A Higher Order Collective Classifier for Detecting
and Classifying Network Events

Vikas Menon
Department of Computer Science
Rutgers University, New Brunswick
New Jersey 08854
Email: menon@cs.rutgers.edu

Abstract—Labeled Data is scarce. Most statistical machine
learning techniques rely on the availability of a large labeled
corpus for building robust models for prediction and classifica-
tion. In this paper we present a Higher Order Collective Classifier
(HOCC) based on Higher Order Learning, a statistical machine
learning technique that leverages latent information present in co-
occurrences of items across records. These techniques violate the
IID assumption that underlies most statistical machine learning
techniques and have in prior work outperformed first order
techniques in the presence of very limited data.

We present results of applying HOCC to two different network
data sets, first for detection and classification of anomalies in
a Border Gateway Protocol dataset and second for building
models of users from Network File System calls to perform
masquerade detection. The precision of our system has been
shown to be 30% better than the standard Naive Bayes technique
for masquerade detection. These results indicate that HOCC
can successfully model a variety of network events and can be
applied to solve difficult problems in security using the general
framework proposed.

I. INTRODUCTION

Solving any problem in general involves three phases;
detection, classification and resolution in that order. In the
absence of sound detection and classification, it is improbable
to get the correct resolution. Detection has historically been
an easier problem while providing a correct solution has been
the most difficult. The problem of providing a resolution is
more challenging because it is likely that one may come
across a completely new problem which would require creative
thought. In this paper we present HOCC a Higher Order
based Collective Classifier that is capable of addressing the
first two phases of problem solving, detection and classifi-
cation in particular to security problems for network data.
We use this general frame work to solve two difficult and
different problems in security; detection & classification of
attacks/anomalies and masquerade detection.

To detect and classify attacks/anomalies we use the Border
Gateway Protocol (BGP) data. BGP forms the backbone of
Internet routing functionality, and any large scale anomalous
events (such as worms, misconfiguration and power failure)
have a direct impact on BGP performance. Identification
and classification of such events can be employed to avoid
problems such as route flapping [7] and potentially mitigate
damage [2] caused by the events (such as quarantining in-

William M. Pottenger
Department of Computer Science & DIMACS
Rutgers University, New Brunswick
New Jersey 08854
Email: drwmp@cs.rutgers.edu

fected machines). Therefore, identification and classification
of BGP events in real time is an important task. There exist
several approaches in literature that are capable of identifying
anomalous activity in BGP control/data planes. Classifying
anomalous events is a more challenging problem. In [5], a
collective classification algorithm was developed that distin-
guishes different events with high accuracy, based on patterns
of connectivity in graphs of BGP control-plane data. However,
one of the issues in the approach in this prior work is the very
large time complexity of the classification process. In addition,
although the approach in [5] does address classification of
events, it does not address the detection of anomalous events.
In this paper, we present a novel algorithm for identification
and classification of anomalous BGP events.

A masquerade is where a person disguises his behavior as
another user in order to gain the privileges of that user. For
masquerade detection we utilize the Harvard Network File
System (NFS) trace dataset. The dataset consists of network
file system accesses of two groups, the Electrical Engineering
and Computer Science graduate students and CAMPUS, the
central computing facility at the university. With this dataset
we model the behavior of each user using very limited labeled
data. We compare the user’s network accesses with this model
to identify masquerades. The advantage of this dataset is that
it consists of a very large corpus of labeled data which helps
to quantify classification performance better.

As discussed, we show how HOCC can be applied to two
completely different problems. We provide a more general
frame work where HOCC can be extended to solve a variety of
network security related problems. We utilize this framework
to solve two difficult problems in this paper. In the next
section we present related work to Higher Order Learning and
statistical machine learning with respect to HOCC. We follow
this up with a brief overview of HOCC, its application to the
BGP and NFS data sets and finally present our conclusions.

