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On a Class of Doubly-Generalized LDPC Codes
with Single Parity-Check Variable Nodes

Enrico Paolini, Mark F. Flanagan, Marco Chiani and Marc P. C.Fossorier

Abstract— A class of doubly-generalized low-density parity-
check (D-GLDPC) codes, where single parity-check (SPC) codes
are used as variable nodes (VNs), is investigated. An expression
for the growth rate of the weight distribution of any D-GLDPC
ensemble with a uniform check node (CN) set is presented at first,
together with an analytical technique for its efficient evaluation.
These tools are then used for detailed analysis of a case study,
namely, a rate-1/2 D-GLDPC ensemble where all the CNs are
(7, 4) Hamming codes and all the VNs are length-7 SPC codes.
It is illustrated how the VN representations can heavily affect
the code properties and how different VN representations can
be combined within the same graph to enhance some of the
code parameters. The analysis is conducted over the binary
erasure channel. Interesting features of the new codes include the
capability of achieving a good compromise between waterfall and
error floor performance while preserving graphical regularity,
and values of threshold outperforming LDPC counterparts.

I. I NTRODUCTION

Recently, low-density parity-check (LDPC) codes [1] have
been intensively studied due to their near-Shannon-limit per-
formance under iterative belief-propagation decoding. Itis
usual to represent an LDPC code as a bipartite graph (known
as a Tanner graph [2]), where the nodes are grouped into two
disjoint sets, namely, the variable nodes (VNs) and the check
nodes (CNs), such that each edge may only connect a VN with
a CN. Here, a degree-q VN can be interpreted as a length-q
repetition code, as it repeatsq times its single information
bit toward the CNs. Similarly, a degree-s CN of an LDPC
code can be interpreted as a length-s single parity-check (SPC)
code, as it checks the parity of thes VNs connected to it.

Doubly-generalized LDPC (D-GLDPC) codes [3] (see also
the previous work [4]) generalize the concept of LDPC codes.
In a D-GLDPC code, a degree-s CN may in principle be any
(s, h) linear block code,s being the code length andh the code
dimension. Such a CN accounts fors−h linearly independent
parity-check equations. Analogously, a degree-q VN may in
principle be any(q, k) linear block code,q being the code
length andk the code dimension. Such a VN is associated
with k D-GLDPC code bits. It interprets these bits as its local
information bits and interfaces to the CN set through itsq local
code bits. A D-GLDPC code is said to beregular (or strongly
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regular) if all of its VNs are of the same type and all of its CNs
are of the same type and is said to beirregular otherwise. We
point out that the properties of a D-GLDPC code are heavily
affected by the generator matrix used to represent its VNs,
i.e., by the association between local input words and local
codewords of any VN. On the other hand, the overall code
properties do not depend on the representation of its CNs.
Therefore, bytype of a VN we mean its local input-output
weight enumerating function (IO-WEF), while bytype of a CN
we mean its local weight enumerating function (WEF). Among
irregular D-GLDPC ensembles, we callweakly regular any
ensemble where all the CNs have the same WEF and where
all the VNs have the same WEF but may have a different
IO-WEF (i.e., they are associated with the same code, but are
represented by a different generator matrix). Note that weakly
regular D-GLDPC codes preserve the graphical regularity as
all the VNs (resp. CNs) have the same degree.

An analysis of the stability condition over the binary erasure
channel (BEC) suggests that single parity-check (SPC) codes
used as VNs can offer some benefits when codes with local
minimum distance larger than2 are employed as CNs [5]. In
this paper we elaborate on this idea and propose an analysis of
a class of strongly and weakly regular D-GLDPC codes where
all the CNs have a local minimum distance larger than2 and
all the VNs are SPC codes. As proved in [6], the absence of
CNs with minimum distance2 is sufficient to have a growth
rate of the weight distributionG(α) (see Section III-B) such
that α∗ , inf{α > 0|G(α) ≥ 0} is strictly positive, which
implies an exponentially small number of codewords of small
weight linear in the block length.

