-geometric codes can be adapted
to define algebraic codes whose messages are encoded as a
list of residues redundant enough to allow errors during the
transmission. The Chinese Remainder codes (CRT codes) have
been fairly studied by the community [4], [5]. The encoded
messages are residues moduloN := p1, · · · , pn of numbers
m ≤ K := p1 · · · pk wherep1 < p2 < · · · < pn are prime
numbers. They are encoded by using

Z −→ Z/p1 × · · · × Z/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Decoding algorithms for CRT codes were significantly im-
proved to reach the same level of tolerance to errors as those
for Reed-Solomon codes [6], [7], [4]. As algebraic-geometric
codes are a generalization of Reed-Solomon codes, the idea
arose that we could generalize the results for CRT codes to
redundant residue codes based on number fields. Indeed, we
can easily define an analogue of the CRT codes where a
number fieldK plays the role ofQ and its ring of integers
OK plays the role ofZ. Then, for prime idealsp1, · · · , pn
such thatN (p1) < · · · < N (pn), a messagem ∈ OK can be
encoded by using

OK −→ OK/p1 × · · · × OK/pn
c : m 7−→ (m mod p1, · · · ,m mod pn).

The construction of good codes on number fields have been
independantly studied by Lenstra [1] and Guruswami [2].
They provided indications on how to chose number fields

having good properties for the underlying codes. In particular,
Guruswami [2] showed the existance of asymptotically good
number field codes, that is a familyCi of [ni, ki, di]q codes of
increasing block length with

lim inf
ki
ni

> 0 and lim inf
di
ni

> 0.

Neither of them could provide a decoding algorithm. In the
concluding remarks of [2], Guruswami idendifies the applica-
tion of the decoding paradigm of [8], [9], [4] to number field
codes as an open problem.
Contribution: The main contribution of this paper is to
provide the first algorithm for decoding number field codes.
We first show that a direct adaptation of an analogue of
Coppersmith’s theorem due to Cohn and Henninger [10]
allows to follow the approach of Boneh [6] which does not
allow to reach the Johnson bound. Then we adapt the decoding
paradigm of [8, Chap. 7] to number field codes, by using
methods for manipulating modules over the ring of integers of
a number field recently described in [3] to achieve the Johson
bound.

Throughout this paper, we denote byK a number field of
degreed, of discriminant∆ and of ring of integersOK . The
prime ideals(pi)i≤n satisfyN (p1) < N (p2) < · · · < N (pn),
and we defineN :=

∏

i≤nN (pi) and B :=
∏

i≤kN (pi)
for integersk, n such that0 < k < n. Before describing our
algorithm in more details in the following sections, let us state
the main result of the paper.

Theorem 1. Let ε > 0, and a messagem ∈ OK satisfying
‖m‖ ≤ B, then there is an algorithm that returns all the
messagesm′ ∈ OK such that‖m′‖ ≤ B and thatc(m) and
c(m′) have mutual agreementt satisfying

t ≥
√

k(n+ ε).

This algorithm is polynomial ind , log(N), 1/ε and log |∆|.
II. GENERALITIES ON NUMBER FIELDS

Let K be a number field of degreed. It hasr1 ≤ d real em-
beddings(θi)i≤r1 and2r2 complex embeddings(θi)r1<i≤2r2

(coming asr2 pairs of conjugates). The fieldK is isomorphic
to OK ⊗Q whereOK denotes the ring of integers ofK. We
can embedK in

KR := K ⊗ R ≃ Rr1 × Cr2 ,
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and extend theθi’s to KR. Let T2 be the Hermitian form on
KR defined by

T2(x, x
′) :=

∑

i

θi(x)θi(x
′),

and let‖x‖ :=
√

T2(x, x) be the correspondingL2-norm. Let
(αi)i≤d such thatOK = ⊕iZαi, then the discriminant ofK
is given by∆ = det2(T2(αi, αj)). The norm of an element
x ∈ K is defined byN (x) =