II. RELATED WORK

Modern data mining algorithms primarily leverage first-
order relations, aiming to discover patterns such as association
or classification rules only within records. The underlying
assumption is that records are independent and identically
distributed [19]. This assumption simplifies the underlying

mathematics of statistical models, but in fact does not hold for
many real world applications [6]. Although useful models can
be learned, in many cases more accurate models can be learned
if higher-order associations are leveraged by the data mining
algorithm: i.e., associations between records. For example,
in supervised learning a classification model is applied to a
single record and a prediction is made based on the items
(i.e., attribute-value pairs, or features) of the given record
in a context-free manner, independent of the other records
in the dataset. However, this context-free approach does not
exploit the available information about relationships between
records in a dataset [1]. Coupled with this is a growing need
for data fusion due to increasing data fragmentation [16].
Consequently, there is a greater need to incorporate contextual
information - i.e., higher-order associations that cross record
boundaries. In general, our research falls into the field of
Statistical Relational Learning (SRL). SRL models operate on
relational data that includes explicit links between instances.
These relations provide rich information that can be used
to improve classification accuracy of learned models since
attributes of linked instances are often correlated, and links
are more likely to exist between instances that have some
commonality [6]. Given a set of test instances, relational
models typically label related instances in order to exploit
the correlations between class labels. This is called collective
classification (or collective inference), and as noted violates
the traditional independence assumption. Several studies [3],
[15], [19] have shown, however, that by making inferences
about multiple data instances simultaneously collective infer-
ence can significantly reduce classification error [8].

In our prior work [10], we mathematically proved that
Latent Semantic Indexing (LSI), a well-known approach to
information retrieval, implicitly depends on higher-order co-
occurrence associations. We also demonstrated empirically
that higher-order associations play a key role in the effective-
ness of systems based on LSI. LSI can reveal hidden or latent
relationships among terms, as terms semantically similar lie
closer to each other in the LSI vector space. In a related effort,
[4] uses higher-order co-occurrence to solve a component
of the problem of lexical choice, which identifies synonyms
in a given context. In another effort, [24] use second-order
co-occurrence to improve the runtime performance of LSI.
Second and higher-order co-occurrence have also been used in
other applications including word sense disambiguation [17]
and stemming [22].

In summary, several recent studies including those men-
tioned above show that collective classification can signifi-
cantly improve classification accuracy compared to the tra-
ditional classification techniques. Our approach, which we
term Higher Order Collective Classification, is based on a
collective classification algorithm that leverages Higher Order
associations.

IIT. HOCC: A HIGHER ORDER COLLECTIVE CLASSIFIER

HOCC creates a multi-graph from aggregated instances over
a window of time. The vertices of the graph are unique

Bin

™ Perform
— Extractionand

Convert Raw Data

to ASCII
Binning

’ —) ‘ Windowing

Frequent-Frequent
Record Set
Distribution

4

.»110101101011...
Raw Network Data —
HOST

Createltem Co-
Enumerate All
occurrence Pathsin Graph
Graph P

Fig. 1.

Record Set
Enumeration

HOCC

attribute value pairs while the edges are generated based
on co-occurrence of two items in any record. This graph
represents the model of an ongoing event. From the labeled
instances we generate graphs for the Event Model and compare
them with the Real Time Models. A comparison of the graph
can be performed using various techniques such as item set
enumeration [5] or record set enumeration [14]. HOCC uses
the latter novel Higher Order record set enumeration technique
which is both time and space efficient. For more details on the
HOCC algorithm we refer you to [14].

The Record-Set enumeration technique generates a distribu-
tion of integers from the graph. We compare two graphs by
performing the Student’s T-test between two distribution and
use p-values for comparison.

We define two models that we shall refer to frequently:

+ Real Time Model The sliding windows that are obtained
from real time network event data are referred to as the
Real Time Model.

o Event Model This is the model obtained from labeled
event bins. This model represents the signature of a
previously known event and is used for classification.
These models are pre-computed for comparison with the
Real Time Models.

Figure 1. shows how HOCC can be applied in a generic
manner to different problems. We use this same framework
to solve the problems of anomaly detection and classification
and masquerade detection in the next sections.