The threshold analysis over the BEC for any irregular D-
GLDPC ensemble is reviewed in Section III-A. Two new
results, namely, an expression for the growth rate of the weight
distribution of any D-GLDPC ensemble with a uniform CN set
(i.e., all the CNs are of the same type), and an efficient means
of its evaluation based on a polynomial system, are presented
in Section III-B and Section III-C. In Section IV asymptotic
and finite length analyses of a case study are presented. More
specifically, strongly and weakly regular rate-1/2 D-GLDPC
codes, where all the CNs are(7, 4) Hamming codes and all
the VNs are length-7 SPC codes, are investigated. The(3, 6)
regular LDPC ensemble is used as a benchmark for the new
class of codes, as it offers the best threshold over the BEC
among rate-1/2 LDPC codes with a regular Tanner graph [7].

II. PRELIMINARIES AND NOTATION

We define a D-GLDPC code ensembleMn as follows,
wheren denotes the number of VNs. There arenc different
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CN types t ∈ Ic = {1, 2, · · · , nc}, and nv different VN
types t ∈ Iv = {1, 2, · · · , nv}. For each CN typet ∈ Ic,
we denote byht, st and rt the CN dimension, length and
minimum distance, respectively. For each VN typet ∈ Iv,
we denote bykt, qt and pt the VN dimension, length and
minimum distance, respectively. Fort ∈ Ic, ρt denotes the
fraction of edges connected to CNs of typet. Similarly, for
t ∈ Iv, λt denotes the fraction of edges connected to VNs of
type t. Note that all of these variables are independent ofn.

The polynomialsρ(x) and λ(x) are defined byρ(x) ,
∑

t∈Ic
ρtx

st−1 andλ(x) ,
∑

t∈Iv
λtx

qt−1. If E denotes the
number of edges in the Tanner graph, the number of CNs of
type t ∈ Ic is then given byEρt/st, and the number of VNs
of type t ∈ Iv is then given byEλt/qt. Denoting as usual
∫ 1

0
ρ(x) dx and

∫ 1

0
λ(x) dx by

∫

ρ and
∫

λ respectively, we
see that the number of edges in the Tanner graph is given by
E = n/

∫

λ and the number of CNs is given bym = E
∫

ρ.
Therefore, the fraction of CNs of typet ∈ Ic and the fraction
of VNs of type t ∈ Iv are given by

γt =
ρt

st
∫

ρ
and δt =

λt

qt
∫

λ
(1)

respectively. Also the length of any D-GLDPC codeword in
the ensemble is given by

N =
∑

t∈Iv

(

Eλt

qt

)

kt =
n
∫

λ

∑

t∈Iv

λtkt
qt

. (2)

Note that this is a linear function ofn. Similarly, the total
number of parity-check equations for any D-GLDPC code
in the ensemble is given byM = m

R

ρ

∑

t∈Ic

ρt(st−ht)
st

. A
member of the ensemble then corresponds to a permutation
on theE edges connecting CNs to VNs.

The WEF for CN typet ∈ Ic is given byA(t)(z) = 1 +
∑st

u=rt
A

(t)
u zu. HereA(t)

u ≥ 0 denotes the number of weight-
u codewords for CNs of typet. The IO-WEF for VN type
t ∈ Iv is given byB(t)(x, y) = 1 +

∑kt

u=1

∑qt
v=pt

B
(t)
u,vxuyv.

Here B
(t)
u,v ≥ 0 denotes the number of weight-v codewords

generated by input words of weightu for VNs of typet. Also,
for eacht ∈ Iv, corresponding to the polynomialB(t)(x, y)

we denote the setSt = {(i, j) ∈ Z
2 : B

(t)
i,j > 0}.

The design rate of any D-GLDPC ensemble is given by

R = 1−

∑

t∈Ic
ρt(1−Rt)

∑

t∈Iv
λtRt

(3)

where fort ∈ Ic (resp.t ∈ Iv) Rt is the local code rate of a
type-t CN (resp. VN).

Throughout this paper, the notatione = exp(1) denotes
Napier’s number, all the logarithms are assumed to have base
e and for 0 < x < 1 the notationh(x) = −x log(x) − (1 −
x) log(1− x) denotes the binary entropy function.

