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On a Class of Doubly-Generalized LDPC Codes
with Single Parity-Check Variable Nodes

Enrico Paolini, Mark F. Flanagan, Marco Chiani and Marc PFGssorier

Abstract— A class of doubly-generalized low-density parity- regular) if all of its VNs are of the same type and all of its CNs
check (D-GLDPC) codes, where single parity-check (SPC) ced are of the same type and is said toibegular otherwise. We
are used as variable nodes (VNs), is investigated. An expsen  qint oyt that the properties of a D-GLDPC code are heavily
for the growth rate of the weight distribution of any D-GLDPC ffected by th ¢ tri dt t its VN
ensemble with a uniform check node (CN) set is presented at i, ,a ected by the g_engra or matrix use . 0 represent Its S,
together with an analytical technique for its efficient evatiation. 1-€., by the association between local input words and local
These tools are then used for detailed analysis of a case syyd codewords of any VN. On the other hand, the overall code
namely, a rate1/2 D-GLDPC ensemble where all the CNs are properties do not depend on the representation of its CNs.
(7,4) Hamming codes and all the VNs are length? SPC codes. Tperefore, bytype of a VN we mean its local input-output
It is illustrated how the VN representations can heavily afect . ’ . . .
the code properties and how different VN representations ca Welghtengmeratlng f_unctlon (IO'W_EF)' Wh',le lype of a CN
be combined within the same graph to enhance some of the We mean its local weight enumerating function (WEF). Among
code parameters. The analysis is conducted over the binary irregular D-GLDPC ensembles, we calleakly regular any
erasure channel. Interesting features of the new codes inale the ansemble where all the CNs have the same WEE and where
capability of achieving a good compromise between waterfaand all the VNs have the same WEF but may have a different
error floor performance while preserving graphical regularity, . . .
and values of threshold outperforming LDPC counterparts. IO-WEF (i.e., they f';\re associated with th? same code, but are

represented by a different generator matrix). Note thatklyea
regular D-GLDPC codes preserve the graphical regularity as

. INTRODUCTION all the VNs (resp. CNs) have the same degree.

Recently, low-density parity-check (LDPC) codes [1] have An analysis of the stability co_ndition over the binary erasu
been intensively studied due to their near-Shannon-limit p channel (BEC) suggests that single parity-check (SPC)scode
formance under iterative belief-propagation decodingislt US€d as VNs can offer some benefits when codes with local

usual to represent an LDPC code as a bipartite graph (knofifimum distance larger thahare employed as CNs [5]. In

as a Tanner graph [2]), where the nodes are grouped into thS paper we elaborate on this idea and propose an anafysis 0

disjoint sets, namely, the variable nodes (VNs) and the lchek class of strongly and weakly regular D-GLDPC codes where

nodes (CNs), such that each edge may only connect a VN witlh the CNs have a local minimum distar_lce larger tRaand
a CN. Here, a degreg VN can be interpreted as a lengjh- all the VNs are SPC codes. As proved in [6], the absence of

repetition code, as it repeatstimes its single information CNS With minimum distance is sufficient to have a growth

bit toward the CNs. Similarly, a degreeCN of an LDPC ate of the weight distributiot: () (see Sectiod II-B) such

code can be interpreted as a lengtsingle parity-check (spc) thata” = inf{a > 0|G(a) = 0} is strictly positive, which

code, as it checks the parity of theVNs connected to it. |mplles an exponennally small number of codewords of small
Doubly-generalized LDPC (D-GLDPC) codes [3] (see alsf€ight linear in the block length.

the previous work [4]) generalize the concept of LDPC codes.The thresholdblanglysis .overdth_e BEC.for any irregular D-
In a D-GLDPC code, a degreeCN may in principle be any GLDPC ensemble is reviewed in Sectibn IlI-A. Two new

(s, h) linear block codes being the code length aridthe code results, namely, an expression for the growth rate of thghtei
dillnension Such a CN accounts for- 1 linearly independent distribution of any D-GLDPC ensemble with a uniform CN set

parity-check equations. Analogously, a deggeeN may in (i.e_., all the C_Ns are of the same type_), and an efficient means
rinciole be anv(a. k) linear block codes beina the code of its evaluation based on a polynomial system, are predente
princip via k) A g |y SectiondI[-B and Sectiof IM-C. In Sectidn]V asymptotic

length andk the code dimension. Such a VN is associaté o
with k D-GLDPC code bits. It interprets these bits as its loc&nd finite length analyses of a case study are presented. More

information bits and interfaces to the CN set througly ikscal specifically, strongly and weakly regular ratg2 D-GLDPC