IV. BGP ANOMALY DETECTION AND EVENT
CLASSIFICATION:

[13] provides an excellent survey of general anomaly
detection problems and techniques. There have been several
successful systems developed for the detection of anomalies
in BGP traffic. Some previous techniques applied to BGP data
include using neural networks and rule mining techniques that
can detect novelty (or anomalies) such as those presented in
[12] and [11] respectively. In [11], Li et al. use attributes
derived from BGP traffic to detect Internet routing anomalies.
They employ data mining techniques, in particular a decision
tree machine learning algorithm, to train a model using labeled
data. The authors use the counts of different types of BGP
messages divided into one minute bins. Their model consists of
the rules learned, and is used to detect occurrences of abnormal

events. Basically their system can distinguish between two
classes - event and normal - but cannot identify the exact type
of an event. Thus one important drawback in their approach
is that it cannot distinguish between different anomalous
events such as worms. In fact, in her public review, Dina
Katabi from MIT points out the importance of identifying
whether an abnormal event is caused by a worm, blackout
or misconfiguration [11]. Similarly [12] achieves success in
detecting novel events in BGP but is unable to differentiate
between them.

Several other research efforts of a similar nature have been
conducted in [25], [22], [24] and [23]. [24] proposes two
approaches, signature-based and statistics-based detection. In
summary, previous work has been focused on the detection of
anomalies rather than the classification of events, and is thus
in general unable to differentiate between events.

One significant exception that succeeded in the classification
of events is [5] which is able to distinguish between events
with very high accuracy. However, the authors were unable to
build a model for non-anomalous events (normal behavior). As
a result, the approach cannot be used for anomaly detection
per se. In addition, the approach has a high time complexity
which prevents it from being used in practice. This then forms
the basis for our work. We build on the work completed in [5]
and develop a novel approach capable of precisely classifying
events as well as identifying anomalies. More significantly,
we achieve this in real-time based on a novel approach that
leverages our research in Higher Order Learning discussed
below.

The BGP control plane data is in binary. We use free
tools provided by [20] to convert the binary files into plain
text representing packet level information. This information is
continuous and each packet has a time stamp. We use these
time stamps to create three second bins. Each three second
bin consists of a variable number of packets. We extract the
following information for each three second bin:

1) Number of Announcements

2) Number of Withdrawals

3) Number of Announcements and Withdrawals

4) Number of AS prefixes announced. Each announcement
(1) can announce several AS prefixes

5) Number of AS prefix withdrawals. Each withdrawal (2)
can withdraw several Autonomous System (AS) prefixes

6) Number of AS prefix announcements and withdrawals

The bins are generated every three seconds. We create a
sliding window over 120 of such three second bins. HOCC
is applied to each of these sliding windows in turn. Each
window is compared to existing models of both events and
non-events (i.e., the normal event model). The Event model
was created using a single sliding window containing 120
contiguous three-second bins taken from the event period.

To perform anomaly detection we compare the Real Time
Model to the normal Event Model while for classification we
compare the Real Time Model to the signature event Models
of previously known events. As noted above we compare

TABLE I
EVENT vS. EVENT COMPARISON

Event 1 Event 2 T-test
p-values
Slammer Witty 0.00016127
Blackout Witty 0.031218
Slammer | Blackout 0.036645
Normal | Slammer | 1.06 x 10~°
Normal Witty 0.035918647
Normal Blackout 0.000401

models by performing the student’s T-test between the record
set distributions of the models generated by HOCC.

We tested HOCC with three completely different events.
Slammer, which was non-malicious, spread very quickly and
caused network outages because it flooded the network but
did not damage the infected machines. Witty was similar to
Slammer but malicious. Any infected machine was eventually
brought down. This meant the spread of Witty was curbed in
comparison to Slammer. It only infected a tenth of the number
of machines as Slammer. Finally, the last event we consider
is Blackout which was caused due to electricity failure and
brought down a large number of BGP servers.

For Witty and Slammer, a data set of 600 bins was used,
300 of which are pre-event and 300 post, while for Blackout a
dataset of 800 bins was used, 400 of which are pre-event and
400 post. We created sliding windows each composed of 120
consecutive three second instances. From each window we
created the item co-occurrence graph and enumerated paths
of length three (p = 3). In all, for Slammer and Witty 480
windows (600 - 120 bins) were formed and 680 for Blackout.

In Figure 2 the sliding window numbers are on the X-axis
while the Y-axis corresponds to the value of the T-test p-values
ranging between O and 1. The horizontal red line near the X-
axis is a measure of significance set to 5%. The thin vertical
green line indicates the point in time where the bins from the
various events start filtering into the sliding window and the
thick vertical green line indicates the point where the sliding
window has completely entered into the event.

