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Abstract—We present an algorithm for list decoding codewords having good properties for the underlying codes. In paldicu
of algebraic number field codes in polynomial time. This is Guruswamil[2] showed the existance of asymptotically good

the first explicit procedure for decoding number field codes number field codes, that is a family of [n;, k;, d;], codes of
whose construction were previously described by Lenstrd [Jland . . ' ; © e e
increasing block length with

Guruswami [2]. We rely on a new algorithm for computing the

Hermite normal form of the basis of an O x-module due to Biasse o ks oL d;
and Fieker [3] where Ok is the ring of integers of a number lim inf o 0 and lim inf i 0.
field K. ’ '
Neither of them could provide a decoding algorithm. In the
. INTRODUCTION concluding remarks of [2], Guruswami idendifies the applica

Algorithms for list decoding Reed-Solomon codes, and théipn of the decoding paradigm dfl[8.1[9L][4] to number field

generalization the algebraic-geometric codes are now wgdets.bast. an. O?rehn prob_lem. ibuti f thi is
understood. The codewords consist of sets of functions gzhogCHodtON: € main contribution © 'S paper IS 1o
evaluation at a certain number of points are sent, thus alpw provide the first algorithm for decoding number field codes.

the receiver to retrieve them provided that the number @frerr We first S_hO,W that a direct adaptation of an an_alogue of
is manageable. Coppersmith’s theorem due to Cohn and Henninger [10]

?ﬁaws to follow the approach of Bonehl![6] which does not

The idea behind algebraic-geometric codes can be adap .
to define algebraic codes whose messages are encoded gy to reach the Johnson bound. Then we adapt the decoding

list of residues redundant enough to allow errors during ﬂ;‘i)gramgm of I[8, Chap. 7] to number field codes, by using

transmission. The Chinese Remainder codes (CRT codes) theethOds for manipulating modules over the ring of integérs o

been fairly studied by the communityl [4.1[5]. The encode number field recently described [ [3] to achieve the Johson

. und.
messages are residues modNo:= of numbers . .
9 P1,=e P . Throughout this paper, we denote Iy a number field of
m < K :=p1---pr Wherep; < py < --- < p,, are prime

numbers. They are encoded by using de_gree_d, of discriminarth and of ring of integer® . The

: prime ideals(p; )<, satisfy N (p1) < N(p2) < -+ < N(pn),
7 — Z[p1 X -+ X L/pn and we defineN := [[..,,N(p;) and B := [[, ., N(p:)
m +— (mmodpy,--,mmod p,). for integersk, n such thatd < k& < n. Before describing our
Decoding algorithms for CRT codes were significantly im@lgorithm in more details in the following sections, let tate

the main result of the paper.

proved to reach the same level of tolerance to errors as thosé
for Reed-Solomon codes|[6].1[7]./[4]. As algebraic-georicetr Theorem 1. Lete > 0, and a messager € Ok satisfying
codes are a generalization of Reed-Solomon codes, the iflead| < B, then there is an algorithm that returns all the
arose that we could generalize the results for CRT codesnmessagesn’ € Ok such that|m'|| < B and thatc(m) and
redundant residue codes based on number fields. Indeed,csve’) have mutual agreementsatisfying
can easily define an analogue of the CRT codes where a Y
number fieldK plays the role ofQ and its ring of integers t2 vk(n+e).
Ok plays the role ofZ. Then, for prime ideal$,--- ,p,, This algorithm is polynomial inl , log(/N), 1/e andlog |A].
such thatV(p,) < --- < N(p,), a messagen € Ox can be Il. GENERALITIES ON NUMBER FIELDS

ded b i .
encoded by using Let K be a number field of degrek It hasr; < d real em-

O — Ok /p1 X -+ x Ok /pn beddings(0;);<,, and2r, complex embedding&; )., <i<2r,
c: m +—— (mmodpy,- -, mmodp,). (coming asr, pairs of conjugates). The fiel is isomorphic

The construction of good codes on number fields have beté)noK ® Q whereOg denotes the ring of integers &f. We

independantly studied by Lenstral [1] and Guruswahii [2?.‘3ln embedy in
They provided indications on how to chose number fields Kr:=K®R~R™ x C"™,
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and extend thé;’s to Kz. Let T, be the Hermitian form on 0 < k < n, I := [, p;i andVi, \; := 51z [, N(ps) /"
Ky defined by provides a polynomial time algorithm for decoding number

Ty(z,2') = ZHi(:v)@(w’), field codes.

i Theorem 3. Let (ry,--- ,r,) € OF andm € Ok satisfying
Vi, m = r; mod p;, then Theorernl2 applied thw) := w—m
allows to return in polynomial time a list ofv’ € O with
[m/|| < 525 [1;< N(ps) /™ that differ fromm in at moste
places where

and let||z| := y/T2(z, x) be the correspondinfg.-norm. Let
(vi)i<a such thatOx = @;Z«;, then the discriminant ofS
is given by A = det?(T»(a;, ;). The norm of an element
z € K is defined byN (z) = T, |0:(z)].

