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Abstract—We consider allcast and multicast flow problems
where either all of the nodes or only a subset of the nodes
may be in session. Traffic from each node in the session has
to be sent to every other node in the session. If the session does
not consist of all the nodes, the remaining nodes act as relays.
The nodes are connected by undirected links whose capacities
are independent and identically distributed random variables.
We study the asymptotics of the capacity region (with network
coding) in the limit of a large number of nodes, and show
that the normalized sum rate converges to a constant almost
surely. We then provide a decentralized push-pull algorithm
that asymptotically achieves this normalized sum rate without
network coding.

Index Terms—allcast, broadcast, Erd̋os-Ŕenyi random graph,
flows, matching, multicast, network coding, random graph,
Steiner tree, tree packing

I. I NTRODUCTION

In this paper, we investigate the capacity of allcast and
multicast sessions over random link-capacitated graphs. Two
questions motivated us to study these problems in the context
of random graphs.

(1) While it is known that network coding in general
provides a large coding advantage over multicast flows in
directed graphs, Li et al. [1] showed that the coding advantage
in undirected graphs is upper bounded by 2. In some specific
topologies a tighter upper bound is known [2]. However sev-
eral simulation experiments showed nearly no coding advan-
tage for some class of random undirected graphs [3]. Is there
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a provable statement that there is negligible multicast coding
advantage for a rich class of random undirected networks?

(2) If we stick to the domain of flows (with duplication),
as we will soon see, optimal allcasting and multicasting lead
to tree and Steiner tree packing problems respectively. While
packing of trees is known to be easy (see [4], [5], [6]),
Steiner tree packing is known to be hard [7]. Due to its
application in multicasting over wired networks and in VLSI
layout optimization, practitioners and theorists have over many
years provided hardness results, heuristics, and approximation
algorithms (see [8], [9], [7], [10], [11], etc.) Are there “quick-
but-dirty” (terminology from [12]), decentralized, scalable, yet
near-optimal algorithms for allcasting and multicasting over a
rich class of random undirected networks? An answer to this
question is of obvious value in the context of live streaming
of popular events to a large audience1.

In this paper, we provide affirmative answers to both these
questions. We begin by making precise what we mean by
allcast and multicast.

Allcast: Consider a setting where there aren nodes, all
of which are engaged in a conference over a wired network.
Each node has data that needs to be made entirely available
over the network to each of the othern − 1 nodes in a
simultaneous fashion. (To be more precise, this is amultiple
allcast problem). The data can be split, or routed, or coded,
or transmitted in any combination thereof, so long as all
nodes eventually get the information. The underlying complete
undirected graph onn vertices is capacitated: each undirected
link e has capacityCe sampled independently and identically
from a distributionF . An allcast information flow assignment
is said to be feasible if for every link, the net (possibly coded)
flow over the link (summed over both directions) respects the
link’s capacity constraint. For each feasible flow assignment,
let ri be the bit-rate of traffic sent by nodei to each of
the other nodes. We address the question of the set of all
achievable rate tuplesr1, · · · , rn in the asymptotics of a large
number of nodesn. As we shall soon see, this problem is
closely related to packing of disjoint spanning trees in a link-
capacitated network with integer capacities. Minor extensions
of some previous results readily yield that the achievable rate
region is almost surely (a.s.)

{

(r1, r2, . . .) : lim sup
n→∞

1

n

n
∑

i=1

ri ≤
1

2
E[C]

}

(1)

1On 14 October 2012, an Austrian skydiver Felix Baumgartner broke an
existing record for the highest skydive; there were more than 8 million
concurrent livestreams of this event on the YouTube video distribution service.
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where the expectation is of a random variableC having
distribution F . The linear programming formulation of this
problem is given in Section II, and the proof of (1) is given
in Sections III (converse) and IV (achievability). Our proof of
achievability is via a combination of “push” and “pull” that
suggests a decentralized implementation. Section V contains
some estimates needed to establish the correctness (with high
probability) of the push-pull algorithm. Section VIII deals with
the case when the link probabilities vanish, but not too quickly.

It is known that network coding does not yield any coding
advantage in allcast settings [1], and thus we have an asymp-
totic characterization of the allcast capacity region.

Multicast: We next address a more general setting with
only a subset ofkn nodes in the multicast session, where
limn→∞ kn/n = α and0 ≤ α ≤ 1. Data from each of thekn
nodes has to reach every one of the otherkn − 1 nodes. The
remainingn − kn nodes serve as relays. This is therefore a
problem ofmultiple multicast among commonsession nodes.
Again, in a link-capacitated framework where each link is
independent and identically distributed (iid) with distribution
F , we are interested in the set of all achievable rate tuples
r1, · · · , rkn

in the asymptotics of a large number of nodesn.
We demonstrate that the capacity region is almost surely

{

(r1, r2, . . .) : lim sup
n→∞

1

n

kn
∑

i=1

ri ≤
(

1− α

2

)

E[C].

}

(2)

The LP formulation of this problem is in Section II, proof of
the converse is in Section III, and proof of achievability is
in Section VII. Here too, our proof of achievability is via a
decentralized push-pull algorithm. Section VI is a digression
to study single commodity flows over random networks and
develops the ingredients necessary to establish the correctness
(with high probability) of the push-pull algorithm.

Our achievability proofs are based on flows (allowing
for duplications) and thus do not employ network coding.
In particular, they establish that the coding advantage from
network coding in multicast settings, which is the ratio of
the maximum achievable rate with network coding and the
maximum achievable rate using flows (with duplication), is
1+o(1) as the number of nodesn → ∞. As the rate achievable
without network coding is linear in the number of nodesn,
the maximum gain to be had from network coding is at best
o(n) which is sublinear in the number of nodes. Schemes very
similar to our push-pull algorithm have been proposed and are
being used over the internet for content distribution in peer-
to-peer networks. See [13, Sec. 1-2] for an excellent survey
of such techniques. Our work proves that a version of it is
asymptotically optimal for a rich class of random networks.

II. A L INEAR PROGRAMMING FORMULATION

A. Random graph models

We are given a countable collection of iid random variables
{Ci,j , 1 ≤ i < j < ∞} where each element has distribution
F on R+. We then obtain a sequence of graphs, denoted
{Kn, n ≥ 1}, where for eachn, the graphKn is the complete
graph on the vertex set{1, 2, . . . , n} along with the collection
of all

(

n
2

)

links. Each link (i, j) with 1 ≤ i < j ≤ n has

link capacity Ci,j . Such models are appropriate in settings
where nodes are statistically identical in their connections,
capacities, and interests. Even in settings where such models
are not directly applicable, their tractability yields solutions
that provide insights to network designers.

Later on, we will have a need to study Erdős-Rényi random
graphs where the link capacity distribution is Bernoulli(p),
which is Pr{C = 1} = p and Pr{C = 0} = 1 − p. If
Ci,j = 0, then the undirected link(i, j) has zero capacity
and is effectively absent. We then use the notationG(n, p) to
denote the obtained graph for a fixedn.

We will also study Erdős-Rényi random graphs wherep
depends onn and vanishes withn. We shall denote these
G(n, pn). These may be constructed as follows. We assume
that we are now given a collection of iid random variables
{Zi,j, 1 ≤ i < j < ∞} where eachZi,j has the uniform
distribution on[0, 1]. The graphG(n, pn) is the graph onn
vertices{1, 2, . . . , n} where each link{i, j} with 1 ≤ i <
j ≤ n has binary capacityCi,j = 1{Zi,j ≤ pn}. The notation
1{· · · } stands for the indicator of an event. This construction
is of course consistent with the construction ofG(n, p) when
pn ≡ p is a constant.