III. A SYMPTOTICS

A. Asymptotic Threshold over the BEC

An extrinsic information transfer (EXIT) chart [8] approach
can be used to calculate the threshold over the BEC (denoted
by ǫ∗) of any irregular D-GLDPC ensemble. Letǫ be the BEC

erasure probability andIA be the averagea priori information.
The EXIT function of a type-t (qt, kt) VN is given by

I
(t)
E (IA, ǫ) = 1−

1

qt

qt−1
∑

j=0

kt
∑

z=0

a
(t)
j,z (1− IA)

j Iqt−j−1
A ǫz (1− ǫ)kt−z

wherea(t)j,z = (qt − j) ẽ
(t)
qt−j,kt−z − (j + 1)ẽ

(t)
qt−j−1,kt−z and

ẽ
(t)
g,h is the (g, h)-th un-normalized split information function

[8] for a type-t VN. It is defined as the summation of the ranks
over all the submatrices obtained by selectingg columns from
the generator matrixGt of a type-t VN and h columns from
the identity matrixIkt

(of orderkt).
The EXIT function of a type-t (st, ht) CN is given by

I
(t)
E (IA) = 1−

1

st

st−1
∑

j=0

a
(t)
j (1− IA)

jIst−j−1
A

wherea(t)j = (st − j) ẽ
(t)
st−j − (j + 1)ẽ

(t)
st−j−1 and ẽ

(t)
g is the

g-th un-normalized information function for a type-t CN. It is
defined as the summation of the ranks over all the submatrices
obtained by selectingg columns fromGt.

The EXIT function of the whole VN set is given by
IE,V (IA, ǫ) =

∑

t∈Iv
λt I

(t)
E (IA, ǫ), while the EXIT func-

tion of the whole CN set is given byIE,C(IA) =
∑

t∈Ic
ρt I

(t)
E (IA). We highlight that the threshold depends on

the VN representations through the split information functions
ẽg,h of the VNs. On the other hand, the threshold does not
depend on the representation of the CNs [5].

B. Growth Rate of the Weight Distribution

The growth rate of the weight distribution (orspectral
shape) of the irregular D-GLDPC ensemble sequence{Mn}
is defined by1

G(α) , lim
n→∞

1

n
logEMn

[Nαn] (4)

whereEMn
denotes the expectation operator over the ensem-

bleMn, andNw denotes the number of codewords of weight
w of a randomly chosen D-GLDPC code in the ensembleMn.
Note that the argument of the growth rate functionG(α) is
equal to the ratio of D-GLDPC codeword weight to the number
of VNs; by (2), this captures the behavior of codewords linear
in the block length, as in [9] for the LDPC case. Next, we
formulate techniques for evaluation of the growth rate for a
D-GLDPC ensembleMn with a uniform CN set, over a wider
range ofα than was considered in [6] (where the caseα → 0
was analyzed).

Proposition 1: Consider a D-GLDPC ensemble with a uni-
form CN set. LetA(z) be the WEF of each CN andB(t)(x, y)
be the IO-WEF of any type-t VN with t ∈ Iv. The growth
rate of the weight distribution is given by

G(α) = max
α,β

(

∑

t∈Iv

X
(δt)
t (αt, βt) + Y (β)

)

(5)

1Note that using (2), we may also define the growth rate with
respect to the number of D-GLDPC code bitsN as H(γ) ,
limN→∞

1
N

logEMn

ˆ

NγN

˜

. It is straightforward to show thatH(γ) =
G(γy)

y
wherey = 1

R

λ

P

t∈Iv

λtkt
qt

.



whereα , (αt)t∈Iv , β , (βt)t∈Iv , β ,
∑

t∈Iv
βt and the

maximization is subject to the constraintsαt ≥ 0, m(t)(αt) ≤
β ≤ M (t)(αt) for all t ∈ Iv and

R(α,β) ,
∑

t∈Iv

αt = α . (6)

The expression ofY (β) in (5) is

Y (β) = log





A(z0)

R

ρ
R

λ

zβ0



−
h(β

∫

λ)
∫

λ

wherez0 is the unique positive real solution to

A′(z0)

A(z0)
· z0 = β

(
∫

λ
∫

ρ

)

(7)

while (for eacht ∈ Iv) the expression ofX(δt)
t (αt, βt) is

X
(δt)
t (αt, βt) = log

(

(

B(t)(x0,t, y0,t)
)δt

xαt

0,ty
βt

0,t

)

where δt is defined in (1) and(x0,t, y0,t) are the unique
positive real solutions to the pair of simultaneous equations2

∂B(t)

∂x
(x0,t, y0,t) ·

x0,t

B(t)(x0,t, y0,t)
=

αt

δt
(8)

∂B(t)