A. Supervised Classification

As noted, HOCC statistically distinguishes between events
using a T-test between event models for each known event.
Thus the events themselves must be different. The results
in Table 1 indicate that each of the event model classes are
statistically significantly different based on T-test p-values.

In Figure 2 (a),(c)and(e) the results of the T-test com-
parisons between the Real Time Model and the event models
of Witty, Slammer and Blackout are shown across all sliding
windows. In Witty and Slammer, HOCC is able to detect a
peak almost exactly at the point the Real Time Model moves
into the event. For Blackout, the event is detected about 30
seconds later. Larger values of the T-test indicate that the
distribution of the Real Time Model matches the distribution
of the given Event Model. Small values (red line at bottom)
indicate that the models are dissimilar. The results of the T-test
remain consistently greater than 5% for Slammer and Blackout

once the Real Time Model moves into the event and less than
5% otherwise. For Witty, the T-test p-values rise sharply and
significantly at the start of event but immediately after, decline
sharply. Although Witty is positively identified by HOCC, the
rapid dropoff is consistent with the fact that Witty has proven
difficult to model in prior work [18]. Yet, even though the drop
off is very rapid, the magnitude of the difference between the
T-test p-values is much larger than [5] indicating that HOCC
is more sensitive in classification.

though not this large, is enough to be significant (less than
5%). The T-test p-values in anomaly detection are roughly the
inverse of those seen in classification. This is to be expected,
and is an indication that the various models (Normal, Event)
have accurately captured the behavior. This is significant for
these results support the conclusion that we now have a
technique whereby we can successfully model both normal
BGP behavior as well as specific targeted events using a single
approach based on higher-order path statistics: HOCC. As
stated earlier, to the best of our knowledge no other work
in literature has been capable of both anomaly detection and
classification.

V. HARVARD NFS TRACE & MASQUERADE DETECTION

Masquerade detection has been a difficult problem. Data
for masquerade detection is difficult to obtain primarily due
to privacy concerns [9]. For this reason, the Harvard dataset
has been anonymized. The anonymization process replaced
all UID (User Identity), GID (Group Identity) and IP (Internet
Protocol) address by arbitrary but consistent values. Another
problem that makes masquerade detection difficult is the fact
that user behavior changes over time, so a user’s behavior
today can be potentially completely different a year later. In
addition, data collection efforts have not focused on security
applications. This has made quantifying performance across
different systems difficult. Using the Harvard NFS traces, a

(a) (b)
,1 ‘
. i
| "H | il
A |
J .,“\ " ! \'“ il aj‘w h‘h
() (d)

(e) ®

Fig. 2. Figures (a), (c) and (e) depict the results of supervised classification
and (b), (d) and (f) the results of anomaly detection for Witty, Slammer and
Blackout respectively.

B. Unsupervised Anomaly/Novelty Detection

In this section we present the results of using HOCC for
anomaly detection in which we compared the Real Time
Model with the Normal Event Model. In Figure 2, (b), (d)
and (f), HOCC is used to identify the Slammer, Witty and
Blackout as anomalies, not events. As noted, here the T-test
p-values were obtained by comparing the Real Time Model to
the Normal Model. We observe large T-test p-values (closer
to 1) before the events begin. This is consistent with the
fact that the pre-event periods exhibit normal behavior. As
the sliding windows move into the event, the T-test p-values
fall significantly (to less than 5%). This drop is very large
for Slammer and Blackout where the T-test p-values are of
the order of 107> and 10~* respectively. For Witty the drop

AR #Est]arge corpus of labeled data it should, however, be possible to

address this problem.

The data set contains a wealth of information and can be
replayed in real time to generate/simulate the entire traffic.
This data contains information of users, groups, calls, ad-
dresses, ports and many more albeit anonymized. It contains
both network and file system level information. One important
underlying assumption that we had to make right at the start
was that the data contained absolutely no masquerades. This
way we could assume that each user was himself/herself and
we could test for masquerades by comparing with other users.
Another assumption was that the users behavior changes over
time and the change is of a nature where the core behavior of
the user remains most like him/herself. This means that even
though a user’s behavior might have changed with respect to
himself, this new behavior is more similar to the user’s past
behavior. This assumption is important and helps us frame a
maximum likelihood problem. Our experimental results con-
firm the validity of this assumption. In the following sections
we explain the use of HOCC for detection of masquerades and
compare results with first order systems for the NFS dataset.