Finally, we will also study random bipartite graph se-
quences{G(n, n, p), n ≥ 1} and{G(n, n, pn), n ≥ 1}. These
are constructed from the collection of iid random variables
{Zi,j, i ≥ 1, j ≥ 1} where once again each entry has
the uniform distribution on[0, 1]. In the graphG(n, n, pn),
for example, there are2n vertices with vertex setV1 ∪ V2

whereV1 = {v1, v2, . . . vn} and V2 = {ω1, ω2, . . . ωn}, and
the capacity on the link between nodevi and nodeωj is
Ci,j = 1{Zi,j ≤ pn}.

B. Allcast

Consider the allcast problem described in Section I. Li et
al. prove in [1, Cor. 4.a] that a multiple allcast rate vector
(r1, r2, . . . , rn) is achievable in an undirected capacitated
network if and only if the rate vector(

∑n
i=1 ri, 0, . . . , 0) is

achievable, i.e., the sum rate is achievable for asingleallcast
with node 1 as sender and with the othern − 1 nodes as
receivers. This is intuitively clear since network coding does
not help for allcast, and one can make do with multicommodity
flows in multiple allcast.

We may therefore assume that there is only one sender (say
node 1), and all othern − 1 nodes are recipients that must
receive all information sent by node 1. The rates in such a
setting are given by(r1, 0, 0, . . .), and we characterizer1.

This maximum rate is obtained by solving the following
linear programming (LP) problem. Consider the graphKn on
n vertices with associated link capacities. LetTn be the set of
all spanning trees on the complete graph (ignoring capacities).
The vertices are labeled, and so Cayley’s formula tells thatthe
number of such trees isnn−2. Solve the LP (Tutte [4], Nash-
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Williams [5], Barahona [6], Li et al. [1]):

Maximize
∑

T∈Tn

λT (3)

subject to (a)
∑

T∈Tn:T∋e

λT ≤ Ce for all e

(b) λT ≥ 0 for all T ∈ Tn.
Denote the maximum value of (3) asπn. Then πn is the
maximum rate at which node 1 can allcast its information to all
the other nodes. The LP has a simple and intuitive explanation.

• If one tags an infinitesimal information element originat-
ing at node 1 and follows the path of its spread to each
of then− 1 recipients, one gets a directed graph rooted
at the source node 1 and spanning all then nodes.

• If the undirected version of this directed graph is not
a tree, i.e., there is some cycle, then some node in the
cycle is receiving this information element from two other
nodes. One of these two incoming links can be removed
without affecting the allcast property. We can thus reduce
the directed graph to aspanning arborescence, which is
a directed graph with no incoming links at the root node,
exactly one incoming link at every other node, and all
vertices are covered.

• This spanning arborescence is in one-one correspondence
with a tree, because the root is specified as node 1. So we
may simply focus on the spanning tree associated with
the arborescence. Call this treeT (which is in Tn).

• Collect all information elements that are spread via this
tree. Call its volumeλT .

It is clear that eachλT ≥ 0 and constraint (a) in (3) is
the capacity constraint associated with each of the links.
Consequently, the value of the optimization problem in (3)
is an upper bound on the optimal net flow from node 1.
But it is immediate that any set ofλT satisfying the two
constraints provides a means to achieve a rate

∑

T λT , since
λT units of information may be directed through the spanning
arborescence associated with the treeT and root vertex 1.
Thus the maximum rate of allcast flow from a single sender
is πn, the solution to the LP in (3).

When link capacities are random,πn is a random variable
whose asymptotics we shall soon characterize.

C. Multicast

For the multicast problem, without loss of generality, let us
index the session nodes as{1, 2, . . . , kn}. As for allcast, by [1,
Cor. 4.a], a multiple multicast rate vector(r1, r2, . . . , rkn

) with
identical session nodes is achievable in an undirected capaci-
tated network if and only if the rate vector(

∑kn

i=1 ri, 0, . . . , 0)
is achievable, i.e., the sum rate is achievable for asingle
multicast with node 1 as sender and with the otherkn − 1
nodes of the session as receivers2. We may therefore assume
that there is but one sender, he is node 1, and all otherkn− 1
nodes are recipients that must receive all information sentby

2There is some subtlety involved here since, in general, network coding
provides a coding advantage for multicasting in undirectednetworks; see [1,
Th. 4] for a proof of source independence in the single multicast case which
is then generalized to get [1, Cor. 4.a]

node 1. Denote byTn(kn) the set of all Steiner trees that
span the vertices1, 2, . . . , kn. Obviously Tn(n) ≡ Tn. For
multicast, again as for allcast, the maximum simultaneously
transmissible rate from one sender (node 1) to thekn−1 other
recipients is the maximum value of the modified LP ([3], [14],
[1]):

Maximize
∑

T∈Tn(kn)

λT (4)

subject to (a)
∑

T∈Tn(kn):T∋e

λT ≤ Ce for all e

(b) λT ≥ 0 for all T ∈ Tn(kn).

Set αn = kn/n, and denote the maximum value of (4) as
πn(αn). The above LP is the same as that of (3) withTn
replaced by the less restrictiveTn(kn).

Again, when link capacities are random,πn(αn) is a random
variable whose asymptotics we shall soon characterize.

III. A N UPPERBOUND

Consider the following definitions.

• Let χn and χn(kn) denote themaximum throughput
achievablein the allcast and multicast settings with the
added possibility of network coding at each node. (The
dependence of these quantities on the link capacities is
understood and suppressed).

• Let ηn denote thestrengthof the allcast network defined
as follows. LetP denote the set of all partitions of the
vertex set{1, 2, . . . , n}. Consider a partition℘ ∈ P . Let
∂℘ denote the set of intercomponent links. Define

ηn := min
℘∈P

∑

e∈∂℘ Ce

|℘| − 1
(5)

where|℘| denotes the number of subsets in the partition.
• Let ηn(kn) denote the strength of the multicast network

with kn nodes in the session. This is defined as follows.
Let P(kn) denote the set of all partitions of the vertex
set{1, 2, . . . , n} such that each component of a partition
contains at least one of the session nodes{1, 2, . . . , kn}.
Define

ηn(kn) := min
℘∈P(kn)

∑

e∈∂℘ Ce

|℘| − 1
. (6)

Li et al. [1] showed the following result.
Theorem 1:(Li et al. [1, Th. 2 and Th. 3])

(a) For any allcast session,πn = χn = ηn.
(b) For any multicast session,πn(kn) ≤ χn(kn) ≤ ηn(kn).

We can easily find good upper bounds onηn and ηn(kn)
in random settings as shown in the following theorem.

Theorem 2:Let {Ci,j}1≤i<j≤n denote the undirected link
capacities. We then have the following upper bounds:

ηn ≤ 1

n− 1

∑

1≤i<j≤n

Ci,j (7)

ηn(kn) ≤ 1

kn − 1





∑

i<kn

∑

j≥kn

Ci,j +
∑

1≤i<j<kn

Ci,j



 .(8)
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As a consequence, withlimn→∞ kn/n = α, the inequalities

lim sup
n→∞

ηn
n

≤ 1

2
E[C] (9)

lim sup
n→∞

ηn(kn)

n
≤

(

1− α

2

)

E[C] (10)

hold almost surely.
Proof: Consider the partition℘ = {{1}, {2}, · · · , {n}}.

There aren subsets in the partition, and∂℘ is the set of all
links. Apply now the definition (5) ofηn and we immediately
get (7) as the upper bound for the allcast case.

For the multicast case, consider the partition

℘ = {{1}, {2}, · · · , {kn − 1}, {kn, . . . , n}}.