We encode our messages with prime idealsOgf. How- e <m— lmlog/\/(lﬂn)_
ever, for decoding, we need a more general notion of ideal, log N(p1)

namely the fractional ideals aPx. They can be defined as In the rest of the paper, we present a method based on

finitely generated? ;--modules of K. When a fractional ideal . :
: . . . . ) Guruswami's general framework for residue codes [8] that
is contained ir0g, we refer to it as an integral ideal.For every,

o i o (e)
fractional ideall of Ok, there exists- € Z such thatrl is 3"0\’\/3. usbto ggttrrlld n thﬁ_deﬁ)ﬁn(\j]eﬂcy ogg/(m)dm the
integral. The sum and product of two fractional ideal<f ecoding bound thus reaching the Johnson bound.
is given by IV. JOHNSON-TYPE BOUND FOR NUMBER FIELDS CODES
IJ={iwvj1i+ - +uj|leNiy, -yl j, --jeJ} A Johnson-type bound is a positive numh&rdepending
I+J={i+jlicl,jeJ) on the d|stance,. thfe blocklength and the c_:ardmalmes ef th
Alphabets constituting the code. It garanties that a “small
The fractional ideals oDk are invertible, that is for every number of codewords are in any sphere of radiuBy “small”
fractional ideall, there existsl/ ' := {x € K | zI € Ok} number, we mean a number of codewords which is linear in the
such thatf I~ = Ok. The set of fractional ideals is equippectode blocklength and the cardinality of the code. In our case
with a norm function defined by (I) = det(1)/ det(Ok). the Johnson-type bound for number fields codes depends only
The norm of ideals is multiplicative, and in the case of agn the code blocklength and its minimal distance, and “small
integral ideal, we haveV'(I) = |Ok/I|. Also note that the means polynomial ip_7"_, log N (p;).
norm ofz € K is precisely the norm of the principal ideal The Johnson-type bound 6fi[8, Section 7.6.1] remains valid
(z) = 20k. for number field codes. For any prime idgalC O, the
In the following, we will study finitely generated suBx- quotient O /p is a finite field. Thus the'th symbol of a
module of Ok[y]. Let M C K' be a finitely generate@x- codeword comes from an alphabet of sitép;) = |Ox /pi|

module. As in[[11, Chap. 1], we say that; ), (a;)]i<n, Where and [8, Th. 7.10] can be applied. Letbe the least positive

a; € K anda; is a fractional ideal ofY, is a pseudo-basis for integer such thaﬂt.,lj\/(pi) > (gdB)d whered = [K : Q]

Mift M = tmhay DD G Q.- We also_c_all a pseudo-matrixand letT — szlN(Pi)- Then, by [2, Lem. 12], the minimal
representing\/ the matrix of the c.oeff|C|‘ents of theu; )i hamming distance of the number fields code is at least+1.
along with the ideals:;. The algorithm [3, Alg.4] retums a gjng [g, Th. 7.10], we can show that for a given message and
pseudo-matrix representid where the matrix of théa; )<y, ¢ > 0, only a “small” number of codewords satisfy

has a triangular shape in polynomial time.

[1l. DECODING WITH COPERSMITH S THEOREM Zai >/ (t+e)n, (1)
An analogue of Copersmith’s theorem was described by i=1
Cohn and Henninger in [10]. It was used to provide an elegamhere a; = 1 if the codeword and the message agree

way of decoding Reed-Solomon codes, and the possibility ab the i-th position, a; = 0 otherwise. Thus, if our list
use it for breaking lattice- based cryptosystem®in modules decoding algorithm returns all the codewords having at most
was considered, although they concluded that it would not— /(¢ +¢)n errors then this number is garanteed to
improve the state-of-the-art algorithms. be “small”. Therefore, the Johnson bound appears to be
a good objective for our algorithm. Note that we would
derive a different bound by using weighted distances. In
particular, by using théog-weighted hamming distance i.e.