∏

i |θi(x)|.
We encode our messages with prime ideals ofOK . How-

ever, for decoding, we need a more general notion of ideal,
namely the fractional ideals ofOK . They can be defined as
finitely generatedOK -modules ofK. When a fractional ideal
is contained inOK , we refer to it as an integral ideal.For every
fractional idealI of OK , there existsr ∈ Z such thatrI is
integral. The sum and product of two fractional ideals ofOK

is given by

IJ = {i1j1 + · · ·+ iljl | l ∈ N, i1, · · · il ∈ I, j1, · · · jl ∈ J}
I + J = {i+ j | i ∈ I, j ∈ J}.
The fractional ideals ofOK are invertible, that is for every
fractional idealI, there existsI−1 := {x ∈ K | xI ⊆ OK}
such thatII−1 = OK . The set of fractional ideals is equipped
with a norm function defined byN (I) = det(I)/ det(OK).
The norm of ideals is multiplicative, and in the case of an
integral ideal, we haveN (I) = |OK/I|. Also note that the
norm of x ∈ K is precisely the norm of the principal ideal
(x) = xOK .

In the following, we will study finitely generated subOK -
module ofOK [y]. Let M ⊆ K l be a finitely generatedOK -
module. As in [11, Chap. 1], we say that[(ai), (ai)]i≤n, where
ai ∈ K andai is a fractional ideal ofK, is a pseudo-basis for
M if M = a1a1 ⊕ · · · ⊕ anan. We also call a pseudo-matrix
representingM the matrix of the coefficients of the(ai)i≤n

along with the idealsai. The algorithm [3, Alg.4] returns a
pseudo-matrix representingM where the matrix of the(ai)i≤n

has a triangular shape in polynomial time.

III. D ECODING WITH COPERSMITH’ S THEOREM

An analogue of Copersmith’s theorem was described by
Cohn and Henninger in [10]. It was used to provide an elegant
way of decoding Reed-Solomon codes, and the possibility to
use it for breaking lattice- based cryptosystems inOK modules
was considered, although they concluded that it would not
improve the state-of-the-art algorithms.

Theorem 2 (Coppersmith). Let f ∈ OK [X ] a monic polyno-
mial of degreel, 0 < β ≤ 1, λ1, · · · , λd > 0 and I ( OK an
ideal. We can find in polynomial time all theω ∈ OK such
that |ω|i := |σi(ω)| ≤ λi and

N (gcd(f(ω)OK , I) > N (I)β ,

provided that theλi satisfy
∏

i λi < (2+o(1))−d2/2N (I)β
2/l.

Although not mentioned in [10], a straightforward adap-

tation of Theorem 2 withβ :=

√∑
i≤k logN (pi)

∑
i≤n logN (pi)

where

0 < k < n, I :=
∏

i≤n pi and∀i, λi :=
1

2n/2

∏

i≤k N (pi)
1/n

provides a polynomial time algorithm for decoding number
field codes.

Theorem 3. Let (r1, · · · , rn) ∈ On
K andm ∈ OK satisfying

∀i, m = ri mod pi, then Theorem 2 applied tof(ω) := ω−m
allows to return in polynomial time a list ofm′ ∈ OK with
‖m′‖ ≤ 1

2n/2

∏

i≤kN (pi)
1/n that differ fromm in at moste

places where

e < n−
√

kn
logN (pn)

logN (p1)
.

In the rest of the paper, we present a method based on
Guruswami’s general framework for residue codes [8] that
allows us to get rid in the dependency inlogN (pn)

logN (p1)
in the

decoding bound thus reaching the Johnson bound.

IV. JOHNSON-TYPE BOUND FOR NUMBER FIELDS CODES

A Johnson-type bound is a positive numberJ depending
on the distance, the blocklength and the cardinalities of the
Alphabets constituting the code. It garanties that a “small”
number of codewords are in any sphere of radiusJ . By “small”
number, we mean a number of codewords which is linear in the
code blocklength and the cardinality of the code. In our case,
the Johnson-type bound for number fields codes depends only
on the code blocklength and its minimal distance, and “small”
means polynomial in

∑n
i=1 logN (pi).