∂y
(x0,t, y0,t) ·

y0,t
B(t)(x0,t, y0,t)

=
βt

δt
. (9)

Finally, letting ω = (ω1 ω2 · · · ωkt
), we define the

function m(t)(α) = maxω
∑kt

i=1 V
(t)
i ωi whereV (t)

i denotes
the maximum local codeword weight associated with a local
input weight i ∈ {1, 2, · · · , kt} for a type-t VN (i.e., the
maximum j with (i, j) ∈ St), and the maximization is
subject to the constraintsωi ≥ 0 for all i = 1, 2, · · · , kt,
∑kt

i=1 ωi ≤ 1 and
∑kt

i=1 iωi = α. Also the functionM (t) is
defined asM (t)(α) = minω

∑kt

i=1 U
(t)
i ωi whereU (t)

i denotes
the minimum local codeword weight associated with a local
input weight i ∈ {1, 2, · · · , kt} for a type-t VN (i.e., the
minimum j with (i, j) ∈ St), and the minimization is subject
to the constraintsωi ≥ 0 for all i = 1, 2, · · · , kt,

∑kt

i=1 ωi ≤ 1

and
∑kt

i=1 iωi = α.

The proof of Proposition 1 is omitted due to space con-
straints (it can be found in [10]). Note that (7) provides an
implicit definition of z0 as a function ofβ. Similarly, for any
t ∈ Iv, (8) and (9) provide implicit definitions ofx0,t andy0,t
as functions ofαt andβt.

We deduce as a special case the growth rate for a strongly
regular ensemble.

Corollary 1: The growth rate of the weight distribution for
a strongly regular D-GLDPC ensemble is given by

G(α) = max
m(α)≤β≤M(α)

[

log

(

B(x0, y0)

xα
0 y

β
0

)

+ log





A(z0)

R

ρ
R

λ

zβ0



−
h(β

∫

λ)
∫

λ

]

(10)

2The uniqueness ofz0, and ofx0,t andy0,t for eacht ∈ Iv , is guaranteed
by Hayman’s formula (see for example [9, Appendix II]).

wherex0, y0 andz0 are the unique positive real solutions to
(7) together with

∂B
∂x

(x0, y0)

B(x0, y0)
· x0 = α and

∂B
∂y

(x0, y0)

B(x0, y0)
· y0 = β . (11)

C. Solution via Polynomial System

We solved the optimization problem (5) using Lagrange
multipliers. Letting

S(α,β) ,
∑

t∈Iv

X
(δt)
t (αt, βt) + Y (β)

and recalling (6), at the maximum we must have

∂S(α,β)

∂αt

= µ
∂R(α,β)

∂αt

for all t ∈ Iv, whereµ is the Lagrange multiplier. After some
calculation, this equation simplifies tolog x0,t = −µ ∀ t ∈ Iv.
We conclude that all of the{x0,t} are equal, and we may write
x0,t = x0 for all t ∈ Iv. At the maximum, we must also have

∂S(α,β)

∂βt

= µ
∂R(α,β)

∂βt

for all t ∈ Iv. After some calculation, this equation simplifies
to z0y0,t

(

1−β
R

λ
R

λ

)

= 1 ∀ t ∈ Iv. We conclude that all of the

{y0,t} are equal, and we may writey0,t = y0 for all t ∈ Iv.
Then the latter equation may be written as

1 + z0y0 =
z0y0
β
∫

λ
. (12)

Thus, fornv > 1, the growth rate may be evaluated by solving
numerically the(2nv + 3) × (2nv + 3) system of nonlinear
polynomial equations given by (7), (8), (9), (6) and (12). Ifall
VNs are of the same type (nv = 1), (6) is redundant and (7),
(8), (9), (12) comprise a4× 4 system for numerical solution.

IV. A SYMPTOTIC AND FINITE LENGTH ANALYSIS OF A

RATE-1/2 D-GLDPC ENSEMBLE

We consider as a case study a rate-1/2 ensemble where
all the CNs are(7, 4) Hamming codes, and all the VNs are
length-7 SPC codes. Three representations of the SPC VNs
are considered. The first two are the systematic (S) and the
cyclic (C) representations. The third one is what we call
the antisystematic (A) representation, whose(k × (k + 1))
generator matrix is obtained from the generator matrix in S
form by complementing each bit in the firstk columns3.