Theorem 2 (Coppersmith) Let f € Ok [X] a monic polyno-
mial of degred, 0 < 5 <1, Ay,--- ,A¢ >0and! C Ok an
ideal. We can find in polynomial time all the € Og such

that [w]; = |o3(w)] < A and d(z,y) = | ;éz ) log N'(p;), the condition would be
:x#y mod p;
N(ged(f(@)Ox, 1) > N(1)*, Sy ailog N (p:) > /(log T + ) log N.
provided that the\; satisfy] [, \; < (2+o(1))‘d2/2/\/([)f32/l. V. GENERAL DESCRIPTION OF THE ALGORITHM
Although not mentioned in[[10], a straightforward adap- In this section, we give a high-level description of our
. . o ik log N(p:) decoding algorithm. We follow the approach of the general
tation of Theoreml22 with§ := > i<n log N (pi) h framework described i _[8], making the arrangements regluir



in our context. Our code is the set afh € Ok such
that |m| < B where B = [[,., N(p;). We also define
N = [[;<, N(pi)- A codewordm is encoded via

O — Ok /p1 X - x Ok /pn
m +—— (mmod py,---,mmod py).
Let z1,- -+, z, be non-negative real numbers, and Jebe a

Proof: As in [12, Chap. 5], we use the standard results of
Minkowski theory for our purposes. More precisely, there is
an isomorphismf : Kg — R™12™2 and a scalar product
(‘T7y) Zigrl LilYi + Zr1<i§r1+2r2 2x1y1 on RT1+2T2
transfering the canonical measure fraify to R™1+272, Let
A fOk), X = {x € Kr | |z|]| £ F'}, and
m € N. We know from Minkowski's lattice point theorem

parameter. In this section, as well as in Secfioh Viland V#, What if Vol(X) > m2?det()\), then #(f(z) N A) > m. As
assume that the; are integers. We assume that we receivegy)(x) = 2 (gﬁd/2p/d/p(d/2)) and det(\) = /]A], we

a vector(ry,---,r,) € [[, Ox/p;. We wish to retrieve all
the codewordsn such that), a;,z; > Z wherea; = 1 if
m mod p; = r; and 0 otherwise (we say that and (r;)i<n
have weighted agreeme#s).

have the desired result. ]
Then, we must derive from Lemnid 1 an analogue[of [8,

Lemma 7.6] in our context. This lemma allows us to estimate

the number of polynomials of degrde satisfying [2). To

We find the codewords: with desired weighted agreementimplify the expressions, we use the following notationtie t

by computing roots of a polynomiale Ok [y] that satisfies

)
for an appropriate bound’. We choose the polynomial
satisfying [2) in the idea][.., J* C Oxkly] where

i<n Y%

Ji ={a(y)(y —ri) +p-b(y) | a,b € Oky] andp € p;}.

[mll < B = [le(m)|| < F,

With such a choice of a polynomial, we necessarily have

c(m) € I[;p7"", wherea; = 1 if ¢(m)modp; = r,
0 otherwise. In particular, ifc(m) # 0 then N (c(m)) >
[L MV(p;)*. In addition, we know from the arithmetic-
geometric inequality thafc(m)|| > vdN (c(m))*/?. We thus
know that if the weighted agreement satisfies

d
> aizilog N(pi) > —5 log(d) + dlog(F),
i<n

which in turns implies/d ([], N(ps)7e) Y > F, thenc(m)
has to be zero, since otherwise it would contraditt (2).

®3)

Algorithm 1 Decoding algorithm
Require: Ok, 21, ,2n, B, Z, r1,---
Ensure: All m such thaty ", a;z; > Z.
1: Computel and F.
2. Findc € [[,,, J7* € Okly] of degree at mostsuch that
Im|| < B = [lc(m)|| < F.
3: Find all roots ofc and report those rootssuch that|¢|| <
Band),a;z > Z.

,Tn € l_L(I)K/)JZ

VI. EXISTENCE OF THE DECODING POLYNOMIAL

In this section, given weightéz;);<,, We prove the exis-
tence of a polynomiat € [[, J* and a constank” > 0 such
that for all |m| < B, m € Ok, we have|c(m)|| < F.

This proof is not constructive. The actual computation @ th
polynomial will be described in Sectidn VII. We first need to

estimate the number of elements @, bounded by a given
size.