A. Experimental Methodology

We randomly selected 10 users from the NFS file traces.
For each of these 10 users we randomly choose a start point
in time from the traces and collected 500,000 raw NFS calls.
These calls were divided into two categories for training and
testing divided in time. The initial calls were used for training
and the remaining for testing. The time span for these calls was
approximately two weeks and we created different signature

model sizes for each user ranging from window sizes of 20
to 20480 seconds (or 5.6 hours). Our best overall results were
achieved using two second bins over a window of length 80
for a total of 160 seconds.

From the training set we created 10 different trained models
of each of these users, while from the test set we picked up
20 windows for the same users.

Each NFS Call consisted of Time stamp, Source Address,
Source port, User ID, Group ID, Call Type (which could be
1 of 21 different NES call types) , Acc (Access permission
type) and Stable_how (this is a bit that indicates the nature
of a write). Even though more information was available,
we choose these attributes based on the results of attribute
selection for first order techniques using the Weka workbench
[21] .

Using the Time stamps we binned this data into 2, 4, 8§,
16, 32, 64, 128 and 256 second intervals. Each bin consisted
of the following information; Total Number of Calls, Total
number of Source Addresses, Total number of Source Ports,
Total number of calls of each of the 21 types of calls, Total
number of Groups, Total number of Acc and Total number of
stable_how.

Each instance thus represented binned information over the
500,000 raw instances. We then divided these into windows
with sizes ranging from 10, 20, 40, 80, 120 and 160 bins. Each
of these windows models user activity for that period. HOCC
was used for the comparison of these models. It is expected
that the trained models of the user should conform with
the test models. Any significant deviations in T-test p-values
are considered as anomalies. We present results obtained for
models with two second bins and window size of 80.

Table III presents the results of our comparison of user
trained models (in column 1) versus the test models (in row
1). Each comparison is the average of p-values of 200 com-
parisons (10 training models x 20 test models). For example,
the first value in the table corresponds to the comparison of
column user 18a88 training set versus row user 18a88 test set.
A large value reflects greater similarity. To be precise, although
anything larger than a value of p=0.05 would be sufficient to
conclude that two distributions are not statistically significantly
different, a larger p-value indicates “lesser dissimilarity”. The
ideal comparison table would then look like a unit matrix with
1.0 along the diagonal and O for the rest. But we are dealing
with a lot of noise in the form of low level calls that are more
often made by programs than users themselves. As a result,
we end up modeling a users choice of programs. Also, there
is a large amount of noise due to background daemons and
services. This makes modeling any user a difficult problem, in
particular for first order techniques which end up over fitting
and in the worst cases, performing at the baseline.

As can be seen in Table III, our results show large values
along the diagonal with an average of 0.8 whereas the non-
diagonal elements average 0.13.

One of the concerns with this technique is that some users
may have small p-values when compared to themselves, for
user 18ad2 the p-value is 0.541. In other cases, we might

TABLE II
USER VS. USER COMPARISON. 64 SECOND BINS WITH WINDOW SIZE 80

User 18a88 18ad6
18a88 | 0.7455 | 0.1308
18ad6 | 0.1437 | 0.9028

see users that might not be significantly different from the
user under consideration. To resolve these cases, we use a
maximum likelihood framework for one class classification
[9]. In such cases, we apply the M AX operator on the cor-
responding row. The M AX operator sets the largest average
p-value to one and zero to the rest. In case there are two
equally large, M AX randomly chooses one. In the case of
user 18ad2 it tells us that the user indeed is most like himself
(largest values highlighted in bold). This can also be confirmed
by applying the M AX operator along each column. A notable
instance is user 18ad6. This user even though most similar to
himself is also quite similar to user 18a88. Even though this
instance satisfies the M AX operator property and is correctly
identified, it is expected that a good technique should strongly
differentiate between the two. For this reason we also tried
comparing users with different models. For example using
64 second bins and windows of size 80 we can strongly
distinguish between user 18ad6 and 18a88 as shown in Table
II. Thus, a second model optimized toward a particular user
could be used for validation.