code bits. A D-GLDPC code is said to begular (or strongly codes, where all the CNs a(g, 4) Hamming codes and all
the VNs are length- SPC codes, are investigated. T(%6)
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CN typest € 1. = {1,2,---,n.}, and n, different VN erasure probability anfl; be the averaga priori information.
typest € I, = {1,2,--- ,n,}. For each CN typeg € I., The EXIT function of a type- (¢, k:) VN is given by

we denote byh;, s; andr; the CN dimension, length and a—1 ks
minimum distance, respectively. For each VN types I, [ )(IA7 —1- = Z Za Y Il I e (1 — )2
we denote byk,, ¢; andp, the VN dimension, length and =0 =0

minimum distance, respectively. Fore 1., p; denotes the (t) \ (t) _(t)

fraction of edges connected to CNs of typeSimilarly, for Wherea;: = (g —j)é," ;. . — (G +1)é,_; 1, . and

t € I,, A\; denotes the fraction of edges connected to VNs of]% is the (g, h)-th un-normalized split information function

typet. Note that all of these variables are independent.of [8] for a type< VN. Itis defined as the summation of the ranks
The polynomialsp(z) and A(z) are defined byp(x) £ over all the submatrices obtained by selectjingplumns from

Sier e and Mz) £ 30, ., Maz® !l If E denotes the the generator matrixs, of a typet VN and /. columns from

number of edges in the Tanner graph, the number of CNstbg identity matrixI;, (of orderk,).

typet € I. is then given byEp,/s;, and the number of VNs  The EXIT function of a type- (s;, h;) CN is given by

of typet el,is then given byE\;/¢:. Denoting as usual =

[ p(x)dz and [ AM(z)dz by [p and [ X respectively, we 11y =1-— Z al (1= 1) 1!

see that the number of edges in the Tanner graph is given by 5t 520

E =n/ [ X and the number of CNs is given by = E [ p.

Therefore, the fraction of CNs of typec I. and the fraction

of VNs of typet € I, are given by

wherea!” = (s, —j)el”  — (j+1)el”_ .| andéy’ is the
g-th un-normalized information function for a typeEN. It is
defined as the summation of the ranks over all the submatrices
= Pt At 1) obtained by selecting columns fromG.
st fp a [ A The EXIT function of the whole VN set is given by
respectively. Also the length of any D-GLDPC codeword ihEv (14,€) = Xiep, Ao g 5 (La,¢), while the EXIT func-
the ensemble is given by tion of the whole CN set is given bylgpc(I4) =
Soor el ( 4). We highlight that the threshold depends on
EX Ak LS : o n i
N = Z (_t) Z tht (2) theVN representatrons through the split information figrcs
e \ @ tel €g4,n Of the VNs. On the other hand, the threshold does not
depend on the representation of the CNs [5].

and 6, =

Note that this is a linear function at. Similarly, the total

number of parity-check equations for any D- GLDPC Cod8  Growth Rate of the Weight Distribution

in the ensemble is given byl = 357, pefse—h)

member of the ensemble then corresponds to a permutatsg-rhe growth rate of the weight distribution (apectral

on the E edges connecting CNs to VNs. ape) of the irregular D-GLDPC ensemble sequerce!,, }
The WEF for CN typet € I, is given by A®)(z) = 1 + is defined bf}
S APz, Here A > 0 denotes the number of weight- G(a) 2 lim 1 l0g Eaq, [Nan] @
u codewords for CNs of type. The IO WEF for VN type n—oo M
t € I, is given by B® (z,y) = 1+ 31 B zuyv.  WhereEy, denotes the expectation operator over the ensem-
_P

ble M,,, andN,, denotes the number of codewords of weight
w of a randomly chosen D-GLDPC code in the ensembig.

Note that the argument of the growth rate functi@(w) is

equal to the ratio of D-GLDPC codeword weight to the number
of VNs; by (2), this captures the behavior of codewords linea
in the block length, as in [9] for the LDPC case. Next, we
dover, pe(1— 1) formulate techniques for evaluation of the growth rate for a