There arekn subsets in the partition. The set of links in∂℘
are

{(i, j) : 1 ≤ i < kn, j ≥ kn} ∪ {(i, j) : 1 ≤ i < j < kn}.

Apply now the definition (6) ofηn(kn) and we immediately
get (8) as the upper bound for the multicast case.

Note that|∂℘| = n(n− 1)/2 for allcast, and

|∂℘| = (kn − 1)(n− kn + 1) +
(kn − 1)(kn − 2)

2

= (kn − 1)

(

n− kn
2

)

(11)

for multicast.
Using |∂℘| = n(n− 1)/2 for allcast in (7), we obtain

ηn
n

≤ 1

2

1

|∂℘|
∑

e∈∂℘

Ce.

The sum on the right-hand side is composed of independent
and identically distributed random variables. Consequently, the
right-hand side converges almost surely to1

2E[C] by the strong
law of large numbers, and we obtain (9).

For the multicast case, use (11) in (8) to obtain

ηn(kn)

n
≤

(

1− kn
2n

)

1

|∂℘|
∑

e∈∂℘

Ce.

Again by an application of the strong law of large numbers,
the conclusion (10) follows.

Observe that, by Theorem 1, the upper bounds in Theorem 2
apply for capacity with the possibility of network coding. Let
us now turn to achievability of these rates in their respective
settings.

IV. A LLCAST: ACHIEVABILITY

In this section we consider the allcast setting and argue that
the upper bound in (9) is tight, and moreover, the upper bound
is achievable via flows. After first establishing the existence
of a scheme, we then provide a practical decentralized asymp-
totically optimal push-pull algorithm.

Theorem 3:For the allcast problem, we have

lim
n→∞

πn

n
=

1

2
E[C] a.s.

Proof: The fact that we cannot do better thanE[C]/2
was already established in (9). So the proof of the above
theorem would be complete if we can establish thatE[C]/2 is
achievable. We first argue achievability on the simpler Erd˝os-
Rényi graphs. We then lift this result to the general case.

Take the random graphG(n, p) where each link capacity
is iid with Bernoulli(p) distribution. Catlin et al. [15, Sec. 3]
proved the stronger result that, even ifp vanishes withn,
so long as it is larger than(28 logn/n)1/3, we have for all
sufficiently largen the equality

πn =

⌊

∑

1≤i<j≤n Ci,j

n− 1

⌋

a.s. (12)

For anyε > 0, usingp > 0, the result in (12), and the strong
law of large numbers, we have

lim inf
n→∞

πn

n
≥ p

2
(1− ε) a.s. (13)

By excluding all null sets associated with rationalε ∈ (0, 1),
it follows that

lim inf
n→∞

πn

n
≥ p

2
a.s.

There now remains the step of lifting this result to any
generic distributionF , for the iid capacitiesCi,j , satisfying

0 < E[C] =

∫ ∞

0

Pr{C > x} dx =

∫ ∞

0

[1− F (x)] dx < ∞.

(14)
This is readily done. Fix an arbitraryε > 0. By (14) and the
fact that the function1 − F (x) is Riemann integrable (for it
is Lebesgue integrable, bounded, and has at most a countable
number of discontinuities), we can choose a natural number
M < ∞ andδ > 0 such that

M
∑

k=1

δ · [1− F (kδ)] ≥ E[C] · (1 − ε). (15)

We now build a family ofM coupled graphs, each withn
vertices. For a realization of the iid link capacities, letGk be
a new graph on then vertices with link betweeni and j if
and only ifCi,j > kδ, for k = 1, 2, . . . ,M . Clearly,Gk is an
Erdős-Rényi graph onn vertices with parameter

p(k) := Pr{C > kδ} = 1− F (kδ).

On Gk, we interpret each link, if present, as having capacity
δ. While the graphs are coupled across the parameterk, for
a fixed k, the links on the graphGk are iid Bernoulli(p(k))
random variables. Letπn(Gk) be the maximum number of
disjoint trees that can be packed inGk. By the result (13)
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Source

~ np/2

Owners Relays

Figure 1. Graph showing the three sets of nodes: source, owners, and relays.
Source pushes bits to owners who then push to relays. All nodes then pull
from owners and any remaining bits from relays.

applied to each fixedk, we have

lim inf
n→∞

πn

n
≥ lim inf

n→∞

1

n

M
∑

k=1

δ · πn(Gk)

≥ δ ·
M
∑

k=1

p(k)

2
(1− ε), a.s.

=
1

2

M
∑

k=1

δ · [1− F (kδ)] · (1− ε)

≥ 1

2
· E[C] · (1 − ε) · (1− ε)

≥ E[C]

2
(1− 2ε),

where the penultimate inequality follows from (15). It follows
as before thatlimn

πn

n ≥ E[C]
2 almost surely. This completes

the proof. (See [16] or [17] for a similar truncation, quantiza-
tion, and scaling argument).

The key to proving Theorem 3 is the result (13) on Erdős-
Rényi graphs. In order to show this, we utilized the result (12)
of Catlin et al. [15]. The main point of the rest of this section
is to demonstrate that (13) can be proved constructively using
a rather simple and decentralized algorithm.

A. ALLCAST: A decentralized algorithm for allcast in a
random graph

This section describes a decentralizedpush-pullalgorithm
for allcast that achieves (13) for an arbitraryε > 0. For ease
of exposition, we shall assume a total ofn + 1 nodes with
node 0 as the source node. The source node 0 has to push
a total of 1

2np(1 − ε) bits to all nodes. We have ignored
integer rounding and a factor(n + 1)/n both of which are
easily absorbed intoε. The algorithm broadly has two push
steps and two pull steps, as described next. See Figure 1. The
analysis that comes later will argue that with overwhelming
probability none of the steps fail.

Algorithm ALLCAST:

• Setting up of directions: All links that do not involve
the source node 0 are assigned one of the two directions
with equal probability, independently of the choices of
directions at other links. All links that involve the source
node 0 have a direction pointing away from the source.

• Push step 1: Source node 0pushes12np(1− ε) different
bits to that many of its neighbors. We number the bits
b1, b2, . . . , bnp(1−ε)/2, call the respective recipient nodes
as ownersof these bits, and denote the owners (some-
times) asO1, O2, . . . , Onp(1−ε)/2 instead of saying node
1, node 2, . . . , nodenp(1 − ε)/2. There may be several
other neighbors of node 0, but the corresponding links are
left unused. These and other nodes who are not owners
are calledrelays, and are denotedRnp(1−ε)/2+1, . . . , Rn

(instead of saying nodenp(1− ε)/2 + 1, . . . , noden).
• Push step 2: Each ownerOi pushes his bitbi one more

level along links that point outward fromi, regardless of
the status of the recipient as an owner of another bit or a
relay. The receiving node will then havebi (and similarly
many other bits) for other nodes to pull in the next couple
of steps of the algorithm.

• Pull step 1: Each node, say nodej, collects all incoming
bits bi coming directly from ownersOi via links i → j.
(This is the bit pushed byOi in push step 2).

• Pull step 2: Having collected some bits directly from
owners, nodej identifies the remaining bits, the relays
to which it is connected with direction pointing towards
j, and the bits that these relays have available having
received the bits directly from owners. A representation
of this information is thebit-map matrix of nodes and
bits they have available for pulling (see Table I and its
description). Nodej then identifies acomplete matching
of these desired bits to the helper relays: each desired
yet-to-be-pulled bit is pulled from a suitable relay that
has the bit, with each relay accounting for one bit, and
this constitutes a matching.

The orientation step (the first step of the algorithm), when
operating on a node other than the source, renders roughly
one half of the links outward and the remaining links inward.
The outward links provide service to other nodes. The inward
links bring in thenp(1− ε)/2 bits to the node. In this sense,
the resource usages for rendering service and reaping benefit
are balanced.