Lemma 1. Let F/ > 0 and0 < v < 1, then the number of
x € Ok such that||z|| < F’ is at least

7.rd/QF'/d

|A[T(d/2)

gritra—1+y

rest of the paper

/2

ori+r2=1+v, /A|T(d/2)
Lemma 2. For positive integersB, F’, the number of poly-
nomialsc € Okly] of degree at most satisfying (@) is at

least L
F a\
Ay ((z n 1)Bl/2) '

Proof: Let c(y) = co+cry+- - -+ay'. We want the;'s to
satisfy ||e;m?|| < F'/(l + 1) whenever||m|| < B. This is the
case wherj|c;|| < F'/(B'(l+ 1)). By Lemmal, there are at
leastag,a, (F//((1+ 1)Bi))d possibilities fore;. Therefore,
the number of polynomials satisfying [(2) is at least

o ((125) 115

which finishes the proof. [ ]

Now that we know how to estimate the number ofe
Ok|y] or degree at most satisfying [2), we need to find a
lower bound onF’ to ensure that we can find such a polynomial
in ][, J;. The following lemma is an equivalent of [8, Lemma
7.7].

Lemma 3. Let [, B, F' be positive integers, there existse
1, J;* satisfying(2) provided that

<1_If\f<;oi><”2+ l>> . (4)

Proof: Let us apply Lemmal2 té&” = F/2. There are at
F/2

least 11
d
<Oéd,A7'Y <(l+ 1)Bl/2> )

polynomial c € Okly] satisfying ||m| < B = |c(m)] <

F/2. In addition, we know from[[8, Corollary 7.5] that
z;+1

L V)2 > |0k ly)/ T1, 77|, which implies that if[4)

is satisfied, then necessarily

)) -

QAd Ay =

+1 1

15
1=0

F
l+1

1
F>2(0+1)B"/?———
( ) (O‘dyA-,'v)l/d

F/2

OK[?J]/HJ?




This means that there are at least two distinct polynomials VIIl. GOOD WEIGHT SETTINGS

c1,c2 € Okly] of degree at most such that(c; — ¢2) €

[, J7" and |ci(m)|, |c2(m)|| < F/2 whenever|m| < B. To derive our main result, we need to consider weights
The choice ofc := ¢; — ¢5 finishes the proof. m 0 in R rather tharZ. Let

d3—%93(1+d(2+d

=
=

N

)

Ba,ay =

al-

(07
VII. COMPUTATION OF THE DECODING POLYNOMIAL 4 Ay

then by combining[(]S),[]4) and Algorithid 2, we know that

Let! > 0 be an integer to be determined later. To compu%\’en (r1,--- 1) € [lic, Or/Pis 1 >0, B = [Li, N(pi)
c e II, J** of degree at most satisfying [2), we need to find and mtegerwelght& > 0, Algorithm[2 returns a polynomial

a short pseudo-basis of the sal-module M N [, J7 of of degree at modtsuch that alin € O satisfying||m| < B

K'+1 where M is the Ox-module of the elements @ x [y] and
of degree at mostembedded if<' ™! via }", c;y* — (c;). We I ) 3d
first compute a peudo-generating set for eath.J, then we Z a;zilog N'(p;) > 3 log(2* B) + > log(l + 1)
compute a pseudo-basis for their intersection, and we ¥inall i<n
call the algorithm of[[13] to produce a short peudo-basis of 1 zi+1
M NT], JZ from which we deriver. T Kzn ( 5 ) log N'(pi) +log Ba.a: (5)
An algorithm for computing a pseudo-basis of the intersec- -
tion of two modules given by their pseudo basis is describg@herea; = 1 if m mod p; = r;, 0 otherwise) are roots af
by Cohen in[[11, 1.5.2]. It relies on the HNF algorithm foin the following, we no longer assume the to be integers.
Or-modules. The HNF algorithm presented inl[11, 1.4] islowever, we will use our previous results with the integer

not polynomial, but a variant recently presented.in [3] g8jo weights zi = [Az;]] for a sufficently large integer to be
this property. We can therefore apply [11, 1.5.2] with theFHNdetermined.

of [3] successively for each pseudo-basigf.J* to produce . .
[S] su Ve pseu ! ‘ produ Proposition 1. Let ¢ > 0, non-negative realsz;, B =

a pseudo-basis o N ], J;*. [L<,N(p;), and an encoded message:,---,r,) €
[L; Ok /pi, then our algorithm finds all then € Ok such
that ||m| < B and

Algorithm 2 Computation of the decoding polynomial
Require: (p;, zi)i<n, [, N, B, F such thatdc € ], J7* of

degree at most satisfyin for F, and the encoded )
megssage{rl T efyH gOg)/pl Zaizi log N'(pi) > |log(2%° B?) (Z 22 log N(p;) + szmm> ,

Ensure: ¢ € [[,J7 satsfying [2) for =
% d(6+3d 1
2\/z+1(22+ (643 >d3|A|2+2d)F of degree  al wherea — 1 if mmod p, — i, O otherwise.