The values ofǫ∗, evaluated as reviewed in Section III-A, are
provided in Table I for the rate-1/2 strongly regular ensembles
with VNs in A, S and C forms. The A form exhibits the worst
threshold, while the C form achieves the best one. We observe
a heavy dependence of the threshold on the VN representation.
Note also that the strongly regular C form ensemble achieves
a better threshold than the(3, 6) regular LDPC ensemble, for
which we haveǫ∗ = 0.429. Next, we searched for a weakly
regular ensemble with an optimal mix (from anǫ∗ viewpoint)

3Note that a(k × (k + 1)) generator matrix in A form represents a SPC
code if and only if the code lengthq = k + 1 is odd. For evenk + 1 we
obtain admin = 1 code with one codeword of weight1.



TABLE I

ASYMPTOTIC AND FINITE LENGTH PARAMETERS OFRATE-1/2

STRONGLY AND WEAKLY REGULAR D-GLDPC CODES

v c A S C WR

Asymptotic Parameters
ǫ∗ 0.332 0.415 0.450 0.481

α∗ (×10−3) 11.7 7.2 10.7 9.7

Finite Length Parameters (n = 500)
CWD A 9 6 21 17 27 17

CWD B 9 6 33 13 21 21
CWD C 9 6 27 15 33 23
CWD D 9 6 30 14 27 22
CWD E 11 7 37 15 29 27
CWD F 12 8 27 23 22 23
α∗n 5.85 3.60 5.35 4.85

of the three VN representations. The problem consists of
maximizing ǫ∗ subject to all the CNs being(7, 4) Hamming
codes, the VNs being length-7 SPC codes with A, S or C form
andR = 1/2, whereR is given in (3). The problem was solved
using differential evolution (DE) [11]. The optimum weakly
regular ensemble (denoted WR in Table I) is characterized by
a fraction0.578 of VNs in A form and a fraction0.422 of
VNs in S form4. Its threshold (ǫ∗ = 0.481) is quite larger
than that of the(3, 6) LDPC ensemble. Remarkably, it has
been obtained only by combining different VN representations,
without affecting the regularity of the Tanner graph.

Next, we evaluatedG(α) for these D-GLDPC ensembles.

Proposition 2: The IO-WEF for the length-(k + 1) SPC
codes are5:
S form:

B(x, y) =
1

2

[

(1 + y)(1 + xy)k + (1− y)(1− xy)k
]

A form: (kt even)

B(x, y) =
1

2

[

(1 + xy)k + (1 − xy)k

+ y(x+ y)k − y(x− y)k
]

C form:

B(x, y) = 1 +

k
∑

i=1

min(i,k+1−i)
∑

j=1

(

k + 1− i

j

)(

i − 1

j − 1

)

xiy2j .

The plots of growth rate for the three strongly regular
ensembles are shown in Fig. 1. These are evaluated using the
method described in Section III-C, which involves solution
of a 4 × 4 polynomial system. The growth rate for the WR
ensemble is also plotted in Fig. 1 based on the solution of
a 7 × 7 polynomial system following the method described
in Section III-C. Note that the same plots can be derived
also by implementing (5) (or (10)) numerically. However, this

4The fact that only the S and A forms are used in the optimal ensemble
may be intuitively justified by the fact that the EXIT function of a SPC VN
in S form matches tightly the EXIT function of a Hamming CN forvalues
of IA close to1, while the EXIT function of a SPC VN in A form matches
tightly the EXIT function of a Hamming CN for values ofIA close to0.

5The proof is omitted due to space constraints and can be foundin [10].
While the derivation ofB(x, y) for the S and A forms is straightforward, for
the C form the formula has been obtained using a recursive approach.
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Fig. 1. Growth rate curves for the rate-1/2 strongly and weakly regular
D-GLDPC ensembles.

approach is characterized by an intrinsic numerical inaccuracy
due to the need to quantize the space over which the optimiza-
tion is performed (finer-grained quantization comes at a price
in computational speed, which becomes more pronounced as
the optimization space dimensionality increases). The values
of α∗ for the analyzed ensembles are reported in Table I.