Before we dive into an analysis of this algorithm, we
describe the bit-map of Table I in more detail. The rows and
columns are indexed as

O1, O2, . . . , Onp(1−ε)/2, Rnp(1−ε)/2 + 1, . . . , Rn.

In addition, the firstnp(1 − ε)/2 columns will also refer to
the corresponding bits.

• For 1 ≤ i ≤ np(1 − ε)/2, we writeXi,i = 1 to signify
that nodeOi has bitbi.

• For i 6= j, since the link {i, j} itself occurs with
probabilityp, and further, may have either direction with
equal probability, we have

Xi,j = 1, Xj,i = 0 if j → i;

Xj,i = 0, Xi,j = 1 if i → j;

Xj,i = 0, Xi,j = 0 if no link betweeni andj.

These are mutually exclusive, with the first setting oc-
curring with probability p/2, the second setting with
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Table I
ALLCAST BIT-MAP

O1 O2 · · · Ot · · · Oa Ob Oc · · · Onp(1−ε)
2

Rnp(1−ε)
2

+1
· · · Ru Rv Rw · · · Rn

b1 b2 · · · bt · · · ba bb bc · · · bnp(1−ε)
2

O1 1 · · · X1a · · ·

O2 1
...

...
Ot 1 1 · · · 1 · · · 0 0 0 · · · 1 0 · · · 1 1 1 · · · 0
...

...
Oa Xa1 · · · 1 · · · Xai

Ob 1
Oc 1
...

...
Onp(1−ε)

2

1

Rnp(1−ε)
2

+1
Xia

...
...

Ru 0 · · · 1 · · ·

Rv 0 · · · 1 · · ·

Rw 0 · · · 1 · · ·

...
...

Rn 1

probability p/2, and the third setting with probability
1− p.

• If Xi,j = 1, then nodei (owner or relay) can obtain bit
bj from ownerOj (if 1 ≤ j ≤ np(1− ε)/2) or some bit
that relayRj has (if j > np(1− ε)/2).

• The set of bits nodei receives directly from owners
corresponds to the set of 1s in the firstnp(1 − ε)/2
columns of theith row, for if Xi,j = 1, then owner
Oj pushes his bitbj to nodei. (For example, in Table I,
ownerOt has bitsb1, b2, bt, bnp(1−ε)/2, but does not have
ba, bb, bc).

• The 1s in theith row beyond columnnp(1− ε)/2 point
to relays that can be used by nodei to pull any remaining
bits in pull step 2. (For example, ownerOt is connected to
relaysRu, Rv, Rw with directions pointing towardsOt.
These relays will help nodeOt get the yet-to-be-pulled
bits ba, bb, bc).

• Clearly, while the random variablesXi,j and Xj,i are
coupled, the nondiagonal entries of theith row

{Xi,j, 1 ≤ j ≤ n, j 6= i}
are iid Bernoulli(p/2) random variables, for1 ≤ i ≤ n.
The same holds for nondiagonal entries of any column.

Our main assertion is that the algorithmALLCAST succeeds
with high probability in distributing thenp(1 − ε)/2 bits to
all nodes.

Theorem 4:For any ε > 0, the following event occurs

almost surely: for all but finitely manyn, the algorithm
ALLCAST succeeds in distributing allnp(1−ε)/2 bits to each
of the n nodes.

Remarks: 1) It follows immediately that, for anyε > 0, the
inequality (13) holds.

2) The above theorem also implies that, for all sufficiently
largen, we can packnp(1− ε)/2 disjoint (spanning) trees in
G(n, p), with each tree having the property that it has depth
at most 3.

3) ALLCAST is decentralized in the following sense. The
direction of each link, when present and if the source node
is not involved, is picked at random by the toss of a fair
coin, and this information is needed only at these two incident
nodes. The two levels of pushes, and thus the first pull stage,
are easily seen to be decentralized. At each node, the actions
depend only on the links incident on it and the agreed upon
link directions. Each node then keeps a list of bits it receives
from owners. For the final pull stage, each node has to get this
list associated with each of its potential helper relays. This is
the step that may involve significant exchange of information,
but the cost involved is a one-time set-up cost that can be
amortized over multiple rounds of data communication. Note
that all information exchanges (link directions, pushing of
owned bits, lists of bits available at neighboring helper relays)
are of information which are of local relevance that are, in
addition, locally available. The matching can be identifiedin
O(n2) steps [12].
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4) We need three elementary tools to establish the result.
The first is the following well known concentration result for
the binomial distribution, which we state without proof.

Lemma 5: ([18, Th. 1.7(i)]) Suppose0 < q < 1
2 , 0 <

ε < 1/12, and εnq(1 − q) ≥ 12. Let Sn,q be the sum of
n Bernoulli(q) random variables. Then

Pr

{∣

∣

∣

∣

1

nq
Sn,q − 1

∣

∣

∣

∣

> ε

}

≤ 1
√

ε2nq
e−nqε2/3. (16)

This result holds for everyn andq satisfyingεnq(1− q) ≥
12, and as such,q can vary withn. The second tool is the
Borel-Cantelli lemma that gives us a sufficient condition for
almost sure convergence. The third tool is one of existence
of matchings on random bipartite graphs, which will be the
subject of Section V.

Proof of Theorem 4: By the Borel-Cantelli lemma, it
suffices to show that the probability that the algorithm fails
for a particularn is summable overn. If the algorithm fails,
then at least one of the following is true.

1) The eventA(n)
1 occurs, which is defined to be the event

that there are fewer than12np(1 − ε) vertices connected to
node 0. By Lemma 5, there is somec1 > 0 such that for all
sufficiently largen, we havePr{A(n)

1 } ≤ e−c1n.
2) For some nodet, the eventA(n)

2 (t) occurs, which is
defined to be the event that the nodet is connected to a certain
number of owners outside the range12np(1 − ε) · 1

2p(1 ± ε)
with links pointing towardst. (If nodet is an owner, there are
1
2np(1−ε))−1 other owners, but the 1 can be absorbed into the
(1−ε) factor). Again by Lemma 5, there is somec2 > 0 such
that for all sufficiently largen, we havePr{A(n)

2 (t)} ≤ e−c2n.
3) For some nodet, the eventA(n)

3 (t) occurs, which is the
event that the nodet is connected to fewer than

βn :=

(

n− 1

2
np(1− ε)

)

· 1
2
p(1− ε)

=
1

2
np(1− ε) ·

(

1− 1

2
p(1− ε)

)

relays with links pointing towardst. (Again, the case of 1 less
relay when nodet is a relay is easily handled). Once again by
Lemma 5, there is ac3 > 0 such that for all sufficiently large
n, we havePr{A(n)

3 (t)} ≤ e−c3n.
4) For some nodet, if A

(n)
1 ∪ A

(n)
2 (t) ∪ A

(n)
3 (t) does not

occur, then the eventM (n)(t) occurs, which is the event that
nodet is unable to pull the desired bits. We claim that

Pr
{

M (n)(t) |
(

A
(n)
1 ∪ A

(n)
2 (t) ∪ A

(n)
3 (t)

)c}

≤ γ(βn)

(17)
for some sequenceγ : N → [0, 1] satisfying

∞
∑

n=1

nγ(βn) < ∞. (18)

The event that the algorithm fails is then a subset of

A
(n)
1

n
⋃

t=1

(

A
(n)
2 (t) ∪ A

(n)
3 (t) ∪M (n)(t)

)

whose probability is upper bounded via the union bound and
(17) by

n ·
(

e−nc1 + e−nc2 + e−nc3 + γ(βn)
)

which, by the summability claim in (18) and the exponentially
decaying nature of the other terms, is summable.