When we choose to use the most optimal models for each
user for comparison, the diagonal had a larger average p-value
of 0.89 and the average of non-diagonal elements falls to 0.11.
For the simple M AX operator both precision and recall is
defined as the ratio of the sum of the diagonal to the total
number of users (since there can only exist one maximum in
each row and the rest are zero). By building custom models
for each user in the maximum likelihood framework we were
able to get results with 100% recall and precision for this small
set of users, similar to the result shown in Table III. Similarly,
for the example shown in Table III, by applying the M AX
operator we were able to get ideal performance with 100%
precision and recall using just 160 seconds of labeled data to
build our models.

In complete contrast to these results, first order techniques
were able to achieve low accuracy. We ran the Naive Bayes
algorithm on the same dataset. The class for each instance
was set to UID and the classifier was trained using 10 fold
cross validation, implying 90% of the data was used to train
the models. The Naive Bayes classifier achieved an accuracy
of 70.07% on both training and test data. Also, as the number
of users increase (or number of classes increased) the quality
of models drops significantly. For instance for a 20 user data
set Naive Bayes had a classification accuracy of only 50%.

VI. CONCLUSION

Algorithms are often specific to an application, making it
difficult to extend the same techniques to new domains. In
this paper we have presented a novel Higher Order Learning-
based record set enumeration technique, HOCC, capable of

TABLE III
USER VS. USER COMPARISON. TWO SECOND BINS WITH WINDOW SIZE 80

User 18a88 18a8a 18a89 18a8e 18a9f 18aa9 18aaa 18ad2 18ad6 18b17
18a88 | 0.9535 0.3811 0.1618 | 0.0556 0.0623 0.0031 0.1891 0.0072 0.8206 0.2367
18a8a | 0.2666 0.7349 0.1648 | 0.1464 0.0003 5.19E-07 0.2425 3.06E-06 | 0.3757 0.0056
18a89 | 0.1616 0.1637 0.9339 | 0.1741 0.1582 0.1563 0.1908 0.1568 0.1621 0.1593
18a8e | 0.0576 0.1036 0.1769 | 0.8357 0.0146 0.0068 0.5584 0.0083 0.0685 0.0227
18a9f | 0.0840 0.0008 0.1585 | 0.0114 0.7974 1.31E-06 0.1382 0.0006 0.0607 0.1659
18aa9 | 0.0054 | 8.73E-07 | 0.1565 | 0.0044 | 4.15E-06 0.6855 0.1143 0.0001 0.0043 | 2.00E-07
18aaa | 0.1868 0.2230 0.1928 | 0.4781 0.1357 0.1133 0.9543 0.1188 0.1953 0.1513
18ad2 | 0.0109 | 6.11E-06 | 0.1570 | 0.0055 0.0008 8.05E-06 | 0.11953 0.5410 0.0083 | 2.05E-05
18ad6 | 0.8560 0.4896 0.1621 | 0.0663 0.0911 0.0081 0.1941 0.0159 0.8608 0.2616
18b17 | 0.2206 0.0087 0.1594 | 0.0174 0.1806 1.40E-07 0.1508 2.37E-05 | 0.1621 0.7312

identifying and classifying network events in real time. To
the best of our knowledge, HOCC is the only system capable
of doing both anomaly detection and event classification,
as demonstrated for the BGP data. HOCC is also capable
of performing masquerade detection by building consistent
models of users across time. These applications are quite
diverse, and showcase the variety of problems amenable to
modeling with the Higher Order Learning-based approach in
HOCC. Furthermore, HOCC is able to do this by building
robust models using very little labeled data. HOCC is a next
generation system capable of explicitly utilizing latent higher
order information in data sets with the added advantage of
being faster and more space efficient than previous generation
Higher Order Learning-based systems.

ACKNOWLEDGMENT

The authors wish to thank Rutgers University and the
National Science Foundation. This material is based upon
work partially supported by the National Science Foundation
under Grant Numbers 0703698 and 0712139. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or Rutgers
University.

We are also grateful for the help of co-workers, family
members and friends. Co-author W. M. Pottenger also grate-
fully acknowledges the continuing help of his Lord and Savior,
Yeshua the Messiah (Jesus the Christ) in his life and work.