Sier, MR () bp-GLDPC ensembleM,, with a uniform CN set, over a wider

range ofa than was considered in [6] (where the cases 0
where fort € I. (resp.t € I,) R, is the local code rate of a ya5 analyzed).
type+ CN (resp. VN). _ ) ) i
Throughout this paper, the notatian= exp(1) denotes Proposition 1. Consider a D-GLDPC ensemble with a uni-

t
Napier’s number, all the logarithms are assumed to have b ggnhCN set. LetAgz) be the WEF O_fﬁaCh CN anHBK (z, y)h
e and for0 < z < 1 the notationh(z) = —zlog(z) — (1 — °¢ the IO-WEF of any type-VN with ¢ € I,. The growt

z)log(1 — x) denotes the binary entropy function. rate of the weight distribution is given by

lIl. ASYMPTOTICS G(a) = max (Z X (o, By) + Y(ﬁ)) (5)

tel,
A. Asymptotic Threshold over the BEC
INote that using [2), we may also define the growth rate with

An extrinsic information transfer (EXIT) chart [8] apprdac respect to the number of D-GLDPC code bity as H(y)
can be used to calculate the threshold over the BEC (denot@dy . + log Eat,, [N, ]. It is straightforward to show thak (v)
by €*) of any irregular D-GLDPC ensemble. Lebe the BEC <0 wherey = /1 3=, ¢kt

qt

Here Bﬁ > 0 denotes the number of weightcodewords
generated by input words of weightfor VNs of typet. Also,
for eacht € I, corresponding to the polynomi@® (z,y)
we denote the se$; = {(i,j) € Z* : B( ) > 0},

The design rate of any D-GLDPC ensemble is given by .

R=1-

I 1>




wherea £ (a4)ier,, B 2 (Bi)ier,, B 2 > ier, B and the wherex, yo and z, are the unique positive real solutions to
maximization is subject to the constrainis > 0, mY) (o) < (7) together with
B < M®B () forall t € I, and

0B 9B
T2 (%0, Y0) a—y(Ioayo)
LT g = and =——yo=0. (11
R(a,B) £ Z ar =a. (6) B(z0,90) e B(z0,90) w=pF. (1)
tel,
The expression o (3) in @) is C. Solution via Polynomial System
Lo We solved the optimization probleni] (5) using Lagrange
Y(B) =1 Alz) 1> hB ) multipliers. Lettin P P © 9 T
20 ”
. | N . S(e.) £ X" (ar, B) + Y (8)
where zg is the unique positive real solution to tel,
A'(z0) o <f /\> % and recalling[(B), at the maximum we must have
29 = U
A(20) [ 0S(e,8)  OR(a, )
while (for eacht € I,) the expression of(t(‘st)(at, Be) is Oay Oy
) 5 for all t € I,,, whereyp is the Lagrange multiplier. After some
(6) (B (0,1, y0.) ion. thi ion simplif .
X" (o, Bi) = log " calculation, this equation simplifies tog zp; = —u Vt € L.

To Yot We conclude that all of théz, .} are equal, and we may write
where §, is defined in [[1) and(xo,yo) are the unique %ot = %o for all t € I,,. At the maximum, we must also have
positive real solutions to the pair of simultaneous equntio 2S(a, B) OR(a, B)

8B(t) xoyt (673 8[315 s aﬂt

—— (@0, Y0.) - HF——— = = ®) T B
ox BW (ot y0,t) Oy for all t € I,,. After some calculation, this equation simplifies

dB® Yot By to 20%0,¢ (lfﬂﬁ) =1Vt e I,. We conclude that all of the

©) {yo0,+} are equal, and we may writg ; = yo for all t € I,.

oy o) By | .
Then the latter equation may be written as

xO,tayO,t) B 5_t '

Finally, letting w = (w1 w2 -+ wg,), we define the .
function m(® (a) = max, 3%, V;Vw; where V") denotes 1+ 20y0 = ig\ . (12)
the maximum local codeword weight associated with a local Bf

input weight: € {1,2,--- ,k;} for a type¢ VN (i.e., the Thus, forn, > 1, the growth rate may be evaluated by solving
maximum j with (i,5) € S;), and the maximization is numerically the(2n, + 3) x (2n, + 3) system of nonlinear
subject to the constraints; > 0 for all i = 1,2,---,k;, polynomial equations given biZl(7}L1(8)Ll (9] (6) andl(12)allf
Zf;l w; <1 and Zf;l iw; = «. Also the functionM® is VNs are of the same type:i( = 1), () is redundant and((7),
defined asM () (a)) = min, Zf; Ui(t)wi WhereUi(t) denotes @), (9), [12) comprise & x 4 system for numerical solution.
the minimum local codeword weight associated with a local

input weight: € {1,2,--- ,k:} for a typet VN (i.e., the IV. ASYMPTOTIC AND FINITE LENGTH ANALYSIS OF A
minimum j with (4, j) € S;), and the minimization is subject RATE-1/2 D-GLDPC ENSEMBLE

to the constraints; > 0 foralli =1,2,- -+, ky, Y1 w; < 1 We consider as a case study a rate- ensemble where
and Zf;lz‘wi =a. all the CNs are(7,4) Hamming codes, and all the VNs are