The Johnson-type bound of [8, Section 7.6.1] remains valid
for number field codes. For any prime idealp ⊂ OK , the
quotientOK/p is a finite field. Thus thei’th symbol of a
codeword comes from an alphabet of sizeN (pi) = |OK/pi|
and [8, Th. 7.10] can be applied. Lett be the least positive
integer such that

∏t
i=1N (pi) >

(

2B
d

)d
, whered = [K : Q]

and letT =
∏t

i=1N (pi). Then, by [2, Lem. 12], the minimal
hamming distance of the number fields code is at leastn−t+1.
Using [8, Th. 7.10], we can show that for a given message and
ε > 0, only a “small” number of codewords satisfy

n
∑

i=1

ai >
√

(t+ ε)n, (1)

where ai = 1 if the codeword and the message agree
at the i-th position, ai = 0 otherwise. Thus, if our list
decoding algorithm returns all the codewords having at most
n −

√

(t+ ε)n errors then this number is garanteed to
be “small”. Therefore, the Johnson bound appears to be
a good objective for our algorithm. Note that we would
derive a different bound by using weighted distances. In
particular, by using thelog-weighted hamming distance i.e.
d(x, y) =

∑

i:x 6=y mod pi

logN (pi), the condition would be

∑n
i=1 ai logN (pi) >

√

(log T + ε) logN .

V. GENERAL DESCRIPTION OF THE ALGORITHM

In this section, we give a high-level description of our
decoding algorithm. We follow the approach of the general
framework described in [8], making the arrangements required



in our context. Our code is the set ofm ∈ OK such
that ‖m‖ ≤ B where B =

∏

i≤kN (pi). We also define
N :=

∏

i≤nN (pi). A codewordm is encoded via

OK −→ OK/p1 × · · · × OK/pn
m 7−→ (m mod p1, · · · ,m mod pn).

Let z1, · · · , zn be non-negative real numbers, and letZ be a
parameter. In this section, as well as in Section VI and VII, we
assume that thezi are integers. We assume that we received
a vector(r1, · · · , rn) ∈

∏

iOK/pi. We wish to retrieve all
the codewordsm such that

∑

i aizi > Z where ai = 1 if
m mod pi = ri and 0 otherwise (we say thatm and (ri)i≤n

have weighted agreementZ).
We find the codewordsm with desired weighted agreement

by computing roots of a polynomialc ∈ OK [y] that satisfies

‖m‖ ≤ B =⇒ ‖c(m)‖ < F, (2)

for an appropriate boundF . We choose the polynomialc
satisfying (2) in the ideal

∏

i≤n J
zi
i ⊆ OK [y] where

Ji = {a(y)(y − ri) + p · b(y) | a, b ∈ OK [y] andp ∈ pi}.
With such a choice of a polynomial, we necessarily have
c(m) ∈ ∏

i p
ziai

i , where ai = 1 if c(m) mod pi = ri,
0 otherwise. In particular, ifc(m) 6= 0 then N (c(m)) ≥
∏

iN (pi)
ziai . In addition, we know from the arithmetic-

geometric inequality that‖c(m)‖ ≥
√
dN (c(m))1/d. We thus

know that if the weighted agreement satisfies
∑

i≤n

aizi logN (pi) > −
d

2
log(d) + d log(F ), (3)

which in turns implies
√
d (
∏

iN (pi)
ziai)

1/d
> F , thenc(m)

has to be zero, since otherwise it would contradict (2).

Algorithm 1 Decoding algorithm

Require: OK , z1, · · · , zn, B, Z, r1, · · · , rn ∈
∏

iOK/pi.
Ensure: All m such that

∑

i aizi > Z.
1: Computel andF .
2: Find c ∈∏i≤n J

zi
i ⊆ OK [y] of degree at mostl such that

‖m‖ ≤ B =⇒ ‖c(m)‖ < F .
3: Find all roots ofc and report those rootsξ such that‖ξ‖ ≤

B and
∑

i aizi > Z.