In Fig. 2, the performance curves over the BEC are shown
for rate-1/2 N = 3000 D-GLDPC codes from these ensem-
bles. The curves correspond to iterative decoding, with MAP
decoding at each node. The four simulated D-GLDPC codes
have the same Tanner graph, the only difference being in their
SPC VN representations. The Tanner graph was generated
using the progressive edge-growth (PEG) algorithm [12], and
is composed ofm = 500 degree-7 CNs and n = 500
degree-7 VNs. For the WR code, 289 VNs are in A form
and 211 are in S form (these values target the optimized
ensemble found earlier in this section). The performance
curve labeled “LDPC” in Fig. 2 is that of anN = 3000
(3, 6)-regular LDPC code generated with the PEG algorithm.
The waterfall region of the performance curves reflect the
asymptotic thresholds presented in Table I, with the WR code
exhibiting the best waterfall performance, even if at the price
of an error floor atCER ≃ 10−6. We observe how the LDPC
code is outperformed in the waterfall region by both the WR
and the strongly regular C codes. Again, we observe how a
modification in the VN representations can heavily affect the
D-GLDPC code performance.

An analysis of the error floor was carried out for the simu-
lated D-GLDPC codes by collecting small size stopping sets
encountered during the simulations6. Six small-size stopping
sets were collected, each one coinciding with a small-weight
codeword (labeled ‘CWD A’ to ‘CWD F’). The weights of
such codewords are reported in Table I, wherev andc denote
the number of VNs and CNs involved in the subgraph induced

6It is important to observe that a small-size stopping set (resp. small-weight
codeword) collected for any of these D-GLDPC codes represents a small-size
stopping set (resp. small-weight codeword) also for the other ones, although
with a different size (resp. weight) due to different VN representations.
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by the codeword, respectively7. For each code, the smallest
among such weights is an estimate of the minimum distance
and is reported in bold in Table I. We observe that each of
these estimates is significantly larger than the corresponding
value α∗n for n = 500, revealing the beneficial effect of a
PEG-based construction. On the other hand these estimates are
significantly smaller than the valueα∗n = 69 for the (3, 6)
LDPC code8, suggesting that the new codes offer worse error
floor properties than the regular LDPC counterparts.

The estimates of the minimum stopping set sizes were used
to calculate a prediction of the error floor. Lettingθ be the
minimum stopping set size and assuming a multiplicity one
for stopping sets of minimum size, the probability of decoding
errorPe fulfills

Pe ≥ ǫθ (13)

as the RHS of (13) is the probability that the starting erasure
pattern includes the stopping set of minimum size. As depicted
in Fig. 2 the lower bound (13) is very tight in the error floor
region for the strongly regular S code and WR code. Moreover,
it predicts an error floor lower thanCER = 10−8 for the
strongly regular C code which, therefore, exhibits a quite good

7The subgraph induced by a codeword is composed of the edges ofthe
Tanner graph carrying a ‘1’ for the given codeword, and the VNs and CNs
connected to these edges. Note that, in the subgraph, the edges incident on a
VN or CN are associated with a valid local codeword for the node.

8From [1] we haveα∗ = 0.023 for the (3, 6) LDPC ensemble, so that
α∗n = 0.023× 3000 = 69 (for the LDPC code we haven = N = 3000).
This value represents a lower bound on the LDPC code minimum distance.

compromise between waterfall and error floor performance,
while preserving graphical regularity.

The subgraphs induced by the codewords of Table I are
depicted in Fig. 3 (the codewords ‘A’ to ‘D’ share the same
structure). With the exception of ‘CWD E’, which involves
a weight-4 local codeword for one of the Hamming CNs, all
the D-GLDPC codewords are associated with local codewords
of minimum weight at the nodes, i.e., weight-3 codewords at
the CNs and weight-2 codewords at the VNs. Interestingly, all
these subgraphs share a similar structure, composed of a layer
of VNs interconnecting two cycles (for ‘CWD E’ one cycle
and one structure composed of two overlapping cycles).

V. CONCLUSION

Motivated by the search of new coding schemes with
iterative decoding, a class of D-GLDPC codes with Hamming
CNs and SPC VNs has been analyzed over the BEC. The
asymptotic analysis has been conducted using both EXIT
chart and a proposed tool to evaluate the growth rate of
the weight distribution. Interesting features recognizedfrom
the analysis of a rate-1/2 ensemble include the capability of
achieving a good compromise between waterfall and error
floor performance while preserving graphical regularity, and
values of threshold outperforming LDPC counterparts.
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