Let us now prove (17) and (18).
Fix a nodet, where1 ≤ t ≤ n. The eventA(n)

1 has not
occurred, and so the source has sent out exactly1

2np(1 − ε)

bits to that many owners. The eventA
(n)
2 (t) has not occurred,

and so nodet is connected to between12np(1 − ε) · 1
2p(1 ±

ε) owners with links towards nodet. The connected owners
directly furnish their bits to nodet. But nodet needs at least
1
2np(1 − ε) − 1

2np(1 − ε) · 1
2p(1 + ε) additional bits to be

pulled in pull step 2. This set of yet-to-be-pulled bits points
to some random selection of columns from amongst the first
1
2np(1− ε) columns and does not include columnt.

The eventA(n)
3 (t) has not occurred, and so nodet is

connected to at leastβn relays that could potentially furnish
these missing bits (that is, with links towards nodet). Consider
the rows corresponding to these relays. This set of rows is a
random selection of at leastβn rows from amongst the indices
1
2np(1− ε) + 1 throughn and does not includet.

Observe that conditioned on these selections, the entries
of the submatrix continue to be iid Bernoulli(p/2) random
variables. IfM (n)(t) occurs, there is no coverage of these the
yet-to-be-pulled bits (columns) using the helper relays (rows),
with each helper relay furnishing at most one missing bit. But
this in particular implies that there is no coverage of the yet-to-
be-pulled bits (columns) by some subset of exactlyβn helper
relays (rows) with each helper relay furnishing at most one bit.
But this further implies that any superset ofβn columns that
includes the yet-to-be-pulled bits (columns), and continues to
exclude columnt, cannot bematchedto the selectedβn helper
relays (rows). Now, Lemma 9 of Section V shows that this
probability is upper bounded byγ(βn), which is (17), and
that nγ(βn) is summable, which is (18). This concludes the
proof.

The matching step above is the key to complete the deliv-
eries. It ensures that all required bits are available at some
helper relay, and that each link has at most 1 bit load so that
capacity constraints are not violated. We now devote a section
to demonstrating this key step.

V. THE EXISTENCE OF A BIPARTITE MATCHING

In this section, we establish the crucial step of existence
of bipartite matchings. The following lemma, taken from
Bollobás [18], is key to showing that matchings exist almost
surely and one can pull theβn bits from relays. We first present
the result for a random bipartite graph withn vertices on
each side. The results of this section are well-known and are
provided only for completeness and ease of reference.

Lemma 6: ([18, Lem. 7.12, p. 174]). LetG be a bipartite
graph with vertex setsV1, V2 such that|V1| = |V2| = n.
SupposeG does not have any isolated vertices and it does
not have a complete matching. Then there is a setA ⊂ Vi
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for either i = 1 or 2 such that the following three conditions
hold:

(i) Γ(A) has|A| − 1 elements,
(ii) the subgraph spanned byA ∪ Γ(A) is connected,
(iii) 2 ≤ |A| ≤ (n+ 1)/2.

The above conditions are simple consequences of Hall’s
marriage theorem and some elementary observations. The
proof can be found in [18, Lem. 7.12, p. 174]. We now bound
the probability of these events on a random bipartite graph
G(n, n, p) (see Section II-A).

Lemma 7:Let Fa be the event that there is a setA of sizea
with A ⊂ Vi for i = 1 or 2 satisfying (i)-(iii) of Lemma 6. Let
n1 = (n+1)/2. ConsiderG(n, n, p). ThenPr{∪n1

a=2Fa} ≤ εn
whereεn summable, and henceεn → 0. Furthermore, we also
have

∑

n≥1 nεn < ∞.
Proof: Fix a. There are two choices fori in the condition

A ⊂ Vi, there are
(

n
a

)

ways to choose the subsetA, and there
are

(

n
a−1

)

ways to choose the subsetΓ(A). Once chosen, there
must be no links between thea vertices ofA and then−a+1
vertices ofV2−Γ(A). By the union bound (for the possibilities
for A andΓ(A)), we get

Pr{Fa} ≤ 2

(

n

a

)(

n

a− 1

)

(1− p)a(n−a+1). (19)

Using
(

n
a

)

≤ na, by a second application of the union bound,
and by dropping some factors that are smaller than 1, we get

Pr{∪n1
a=2Fa} ≤ 2

n1
∑

a=2

n2a−1(1−p)an(1−p)−a2

=: εn. (20)

For an a0, set n0 = 2a0 − 1. It suffices to show that
for n0 large,

∑

n≥n0
εn < ∞. Interchanging the indices of

summation, and changing limits appropriately, we get

∑

n≥n0

εn = 2

a0
∑

a=2

(1− p)−a2 ∑

n≥n0

n2a−1(1− p)an

+ 2
∑

a>a0

(1− p)−a2 ∑

n≥2a−1

n2a−1(1 − p)an.

(21)

The first term is easily seen to be summable for any finite
a0. For the second one, observe that for anyδ > 0 and any
C > 0, there is ana0 large enough so that for alla > a0
and alln ≥ 2a− 1, we haven2a−1 ≤ n2a ≤ C(1 + δ)an. By
takingC = (1− p)(1− δ)(1− (1− p)(1− δ)) it follows that

∑

n≥2a−1

n2a−1(1 − p)an ≤ (1 − p)2a
2

(1 + δ)2a
2

.

Chooseδ small enough so that(1−p)(1+δ)2 < 1. Substitute
this in the second term in (21), and we see that it is summable.

Finally, to show that
∑

n≥1 nεn < ∞, we modify (21) as

∑

n≥n0

nεn = 2

a0
∑

a=2

(1− p)−a2 ∑

n≥n0

n2a(1 − p)an

+ 2
∑

a>a0

(1 − p)−a2 ∑

n≥2a−1

n2a(1− p)an.

By our choice ofa0 andδ, we also haven2a ≤ C(1 + δ)an,
and so all the steps that followed (21) apply, which establishes
summability ofnεn.

We now put these together to argue that a bipartite matching
exists inG(n, n, p) with high probability.

Theorem 8:The probability thatG(n, n, p) does not have a
complete matching is upper bounded byγ(n) := 2n(1−p)n+
εn, whereεn, defined in (20), has all the properties indicated
in Lemma 7.

Proof: If G(n, n, p) does not have a complete matching,
then either (1) there is an isolated vertex, or (2) there is no
isolated vertex and by virtue of Lemma 6,∪n1

a=1Fa must occur,
wheren1 = (n+1)/2 as before. By Lemma 7, the probability
of the second case event is at mostεn. The probability that
there is no isolated vertex is, by the union bound, at most
2n(1− p)n.

In the previous section, we had a need to study existence of
bipartite matchings over left and right sets of sizeβn := ⌊cn⌋
where0 < c < 1.

Lemma 9:For a fixed 0 < c < 1, let βn := ⌊cn⌋.
The probability thatG(βn, βn, p) does not have a complete
matching is upper bounded byγ(βn) where γ is the up-
per bounding function defined in Theorem 8. Furthermore,
∑

n≥1 nγ(βn) < ∞.
Proof: The upper bound on the probability that a match-

ing does not exist is immediate. We now show that
∑

n nγ(βn)
converges. Note that any particular integer repeats at most
1/c+1 times in the sequence{βn, n ≥ 1}. As a consequence

∑

n≥1

nγ(βn) ≤ 1

c

∑

n≥1

(cn) · γ(βn)

≤ 1

c

∑

n≥1

(βn + 1) · γ(βn)

≤ 1

c

(

1

c
+ 1

)

∑

k≥1

(k + 1) · γ(k) < ∞.