VI. EXISTENCE OF THE DECODING POLYNOMIAL

In this section, given weights(zi)i≤n, we prove the exis-
tence of a polynomialc ∈ ∏i J

zi
i and a constantF > 0 such

that for all ‖m‖ ≤ B, m ∈ OK , we have‖c(m)‖ ≤ F .
This proof is not constructive. The actual computation of this
polynomial will be described in Section VII. We first need to
estimate the number of elements ofOK bounded by a given
size.

Lemma 1. Let F ′ > 0 and 0 < γ < 1, then the number of
x ∈ OK such that‖x‖ ≤ F ′ is at least

⌊

πd/2F ′d

2r1+r2−1+γ
√

|∆|Γ(d/2)

⌋

.

Proof: As in [12, Chap. 5], we use the standard results of
Minkowski theory for our purposes. More precisely, there is
an isomorphismf : KR −→ Rr1+2r2 and a scalar product
(x, y) :=

∑

i≤r1
xiyi +

∑

r1<i≤r1+2r2
2xiyi on Rr1+2r2

transfering the canonical measure fromKR to Rr1+2r2 . Let
λ = f(OK), X := {x ∈ KR | ‖x‖ ≤ F ′}, and
m ∈ N. We know from Minkowski’s lattice point theorem
that if Vol(X) > m2d det(λ), then #(f(x) ∩ λ) ≥ m. As
Vol(X) = 2r2

(

2πd/2F ′d/Γ(d/2)
)

and det(λ) =
√

|∆|, we
have the desired result.

Then, we must derive from Lemma 1 an analogue of [8,
Lemma 7.6] in our context. This lemma allows us to estimate
the number of polynomials of degreel satisfying (2). To
simplify the expressions, we use the following notation in the
rest of the paper

αd,∆,γ :=
πd/2

2r1+r2−1+γ
√

|∆|Γ(d/2)
.

Lemma 2. For positive integersB,F ′, the number of poly-
nomials c ∈ OK [y] of degree at mostl satisfying (2) is at
least

(

αd,∆,γ

(

F ′

(l + 1)Bl/2

)d
)l+1

.

Proof: Let c(y) = c0+c1y+· · ·+cly
l. We want theci’s to

satisfy‖cimi‖ < F ′/(l + 1) whenever‖m‖ ≤ B. This is the
case when‖ci‖ < F ′/(Bi(l+ 1)). By Lemma 1, there are at
leastαd,∆,γ

(

F ′/((l + 1)Bi)
)d

possibilities forci. Therefore,
the number of polynomialsc satisfying (2) is at least

(αd,∆,γ)
l+1

(

(

F ′

l + 1

)l+1 l
∏

i=0

B−i

)d

,

which finishes the proof.
Now that we know how to estimate the number ofc ∈
OK [y] or degree at mostl satisfying (2), we need to find a
lower bound onF to ensure that we can find such a polynomial
in
∏

i J
zi
i . The following lemma is an equivalent of [8, Lemma

7.7].

Lemma 3. Let l, B, F be positive integers, there existsc ∈
∏

i J
zi
i satisfying(2) provided that

F > 2(l+1)Bl/2 1

(αd,∆,γ)1/d

(

∏

i

N (pi)
(zi+1

2 )

)
1

d(l+1)

. (4)

Proof: Let us apply Lemma 2 toF ′ = F/2. There are at
least

(

αd,∆,γ

(

F/2

(l + 1)Bl/2

)d
)l+1

polynomial c ∈ OK [y] satisfying ‖m‖ ≤ B ⇒ ‖c(m)‖ <
F/2. In addition, we know from [8, Corollary 7.5] that
∏

i |N (pi)|(
zi+1

2 ) ≥ |OK [y]/
∏

i J
zi
i |, which implies that if (4)

is satisfied, then necessarily
(

αd,∆,γ

(

F/2

(l + 1)Bl/2

)d
)l+1

>

∣

∣

∣

∣

∣

OK [y]/
∏

i

Jzi
i

∣

∣

∣

∣

∣

.