most/.
1: for i <n do Proof: Note that we can assume without loss of generality
20 % < min(z;,1). that 2,4 = 1. Let 27 = [Az;] for a sufficently large integer
3 For0<j<z: a — p; Zi—] a “~(y- i) A, which thus satisfiesiz; < zf < Az; + 1. The decoding
4 Forl<j<I—z: a)« OK, al i (y —ri)* condition [5) is met whenever
50 Let ((a}), (ad)j<i41) e a pseudo matrix fob/ N J7:. ; 34
6: end for S aizilog N (pi) > = log(2% BY) + — log(l + 1)
7. Compute a pseudo-basi§:;), (¢;)]i<i+1 of M1 = M N i<n 24 24

IL 77 A , 3 2 N
s: Deduce a pseudo basig;), (9;)]i<i+1 of the moduleM, + 20+1) Z z+ 1% + Vel log N (p:)

given by isn

1
(v()vvlv"' ,’Ul) €M1<:>(U0,’01'B,"' 7vl'(B)l) EMQ- +Zlogﬂd,A,'y- (6)

9: Let[(b;), (b;)]i<i+1 be a short peudo-basis df, obtained Let Z; := 2} + J2; + 45 for i <n and
with the reduction algorithm of [13].
10: Let x1, 22 be a short basis of; obtained with [[13, Th. \/Z

Zilog N (p;)

i<n -1
log(29* B%)

3].
11: return ¢ € M; corresponding tac1b; € Mo.

We assume thatl > log(2%° B%), which ensures that > 0.



For this choice of, condition [8) is satisfied whenever

\/ S e Zilog N (p:)

; a;z;log N'(p;) > log 27 B +1
+ | log(24* Bd) ZZ log N (p;)
i<n
1
T log Ba,A,~- (7)

Assume thati > 122X and 4 > % then forN large
enough, the right S|de ofl(7) is at most

)| D 22 log N (pi) +

i<n

[\Dlm

0 (10g10gN

log(2* B4)
log N )+ og(

< 10g(2d2Bd) Z 212 log./\/'(pl) +e

i<n

IX. CONCLUSION

We presented the first method for list decoding number field
codes. A straightforward application of Theorgim 2 allows to
derive a decoding algorithm in polynomial time. However,
we cannot achieve the Johnson bound with this method. To
solve this problem, we described an analogue of the CRT list
decoding algorithm for codes based on number fields. This is
the first algorithm allowing list decoding of number field esd
up to the Johnson bound. We followed the approach bf [8,
Ch. 7] that provides a general frameworks for list decodihg o
algebraic codes, along with its application to CRT code® Th
modifications to make this strategy efficient in the context o
number fields are substantial. We needed to refer to theytheor
of modules over a Dedekind domain, and carefully analyse the
process of intersecting them, as well as finding short elésnen
We proved that our algorithm is polynomial in the size of the
input, that is ind, log(N'), log |A| and L.
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The degreel of our decoding polynomiak is therefore theorem.

polynomial inlog N, 1, d andlog |A|. By [14, 2.3], we know

that the complexity to find the roots aefis polynomial ind,

[ and in the logarithm of the height ef which we already

proved to be polynomial in the desired values.
|

Corollary 1. Let ¢
p1,---py satisfying N (p;) < N(pi+1) and log N (piy1) >

max(2dklog N(px), 2d?), then with the previous notations,
our algorithm finds a list of all codewords which agree with

a received word int places provided > \/k(n + ¢).

Proof: The proof is similar to the one of[8, Th. 7.14].

o ; e log(2%” B%)
The main difference is that we defire:= k£ — oz NTrert)

which satisfiess > 0 since by assumptiotog N (pr+1) >
max(2dklog N'(pr), 2d2). We apply Proposmoﬁll withy; =
/log/\/ p;)fori > k+1, 2, = 1/log N (pg41) fori < k, and

= ¢/logN(ps41). It allows us to retrieve the codewords

whose number of agreemeritss at least

log(B
log N ( Pk+1

log(24® Bd)
log NV (pr+1)

Z Pk+1 6,)
log N/

i=k+1

log(24*B?) ( log(2%° B4) —~ N(pes1)
- log NV (pre+1) <1OgN(pk+1) * 21 log N (p:) +E>'

i=k+

This condition is met whenever> 6+ /(k — &)(n — d +¢).
From the Cauchy-Schwartz inequality, we notice that

\/k(n+€)2\/(k—5)(n—5+e),

which proves that our decoding algorithm works whep>
k(n+e).

> 0, & < n and prime ideals
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