VI. A D IGRESSION OFNOT JUST INTERPRETIVEVALUE :
MAXIMUM SINGLE COMMODITY FLOW

Let us now take a step back to see how matching arises
naturally in the simpler case of a single commodity flow
between a source nodes and a sink nodet. We shall assume
that additional nodes1, 2, . . . , n are merely relays. The random
graph of interest is nowG(n+2, p), where the numbern+2
comes fromn relay nodes and the two source and sink nodes.
Our interest is in the maximum rate of information flow
between source and sinkπn(2). (To be strictly conforming
to our earlier notation, we must useπn+2(2) for there are
n+2 nodes in the network and with the first two nodes being
in session. The asymptotics does not change of course).

Grimmett and Suen [19] showed thatπn(2) grows linearly
in n and thatlimn

πn(2)
n = p, almost surely. It is then clear

that the cut that isolates the source is a tight cut. So is the
cut that isolates the sink. Motivated by this, Karp et al. [12]
provided an algorithm that achieves the minimum cut capacity.
We will show that, for a fixedε > 0, the following algorithm
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Source s Destination t

Matching

Figure 2. Single source single sink setting indicating how matching arises.

transportsnp(1 − ε) bits from the source to the sink with
vanishing probability of failure. See Figure 2.

Algorithm MaxFlow:

• The source floods exactlynp(1 − ε) links with one bit
per link.

• The sink pulls all these bits fromnp(1 − ε) links con-
nected to it in the following two steps.
(a) If any node connected to the sink is directly connected
to the source, the sink draws the corresponding bit. With
overwhelming probability, there are at leastnp(1 − ε) ·
p(1− ε) such connections.
(b) Here is how the sink draws the remaining bits. There

are at mostβn = np(1− ε)(1−p(1− ε)) such yet-to-be-
pulled bits, and these reside with let us saysource side
relays not in direct contact with the sink. Among those
relays that did not get a bit directly from the source (and
these aren − np(1 − ε) = n(1 − p(1 − ε)) in number)
the sink is connected to at leastn(1 − p(1 − ε)) · p(1 −
ε) = βn, again with overwhelming probability. Let us
call these thesink side relays. There is a matching, again
with overwhelming probability, between the source side
relays and the sink side relays. This matching is then used
in the obvious way to draw the yet-to-be-pulled bits.

Obviously, the direct link betweens andt is inconsequential
for the asymptotics. It is further obvious from the analysis
of the previous section that the probability of failure is
overwhelmingly small, and moreover, it is summable overn
(Lemma 9). This is essentially the argument of Karp et al. [12]
to show the achievability direction of the result of Grimmett
and Suen [19].

What if we have not one sinkt, but two sinkst1 and t2?
There is one matching needed fort1 and another needed fort2.
These matchings depend on the connections at the respective
sinks, but can be found with overwhelmingly small probability
of failure via the union bound for probabilities. Once these
are found, while the relays may be overworked, the links are
utilized within their capacity limits. Indeed, if a common sink-
side relay is required to deliver the same bit (from a particular
source side relay) to both sinks, then the relay simply copies
the obtained bit on both links to the sinks. If the relay is
required to supply two different bits to the two sinks, the
matchings are to different bits, the relay fetches the two bits
from the respective source side relays on two different links

(as per matching), and supplies them to the two sinks via two
different links. This matching on an as-needed basis minimizes
link usage. But every time a new sink is added, new flows
should be initiated to make all bits available to the new sink.
Can weprepare the network to be in a state of readiness so
that upon addition of a new sink, it is merely the new sink
that does the necessary work to obtain all bits?

Our next goal is to modify AlgorithmMaxFlow into one that
pushes two steps and then pulls, as in AlgorithmALLCAST,
yielding a decentralized algorithm that easily extends to the
case of multiple sinks.

Consider the single source single sink case again, and the
following algorithm.

Algorithm MaxFlowPUSHPULL:
• Push step 1: The source nodes floods np(1 − ε)

links with one bit per link. We shall call the bits
b1, b2, . . . , bnp(1−ε) and the recipient nodes of these bits
as the ownersO1, O2, . . . , Onp(1−ε) of the respective
bits. All other nodes are termed relays and indexed
Rnp(1−ε)+1, . . . , Rn.

• Push step 2: Each ownerOi pushes his bitbi one more
level, but only to neighbors who are not owners, and to
the sinkt if there is a link to the sink. Owner-owner links
are unutilized.

• Pull step 1: The sink t collects all bits sent directly by
owners.

• Pull step 2: The sinkt identifies the list of additional bits
needed, the list of relays it is connected to, the list of bits
they have in their possession, and does an appropriate
matching of relays with the required bits. It then pulls
the desired bits from these relays via the by now all-too-
familiar matching.

The bit-map for this setting is much simpler (see Table II).
The columns are indexed by the bits. The rows are indexed by
the nodes, with the firstnp(1−ε) representing the owners and
the rest representing the relays. Rowi, when it corresponds
to ownerOi (which is when1 ≤ i ≤ np(1− ε)) has a 1 only
on the ith column. But when rowi corresponds to a relay
(which is wheni > np(1− ε)), it has entryXij = 1 if Oj is
connected toRi. Clearly, the presence or absence of this link
is independent of the status of all other links, andXi,j is a
Bernoulli(p) random variable, wheni > np(1− ε) ≥ j.

Table II
BIT-MAP FOR ONE SOURCE ONE SINK FLOW

b1 b2 · · · bnp(1−ε)

O1 1 0 · · · 0
O2 0 1 · · · 0
...

...
Onp(1−ε) 0 0 · · · 1

Rnp(1−ε)+1

... ((Xi,j))
Rn

We then have the following result.
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Theorem 10:For any ε > 0, the following event occurs
almost surely: for all but finitely manyn, the algorithm
MaxFlowPUSHPULL succeeds in transporting allnp(1 − ε)
bits from the sources to the sinkt.

Proof: This is almost immediate. If the algorithm fails,
one of the following must happen.

(1) The eventA(n)
1 occurs, which is the event that nodes

is connected to less thannp(1−ε) relays. By Lemma 5, there
is a c1 > 0 such that for all sufficiently largen, we have
Pr{A(n)

1 } ≤ e−nc1 .
(2) The eventA(n)

2 occurs, which is the event that the sinkt
is connected to a number of owners outside the rangenp(1−
ε) · p(1± ε). Again by Lemma 5, there is ac2 > 0 such that
for all sufficiently largen, we havePr{A(n)

2 } ≤ e−nc2 for
somec2 > 0.

(3) The eventA(n)
3 occurs, which is the event that the sink

t is connected to fewer thanβn := n(1− p(1− ε)) · p(1− ε)
relays. Again by Lemma 5, there is ac3 > 0 such that for all
sufficiently largen, we havePr{A(n)

3 } ≤ e−nc3.
(4) If A(n)

1 ∪A
(n)
2 ∪A

(n)
3 does not occur, the number of bits

that remain to be pulled is at leastnp(1−ε)−np(1−ε)·p(1+ε)
which is at mostβn. The number relays that can help the sink
pull these bits is at leastβn. For the algorithm to fail, the event
M (n), that there is no coverage of the yet-to-be-pulled bits by
the available relays with each relay accounting for at most one
bit (capacity constraint), must then occur. This implies that if
a particular set ofβn relays are chosen, there is no coverage of
the required bits. This further implies that any superset ofβn

bits that includes the yet-to-be-pulled bits cannot be covered
by theβn chosen and available relays.