This means that there are at least two distinct polynomials
c1, c2 ∈ OK [y] of degree at mostl such that(c1 − c2) ∈
∏

i J
zi
i and ‖c1(m)‖, ‖c2(m)‖ < F/2 whenever‖m‖ ≤ B.

The choice ofc := c1 − c2 finishes the proof.

VII. C OMPUTATION OF THE DECODING POLYNOMIAL

Let l > 0 be an integer to be determined later. To compute
c ∈∏i J

zi
i of degree at mostl satisfying (2), we need to find

a short pseudo-basis of the subOK -moduleM ∩∏i J
zi
i of

K l+1 whereM is theOK-module of the elements ofOK [y]
of degree at mostl embedded inK l+1 via

∑

i ciy
i → (ci). We

first compute a peudo-generating set for eachM∩Jzi
i , then we

compute a pseudo-basis for their intersection, and we finally
call the algorithm of [13] to produce a short peudo-basis of
M ∩∏i J

zi
i from which we derivec.

An algorithm for computing a pseudo-basis of the intersec-
tion of two modules given by their pseudo basis is described
by Cohen in [11, 1.5.2]. It relies on the HNF algorithm for
OK-modules. The HNF algorithm presented in [11, 1.4] is
not polynomial, but a variant recently presented in [3] enjoys
this property. We can therefore apply [11, 1.5.2] with the HNF
of [3] successively for each pseudo-basis ofM∩Jzi

i to produce
a pseudo-basis ofM ∩∏i J

zi
i .

Algorithm 2 Computation of the decoding polynomial

Require: (pi, zi)i≤n, l, N , B, F such that∃c ∈ ∏i J
zi
i of

degree at mostl satisfying (2) forF , and the encoded
message(r1, · · · , rn) ∈

∏

iOK/pi.
Ensure: c ∈ ∏

i J
zi
i satisfying (2) for F ′ =

2
dl
2

√
l+ 1

(

22+d(6+3d)d3|∆|2+ 11
2d

)

F of degree at
most l.

1: for i ≤ n do
2: z̃i ← min(zi, l).
3: For 0 ≤ j ≤ z̃i: aij ← p

zi−j
i , aij ← (y − ri)

j .
4: For 1 ≤ j ≤ l − zi: aij ← OK , aij ← yj(y − ri)

zi .
5: Let

(

(aij), (a
i
j)j≤l+1

)

be a pseudo matrix forM ∩ Jzi
i .

6: end for
7: Compute a pseudo-basis[(ci), (ci)]i≤l+1 of M1 = M ∩
∏

i J
zi
i .

8: Deduce a pseudo basis[(di), (di)]i≤l+1 of the moduleM2

given by

(v0, v1, · · · , vl) ∈M1 ⇐⇒ (v0, v1·B, · · · , vl·(B)l) ∈M2.

9: Let [(bi), (bi)]i≤l+1 be a short peudo-basis ofM2 obtained
with the reduction algorithm of [13].

10: Let x1, x2 be a short basis ofb1 obtained with [13, Th.
3].

11: return c ∈M1 corresponding tox1b1 ∈M2.

VIII. G OOD WEIGHT SETTINGS

To derive our main result, we need to consider weightszi >
0 in R rather thanZ. Let

βd,∆,γ :=
d3−

d
2 23(1+d(2+d))|∆|2+ 11

2d

αd,∆,γ
1
d

,

then by combining (3), (4) and Algorithm 2, we know that
given (r1, · · · , rn) ∈

∏

i≤nOK/pi, l > 0, B =
∏

i≤kN (pi)
and integer weightszi > 0, Algorithm 2 returns a polynomialc
of degree at mostl such that allm ∈ OK satisfying‖m‖ ≤ B
and

∑

i≤n

aizi logN (pi) ≥
l

2
log(2d

2

Bd) +
3d

2
log(l + 1)

+
1

l + 1

∑

i≤n

(

zi + 1

2

)

logN (pi) + log βd,∆,γ, (5)

(whereai = 1 if m mod pi = ri, 0 otherwise) are roots ofc.
In the following, we no longer assume thezi to be integers.
However, we will use our previous results with the integer
weightsz∗i := ⌈Azi⌉ for a sufficently large integerA to be
determined.