REFERENCES
[1] Angelova, R., Weikum, G. Graph-based text classification: learn from
your neighbors. SIGIR 2006:485-492.
Caesar,M. , Subramanian, L. , Katz, R.H. Route Cause analysis of
Interdomain routing Dynamics. Tech Report, UCB/CSD-04-1302, 2003.
Chakrabarti, S., Dom, B., P. Indyk. Enhanced Hypertext Classification
Using Hyper-Links. In Proceedings of ACM SIGMOD Conference, pp.
307-318.
Edmonds, P. Choosing the word most typical in context using a lexical co-
occurrence network. In Proceedings of the Thirty-fiftth Annual Meeting
of the Association for Computational Linguistics, 1997, pp. 507-509.
Ganiz, M.C., Kanitkar, S., Chuah, M.C., Pottenger, W.M.Detection of
Inter domain Routing Anomalies Based on Higher-Order Path Analysis.
Proceedings of the Sixth International Conference on Data Mining
(ICDM) 2006.
Getoor, L., Diehl, C. P. Introduction to the special issue on link mining.
SIGKDD Explorations (SIGKDD) 7(2):1-2 (2005)
Giffin, T. What is the Sound of One Route Flapping? IPAM 2002.

(2]
(3]

(4]

(51

(6]
(7]

[8] Jensen, D., Neville, J., Gallagher, B. Why collective inference improves
relational classification. KDD 2004:593-598

[9] Ke Wang, Salvatore J. Stolfo.One Class Training for Masquerade Detec-
tion. ICDM Workshop on Data Mining for Computer Security (DMSEC).
Nov. 19, 2003, Melbourne, FL.

[10] Kontostathis, A., Pottenger, W. M. A Framework for Understanding LSI
Performance, Information Processing & Management, Volume 42, Issue
1, Pages 56-73. 2006.

[11] Li, J., Dou, D., Wu, Z., Kim, S., Agarwal, V.An internet Routing
Forensics Framework for Discovering Rules of Abnormal BGP events.
ACM SIGCOMM Computer Communication Review. Vol 35, Number 5,
pg 57-66. 2005.

[12] Marais, E., Marwala, T.Predicting the Presence of Internet Worms using
Novelty Detection. Technical Report.

[13] Markou, M., Singh, S. Novelty detection: A review - parts 1 and 2.
Signal Processing,2003 volume 83.

[14] Menon, V. A Higher Order Collective Classifier. A thesis submitted
to the Graduate School Rutgers, The State University of New Jersey in
partial fulfillment of the requirements for the degree of Master of Science.
February 2009.

[15] Neville J., Jensen, D. Dependency Networks for Relational Data. ICDM
2004:170-177

[16] Rahm, E., Bernstein, P. A. A survey of approaches to automatic schema
matching. VLDB J. (VLDB) 10(4):334-350 (2001)

[17] Schutze, H. Automatic word sense discrimination, Computational Lin-
guistics, 24(1):97-124, 1998

[18] Shannon, C.; Moore, D., The spread of the Witty worm. Security &
Privacy, IEEE Volume 2, Issue 4, July-Aug. 2004 Page(s): 46 - 50

[19] Taskar, B., Abbeel, P., Koller, D. Discriminative Probabilistic Models
for Relational Data. UAI 2002:485-492

[20] The Co-operative Association for
http://www.caida.org/

[21] Witten, I. H., and Frank, E.Data Mining: Practical machine learning
tools and techniques, 2nd Edition, Morgan Kaufmann, San Francisco,
2005.

[22] Xu, J., Croft, W. B. Corpus-based stemming using co-occurrence of
word variants. ACM Transactions on Information Systems 16 (1), 1998,
pp. 61-81.

[23] Zhang, J., Rexford, J., Feigenbaum, J. Learning-Based Anomaly De-
tection in BGP Updates. Proceeding of the 2005 ACM SIGCOMM
Workshop on Mining Network Data. 219 - 220, 2005.

[24] Zhang, X., Berry, M., Raghavan, P.Level search schemes for information
filtering and retrieval. Information Processing and Management 37 (2),
2000, pp. 313-334.

[25] Zhao, X., Pei, D., Wang, L., Massey, D., Mankin, A., Wu, S., and
Zhang, L.Detection of Invalid Routing Announcements in the Internet.
Proceedings of Dependable Systems and Networks, 2002.

Internet Data Analysis.