The matrix rows corresponding to theβn chosen relays
(rows) and theβn chosen bits (columns) is aβn × βn square
submatrix whose entries are conditionally iid Bernoulli(p)
random variables. Again, we may view this as a bipartite graph
with the chosen relays on the one side and chosen bit indices
on the other side. Thus, ifA(n)

1 ∪A(n)
2 ∪A(n)

3 does not occur, but
M (n) does, then there is no matching on the random bipartite
graph. Using Theorem 8, the probability that such a matching
does not exist, conditioned on(A(n)

1 ∪A
(n)
2 ∪A

(n)
3 )c, is upper

bounded byγ(βn).
Thus, the event that the sink is unable to pull all the bits

implies the event

A
(n)
1 ∪A

(n)
2 ∪ A

(n)
3 ∪M (n),

and its probability is upper bounded by

e−nc1 + e−nc2 + e−nc3 + γ(βn). (22)

This is summable by Lemma 9, and the rest follows.
Instead of one sink, suppose we have two sinkst1 and t2

that are not connected directly to each other or directly to
the source. The source has to transport all itsnp(1 − ε) bits
to each of the two sinks using only then relay nodes. We
may continue to useMaxFlowPUSHPULL with the following
extension. The two push steps are common. But each sink
simply executes its own pull steps based on the connections
it sees at its end and the information from its helper nodes.
Using the union bound, it immediately follows that Theorem

Source
1

2

3

k n

Figure 3. Therelay(kn, n) network. Source pushes bits to owners who
then push to relays (solid lines). The sinks pull the bits from either owners
or relays (dashed lines).

10 holds for one source and two sinks when there are no direct
connections between the set of nodes constituted by the source
and the sinks.

Indeed, we can say something much stronger. One version
that suffices to address the multicast setting of the next section
is the following. Consider a scenario where there is one
sources and a total ofkn − 1 sinks t1, t2, . . . , tkn−1 where
supn≥1

kn

n ≤ C for someC < ∞. The source and the sinks
have no links among themselves, but are connected through a
network ofn relays. See Figure 3. The internal links between
the relays and the links between the source/sinks and the relays
are iid Bernoulli(p) random variables. The source wishes to
transfer all its bits of information to each of the sinks. Letus
denote this random network asrelay(kn, n).

Theorem 11:For any ε > 0, the following event occurs
almost surely: for all but finitely manyn, the algorithm
MaxFlowPUSHPULL, with the pull stages implemented by
each sink, succeeds in transporting allnp(1 − ε) bits from
the sources to each of thekn − 1 sinks on therelay(kn, n)
network.

Proof: Observe that the first three terms in the upper
bound for the probability of failure in (22) decay exponentially
fast in n. The last termγ(βn) satisfies

∑

n≥1 nγ(βn) < ∞.
Since there arekn− 1 = O(n) sinks, by the union bound, the
probability that the algorithm fails for some sinks is at most
Cn (e−nc1 + e−nc2 + e−nc3 + γ(βn)). This upper bound is
summable, and the rest follows.

A related model was considered by Ramamoorthy et al.
[20]. In their random network model, between each pair of
nodes, there are two links, one in each direction, with equalbut
random capacity. The random variables were again iid. They
identified how the minimum cut capacity, which is also the
multicast capacity in directed settings, scales with the number
of relays. Our achievability result is, in contrast to that of
[20], constructive. Further, thanks to the undirected nature of
links in our model, our ability to choose directions flexibly
enables us to reach the network upper bound, asymptotically,
with flows.
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VII. M ULTICAST: ACHIEVABILITY

We now return to the setting ofn nodes of whichkn are
in a multicast session. Node 1 is the source node and nodes
2, 3, . . . , kn are the sinks. Our goal in this section is to show
that the upper bound (10) is achievable. While one could in
principle proceed as in Catlin et al. [15] to prove achievability,
we shall directly jump to a constructive proof.

Theorem 12:For the multicast problem withkn nodes in
the session, letlimn→∞ kn/n = α ∈ [0, 1]. We then have

lim
n→∞

πn(kn)

n
=

(

1− α

2

)

E[C] a.s.

Proof: As in the proof of Theorem 3, converse was
already shown in (10). So showing achievability suffices,
and further showing it on Erdős-Rényi random graphs with
parameterp suffices. Moreover, as before, it is enough to show
that: For any ε > 0, the following event occurs almost surely:
for all but finitely manyn, there is an algorithm that succeeds
in transportingπn(kn) ≥ n (1− α/2) p(1− 2ε) bits from the
source to each of thekn − 1 sinks.We claim that this holds.

We first dispose two easy cases.
When α = 0, this follows from Theorem 11, by simply

ignoring the links between the session nodes and by using
MaxFlowPUSHPULL and n(1 − ε) relays, and with pulls
implemented at each of the sink nodes.

When α = 1, pretend that all nodes are in session and
implementALLCAST. The result follows from Theorem 4.

Only the case when0 < α < 1 remains, for which we will
use a combination of the above.

Observe that the subset of session nodes alone form a
complete graph withkn vertices for which Theorem 4 is
applicable. UsingALLCAST and without using any of the relay
nodes, we have that the source can distribute

π(1)
n ≥ kn

2
p(1− ε) (23)

bits to the otherkn−1 nodes in the session, for all but finitely
manyn, almost surely. (Summability of the probability upper
bound sequence holds sincekn = Ω(n)).

Removing these direct links between the session nodes, we
end up with the graph in Figure 3, where the session nodes are
now only connected to themn = n−kn relay nodes. The link
to each relay node from each session node has Bernoulli(p)
capacity. Further the relay nodes have interrelay link capacities
that are independent Bernoulli(p) random variables. By The-
orem 11, usingMaxFlowPUSHPULL, the source can distribute

π(2)
n ≥ mnp(1− ε) (24)

bits to thekn−1 sinks (solely with the help of the relay nodes),
for all but finitely manyn, almost surely. (Summability of the
probability upper bound sequence holds sincemn = Ω(n)).

The result immediately follows from (23) and (24) since
π(kn) ≥ π

(1)
n + π

(2)
n and kn/2 + mn = n − kn/2 ≥ n(1 −

α/2)(1− ε) for all sufficiently largen.

VIII. V ANISHING L INK PROBABILITIES

Our results extend to the case whenp is a function ofn,
denotedpn, and vanishes but sufficiently slowly. We shall
focus only on the allcast problem. The results for multicast
can be obtained in an analogous fashion.

Theorem 13:Let pn =
√

τn logn
n where τn → ∞ but

pn → 0. For anyε > 0, the following event occurs almost
surely: for all but finitely manyn, the algorithmALLCAST
succeeds in distributing12npn(1 − ε) bits to each of then
nodes. Furthermore,limn→∞

πn

npn
= 1

2 almost surely.
Proof: The proof of the first part is similar to the proof of

Theorem 4, with some additional effort to get better probability
upper bound estimates. Again, we argue that the probability
that algorithmALLCAST fails is summable overn. If the
algorithm fails for a particularn, at least one of the following
events must have occurred.

1) The eventA(n)
1 occurs, which is defined to be the event

that there are fewer than12npn(1 − ε) vertices connected to
node 0. By Lemma 5, applied withq = pn/2, there is some
c1 > 0 such that for all sufficiently largen, we have

Pr{A(n)
1 } ≤ e−n· 12pn·ε2/3 = e−c1

√
nτn logn.

2) For some nodet, the eventA(n)
2 (t) occurs, which is

defined to be the event that nodet is connected to a certain
number of owners outside the range1

2npn(1− ε) · 12pn(1± ε)
with links pointing towardst. (The case when nodet is an
owner leads to one fewer number of owners which as before
is absorbed into(1 ± ε) factor). Again by Lemma 5, there is
somec2 > 0 such that for all sufficiently largen, we have

Pr{A(n)
2 (t)} ≤ e−

1
2npn(1−ε)· 12pn·ε2/3

≤ e−c2np
2
n

= e−c2τn logn =
1

nc2τn
. (25)

Note thatc2 can be arbitrarily small because of theε2 factor.
Since we needn timesPr{A(n)

2 (t)} to go to zero, see (29)
which comes later, it is here where we utilize the assumption
that τn → ∞.