Proposition 1. Let ε > 0, non-negative realszi, B =
∏

i≤kN (pi), and an encoded message(r1, · · · , rn) ∈
∏

iOK/pi, then our algorithm finds all them ∈ OK such
that ‖m‖ ≤ B and

∑

i≤n

aizi logN (pi) ≥

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2
i
logN (pi) + εz2max



,

whereai = 1 if m mod pi = ri, 0 otherwise.

Proof: Note that we can assume without loss of generality
that zmax = 1. Let z∗i = ⌈Azi⌉ for a sufficently large integer
A, which thus satisfiesAzi ≤ z∗i < Azi + 1. The decoding
condition (5) is met whenever

∑

i≤n

aizi logN (pi) ≥
l

2A
log(2d

2

Bd) +
3d

2A
log(l + 1)

+
A

2(l + 1)

∑

i≤n

(

z2i +
3

A
zi +

2

A2

)

logN (pi)

+
1

A
log βd,∆,γ. (6)

Let Zi := z2i +
3
Azi +

2
A2 for i ≤ n and

l :=









A

√

∑

i≤n Zi logN (pi)

log(2d2Bd)









− 1.

We assume thatA ≥ log(2d
2

Bd), which ensures thatl > 0.



For this choice ofl, condition (6) is satisfied whenever

∑

i≤n

aizi logN (pi) ≥
3d

2A
log



A

√

∑

i≤n Zi logN (pi)

log(2d2Bd)
+ 1





+

√

√

√

√

√log(2d2Bd)





∑

i≤n

Zi logN (pi)





+
1

A
log βd,∆,γ. (7)

Assume thatA ≥ 10 logN
ε andA ≥ log βd,∆,γ

logN , then forN large
enough, the right side of (7) is at most

O

(

log logN

logN

)

+

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2i logN (pi) +
ε

2





≤

√

√

√

√

√log(2d2Bd)





∑

i≤n

z2i logN (pi) + ε





The degreel of our decoding polynomialc is therefore
polynomial inlogN , 1

ε , d andlog |∆|. By [14, 2.3], we know
that the complexity to find the roots ofc is polynomial ind,
l and in the logarithm of the height ofc, which we already
proved to be polynomial in the desired values.

Corollary 1. Let ε > 0, k < n and prime ideals
p1, · · · pn satisfyingN (pi) < N (pi+1) and logN (pk+1) ≥
max(2dk logN (pk), 2d

2), then with the previous notations,
our algorithm finds a list of all codewords which agree with
a received word int places providedt ≥

√

k(n+ ε).

Proof: The proof is similar to the one of [8, Th. 7.14].

The main difference is that we defineδ := k − log(2d
2
Bd)

logN (pk+1)

which satisfiesδ ≥ 0 since by assumptionlogN (pk+1) ≥
max(2dk logN (pk), 2d

2). We apply Proposition 1 withzi =
1/ logN (pi) for i ≥ k+1, zi = 1/ logN (pk+1) for i ≤ k, and
ε′ = ε/ logN (pk+1). It allows us to retrieve the codewords
whose number of agreementst is at least

√

√

√

√

log(2d2Bd)

logN (pk+1)

(

log(B)

logN (pk+1)
+

n
∑

i=k+1

N (pk+1)

logN (pi)
+ ε′

)

≤ δ +

√

√

√

√

log(2d2Bd)

logN (pk+1)

(

log(2d2Bd)

logN (pk+1)
+

n
∑

i=k+1

N (pk+1)

logN (pi)
+ ε

)

.