The proof of Propositiofi]1 is omitted due to space corgNdth7 SPC codes. Three representations of the SPC VNs
straints (it can be found in [10]). Note thddl (7) provides af'® _conS|dered. The f|_rst two are the systematlc (S) and the
implicit definition of z, as a function of3. Similarly, for any Cyclic (C) representations. The third one is what we call
t € I,, @ and [9) provide implicit definitions afo; andy,,, the antisystematic (A) representation, whosek x (k + 1))
as functions ofy, and 3;. generator matrix is thamed frpm the g_enerator atr|x in S

We deduce as a special case the growth rate for a stron@?l'_“ by complementing each bit in the fl_rstcolumn.
regular ensemble. he values ot*, evaluated as reviewed in Sectlon IJ-A, are

) o provided in Tabléll for the raté/2 strongly regular ensembles

Corollary 1: The growth rate of the Wt-_:qgh_t distribution for,ith vNs in A. S and C forms. The A form exhibits the worst

a strongly regular D-GLDPC ensemble is given by threshold, while the C form achieves the best one. We observe

Bl(z0,0) a heavy dependence of the threshold on the VN representation
Gla) = m(a)glﬂan(a) o B Note also that the strongly regular C form ensemble achieves
- Yo% a better threshold than th@, 6) regular LDPC ensemble, for
A(Zo)% h(B [N which we havee* = 0.429. Next, we searched for a weakly
+ log B - TA (10) regular ensemble with an optimal mix (from ahviewpoint)
0

3Note that a(k x (k + 1)) generator matrix in A form represents a SPC
2The uniqueness ofy, and ofzo,¢ andyo,¢ for eacht € I, is guaranteed code if and only if the code length = k£ + 1 is odd. For everk + 1 we
by Hayman'’s formula (see for example [9, Appendix II]). obtain ad,;, = 1 code with one codeword of weight



TABLE |

ASYMPTOTIC AND FINITE LENGTH PARAMETERS OFRATE-1/2
STRONGLY AND WEAKLY REGULAR D-GLDPC CoDES L1 S ———
v _c A S C WR gl | Aform
= C form
s Awmptoggggrm?‘iz 0150 T 6| - | —©— weakly regular ensemble
a* (x1079) 11.7 7.2 10.7 9.7 4l
Finite Length Parameters (n = 500) =
CWD A 9 6 21 17 27 17 5 2
CWD B 9 6 33 13 21 21 ol
CWD C 9 6 27 15 33 23
CWD D 9 6 30 14 27 22 -2
CWD E 1 7 37 15 29 27
CWD F 12 8 27 23 22 23 -4
a*n 5.85 3.60 5.35 4.85 6l
2 s 6 8 10 12 14
a x107°

of the three VN representations. The problem consists ot

maximizing ¢ subject to all the CNs beingf, 4) Hamming Fig. 1. Growth rate curves for the ratg2 strongly and weakly regular
codes, the VNs being lengthSPC codes with A, S or C form D-gC.;LIZ.)PC ensembles. i v red

andR = 1/2, whereR is given in [3). The problem was solved

using differential evolution (DE) [11]. The optimum weakly

regular ensemble (denoted WR in TaBle 1) is characterized Bpproach is characterized by an intrinsic numerical ingsmu

a fraction0.578 of VNs in A form and a fraction).422 of due to the need to quantize the space over which the optimiza-
VNs in S fornffl. Its threshold ¢ = 0.481) is quite larger tion is performed (finer-grained quantization comes at eepri
than that of the(3,6) LDPC ensemble. Remarkably, it hagh computational speed, which becomes more pronounced as
been obtained only by combining different VN representetjo the optimization space dimensionality increases). Theesl
without affecting the regularity of the Tanner graph. of o for the analyzed ensembles are reported in Table I.