3) Let A(n)
1 not occur. Then there are exactly12npn(1− ε)

owners. For some nodet, the eventA(n)
3 (t) occurs, which is

the event that the nodet is connected to fewer than

βn :=

(

n− 1

2
npn(1− ε)

)

· 1
2
pn(1− ε)

=
1

2
npn(1− ε) ·

(

1− 1

2
pn(1 − ε)

)

(26)

relays with links pointing towardst. (As before, the case of 1
less relay when nodet is a relay is easily handled). Once again
by Lemma 5, there is ac3 > 0 such that for all sufficiently
largen, we have

Pr{A(n)
3 (t) | (A(n)

1 )c} ≤ e−(n−
1
2npn(1−ε))· 12pn·ε2/3

≤ e−c3
√
nτn log n.

4) For some nodet, if A
(n)
1 ∪ A

(n)
2 (t) ∪ A

(n)
3 (t) does not

occur, then the eventM (n)(t) occurs, which is the event that
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nodet is unable to pull the desired bits. We claim that

Pr
{

M (n)(t) |
(

A
(n)
1 ∪ A

(n)
2 (t) ∪ A

(n)
3 (t)

)c}

≤ δn (27)

where ∞
∑

n=1

nδn < ∞. (28)

The event that the algorithm fails is thus a subset of

A
(n)
1

n
⋃

t=1

(

A
(n)
2 (t) ∪ A

(n)
3 (t) ∪M (n)(t)

)

whose probability is upper bounded via the union bound and
(27) by

n ·
(

e−c1
√
nτn logn +

1

nc2τn
+ e−c3

√
nτn logn + δn

)

. (29)

By (28) and the assumption thatτn → ∞, we see that this
bound is summable.

What remains is to prove (27) and (28).
As before, the probability on the left-hand side of (27) is

upper bounded by the probability that there is no matching in
a bipartite graph withβn vertices and link probabilitypn.

We first sharpen Lemma 7. The bound in (19), after noting
that we now haveβn vertices on one side, can be sharpened
(see [18, p.174]) to

Pr{Fa} ≤ 2

(

βn

a

)(

βn

a− 1

)

(1− pn)
a(βn−a+1)

·
((

a(a− 1)

2a− 2

)

· p2a−2
n

)

where the extra term within parentheses in the second line can
be included because it is an upper bound (via the union bound)
on the probability that some2a− 2 links, among the possible
a(a − 1) links from A to Γ(A), are active. Recall thata is
an integer satisfying2 ≤ a ≤ (βn + 1)/2. Using the bounds
(

m
a

)

≤
(

em
a

)a
and (1 − x) ≤ e−x, we get

Pr{Fa}

≤ 2

(

eβn

a

)a (
eβn

a− 1

)a−1
(ea

2

)2a−2

p2a−2
n

·
(

e−βnpna(1− a
βn

+ 1
βn

)
)

≤ 2

(

eβn

a

)(

e2βnpn
2

)2a−2 (

1 +
1

a− 1

)a−1

·
(

e−βnpna(1− a
βn

+ 1
βn

)
)

≤ Cnpn

(

e2np2n
4

)2a−2

e−anp2
n(1−2ε)/4

for some finite constantC, where in the last inequality we
have used(1 + 1/k)k ≤ e, the bound1 − (a − 1)/βn ≥ 1/2
when2 ≤ a ≤ (βn + 1)/2, and the obvious upper and lower
bounds onβn from (26). Now, usingnp2n = τn logn, we get

Pr{Fa} ≤ C
√

nτn logn

(

e2τn logn

4

)2a−2

n−aτn(1−2ε)/4

≤ C

(

16

√
n

e4(τn logn)1.5

)(

e4(τn logn)2

16nτn(1−2ε)/4

)a

.

Since the term inside the second parentheses converges to zero
asn → ∞, it follows that for all sufficiently largen and some
finite constantsC1 andC2, we have

(βn+1)/2
∑

a=2

Pr{Fa} ≤ C1

( √
n

(τn logn)1.5

)(

e4(τn logn)2

16nτn(1−2ε)/4

)2

= C2

(√
n(τn logn)

2.5

nτn(1−2ε)/2

)

=: κn.

The probability that there is no matching is then upper
bounded byδn := κn + 2βn(1 − pn)

βn . The second term
is upper bounded, using the bounds onβn, as

2βn(1− pn)
βn ≤ npne

−np2
n(1−2ε)/2 =

√
nτn logn

nτn(1−2ε)/2
.

From these two bounds, usingτn → ∞, it is clear that not only
δn → 0, but in addition,

∑

n≥1 nδn < ∞. This establishes
(27) and (28) and proves validity of algorithmALLCAST.

The above achievability result also establishes that

lim inf
n→∞

πn

npn
≥ 1

2
.

The upper bound

lim sup
n→∞

ηn
npn

≤ 1

2

follows from (7) and Lemma 5. This concludes the proof of
the second statement.

The extension to multicasting can be done similarly.

IX. D ISCUSSION

We began with the problem of allcast and multicast capacity
region for multiple allcast and multiple multicast. Yet, we
largely focused on single allcast or single multicast with
just one sender and with remaining nodes of the session as
receivers. But study of single multicast suffices, thanks tothe
result [1, Cor. 4.a] of Li et al. on transferability of rates across
sources (even with network coding). It is therefore clear how
the established results imply the validity of (1) and (2). The
requirement that the session nodes be identical for each of the
multiple multicasts is crucial for this transferability.

Moreover, we largely studied multicasting techniques that
do not use network coding. One message coming out of
this work is that though network coding provides a coding
advantage in specific undirected scenarios, and one such
example can be found in Li et al. [14], in large dense random
undirected networks of the variety studied in our paper the
coding advantage is at most1+ o(1) in the number of nodes.
While our results applied to graphsG(n, pn) with pn → 0, we
did require thatpn vanishes sufficiently slowly. In particular,
pn =

√

(τn logn)/n so that a typical node has degree
npn =

√
nτn logn. These are well connected, but by no means

sparse graphs. This naturally raises two questions. (1) Canone
extend these results to some useful classes of sparse random
graphs? (2) Can one find the rate at which the expected rates
for the proposed strategies converge to their asymptotic limits,
and show concentration around the expectations?
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The result of asymptotically negligible network coding
advantage in single or multiple multicast settings (with iden-
tical session nodes) may evoke the question of a possible
connection with a conjecture of Li and Li [21] for multiple
unicasts. Li and Li [21] conjectured that for multiple unicast,
network coding provides no coding advantage in undirected
graphs. While their conjecture holds true for some specific
classes of undirected graphs ([22], [23]), the general conjecture
remains unresolved. The negligible gain for multicasting in
random graphs studied here arises from the dense intercon-
nectivity between relays. The bottlenecks are primarily atthe
periphery3. So there does not seem to be much insight that
one can glean from our study to prove or disprove the Li and
Li conjecture for multiple unicasts in undirected networks.

While we studied multiple multicasts, our communication
application naturally restricted us to a single set of session
nodes. We thus had to study Steiner tree packings for a single
subset of nodes. VLSI applications require efficient packing
of Steiner trees across a multiplicity of such subsets (or nets;
see [8]). One could apply our random network framework to
such problems and attempt to devise similar quick-but-dirty
algorithms. This is an interesting topic that is beyond the scope
of this paper.
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