This condition is met whenevert ≥ δ+
√

(k − δ)(n− δ + ε).
From the Cauchy-Schwartz inequality, we notice that

√

k(n+ ε) ≥
√

(k − δ)(n− δ + ε),

which proves that our decoding algorithm works whent ≥
√

k(n+ ε).

IX. CONCLUSION

We presented the first method for list decoding number field
codes. A straightforward application of Theorem 2 allows to
derive a decoding algorithm in polynomial time. However,
we cannot achieve the Johnson bound with this method. To
solve this problem, we described an analogue of the CRT list
decoding algorithm for codes based on number fields. This is
the first algorithm allowing list decoding of number field codes
up to the Johnson bound. We followed the approach of [8,
Ch. 7] that provides a general frameworks for list decoding of
algebraic codes, along with its application to CRT codes. The
modifications to make this strategy efficient in the context of
number fields are substantial. We needed to refer to the theory
of modules over a Dedekind domain, and carefully analyse the
process of intersecting them, as well as finding short elements.
We proved that our algorithm is polynomial in the size of the
input, that is ind, log(N), log |∆| and 1

ε .

ACKNOWLEDGMENT

The first author would like to thank Guillaume Hanrot for
his helpful comments on the approach based on Coppersmith’s
theorem.

REFERENCES

[1] H. Lenstra, “Codes from algebraic number fields,” inMathematics and
computer science II, Fundamental contributions in the Netherlands since
1945, ser. CWI Monograph, M. Hazewinkel, J. Lenstra, and L. L.
Meertens, Eds., vol. 4, North-Holland, Amsterdam, 1986, pp. 94–104.

[2] V. Guruswami, “Constructions of codes from number fields,” IEEE
Transactions on Information Theory, vol. 49, no. 3, pp. 594–603, 2003.

[3] J.-F. Biasse and C. Fieker, “A polynomial time algorithmfor computing
the hnf of a module over the integers of a number field,” 2012,
http://www.lix.polytechnique.fr/ biasse/papers/HNFpol.pdf.

[4] V. Guruswami, A. Sahai, and M. Sudan, “Soft-decision decoding of
chinese remainder codes,” inProceedings of the 41st Annual Symposium
on Foundations of Computer Science. Washington, DC, USA: IEEE
Computer Society, 2000, pp. 159–168.

[5] D. Mandelbaum, “On a class of arithmetic codes and a decoding
algorithm (corresp.),”IEEE Transactions on Information Theory, vol. 22,
pp. 85–88, 1976.

[6] D. Boneh, “Finding smooth integers in short intervals using
crt decoding,” in Proceedings of the thirty-second annual ACM
symposium on Theory of computing, ser. STOC ’00. New
York, NY, USA: ACM, 2000, pp. 265–272. [Online]. Available:
http://doi.acm.org/10.1145/335305.335337

[7] O. Goldreich, D. Ron, and M. Sudan, “Chinese remaindering with
errors,” in Proceedings of the thirty-first annual ACM symposium on
Theory of computing, ser. STOC ’99. New York, NY, USA: ACM,
1999, pp. 225–234.

[8] V. Guruswami, List Decoding of Error-Correcting Codes: Winning
Thesis of the 2002 ACM Doctoral Dissertation Competition (Lecture
Notes in Computer Science). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2005.

[9] V. Guruswami and M. Sudan, “Improved decoding of reed-solomon
and algebraic-geometric codes,” inIEEE Symposium on Foundations
of Computer Science, vol. 5, 1999, pp. 28–39.

[10] H. Cohn and N. Heninger, “Ideal forms of coppersmith’s theorem
and guruswami-sudan list decoding,” inProceedings of Innovations in
computer science, 2011.

[11] H. Cohen,Advanced topics in computational algebraic number theory,
ser. Graduate Texts in Mathematics. Springer-Verlag, 1991, vol. 193.

[12] J. Neukirch,Algebraic number theory, ser. Comprehensive Studies in
Mathematics. Springer-Verlag, 1999, iSBN 3-540-65399-6.

http://doi.acm.org/10.1145/335305.335337
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