Next, we evaluated?(«) for these D-GLDPC ensembles. In Fig.[2, the performance curves over the BEC are shown
for rated/2 N = 3000 D-GLDPC codes from these ensem-

Proposition 2: The I0-WEF for the lengttik + 1) SPC  pjes. The curves correspond to iterative decoding, with MAP
codes afé decoding at each node. The four simulated D-GLDPC codes
S form: have the same Tanner graph, the only difference being in thei

1 k k SPC VN representations. The Tanner graph was generated
Blz,y) = 2 [+ )1+ 2y + (1 -y)(1 - 2y)*] using the progressive edge-growth (PEG) algorithm [124 an

A form: (k; even) is composed ofmm = 500 degreer CNs andn = 500
1 degree? VNs. For the WR code, 289 VNs are in A form
B(z,y) = 5 (1 +2y)" + (1 — ay)* and 211 are in S form (these values target the optimized
X X ensemble found earlier in this section). The performance
+y(e+y)* =yl —y)"] curve labeled “LDPC” in Fig[12 is that of atv = 3000
C form: (3,6)-regular LDPC code generated with the PEG algorithm.

b min(i ki) o The Wate_rfall region of the perfprmance curves reflect the
Blay) =1+ Z Z (k +1- z> <z - 1>£Ciy2j asymptotic thresholds presented in Tdble I, Wlth.the WR code
’ Pt — j j—1 " exhibiting the best waterfall performance, even if at thiegr
’ of an error floor atCER ~ 10~5. We observe how the LDPC
The plots of growth rate for the three strongly regulagode is outperformed in the waterfall region by both the WR
ensembles are shown in F[g. 1. These are evaluated using4hg the strongly regular C codes. Again, we observe how a
method described in Sectidn TII-C, which involves solutiopyodification in the VN representations can heavily affeet th
of a4 x 4 polynomial system. The growth rate for the WRy-GLDPC code performance.
ensemble is also plotted in Figl 1 based on the solution ofan analysis of the error floor was carried out for the simu-
a7 x 7 polynomial system following the method describeghted D-GLDPC codes by collecting small size stopping sets
in Section[T[-C. Note that the same plots can be derivaghcountered during the simulatifinSix small-size stopping
also by implementind (5) (o£{10)) numerically. Howeveiisth sets were collected, each one coinciding with a small-weigh
4The fact that only the S and A forms are used in the optimal rabie codeword (labeled ‘CWD A t_O CWD F). The weights of
may be intuitively justified by the fact that the EXIT funatiof a SPC VN such codewords are reported in Table |, whemndc denote

in S form matches tightly the EXIT function of a Hamming CN faalues the number of VNs and CNs involved in the subgraph induced

of I4 close tol, while the EXIT function of a SPC VN in A form matches

tightly the EXIT function of a Hamming CN for values df; close to0. 5|t is important to observe that a small-size stopping sefp(remall-weight
5The proof is omitted due to space constraints and can be foufitb].  codeword) collected for any of these D-GLDPC codes reptesesmall-size

While the derivation ofB(z, y) for the S and A forms is straightforward, for stopping set (resp. small-weight codeword) also for theotnes, although

the C form the formula has been obtained using a recursiveoapip. with a different size (resp. weight) due to different VN repentations.
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compromise between waterfall and error floor performance,
while preserving graphical regularity.

The subgraphs induced by the codewords of Téble | are
depicted in Fig[B (the codewords ‘A’ to ‘D’ share the same
structure). With the exception of ‘CWD E’, which involves
a weight-4 local codeword for one of the Hamming CNs, all
the D-GLDPC codewords are associated with local codewords
of minimum weight at the nodes, i.e., weighttodewords at
the CNs and weigh?-codewords at the VNSs. Interestingly, all
these subgraphs share a similar structure, composed oéa lay
of VNs interconnecting two cycles (for ‘CWD E’ one cycle
and one structure composed of two overlapping cycles).

V. CONCLUSION

Motivated by the search of new coding schemes with
iterative decoding, a class of D-GLDPC codes with Hamming
CNs and SPC VNs has been analyzed over the BEC. The
asymptotic analysis has been conducted using both EXIT
chart and a proposed tool to evaluate the growth rate of
the weight distribution. Interesting features recognifexnn
the analysis of a raté/2 ensemble include the capability of
achieving a good compromise between waterfall and error
floor performance while preserving graphical regularityd a
values of threshold outperforming LDPC counterparts.
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by the codeword, respectivElyFor each code, the smallest

among such weights is an estimate of the minimum distance
and is reported in bold in Tablé I. We observe that each dfi
these estimates is significantly larger than the correspgnd
value o*n for n = 500, revealing the beneficial effect of a
PEG-based construction. On the other hand these estimates @]

significantly smaller than the value*n = 69 for the (3, 6)

LDPC codsg, suggesting that the new codes offer worse erroy;

floor properties than the regular LDPC counterparts.

The estimates of the minimum stopping set sizes were us?g

to calculate a prediction of the error floor. Lettifigbe the

minimum stopping set size and assuming a multiplicity one
for stopping sets of minimum size, the probability of decmgdi

error P, fulfills

P.>é (13)
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